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Abstract: In light of the promising effect of sodium trimetaphosphate nanoparticles (TMPn) on dental
enamel, in addition to the scarce evidence of the effects of these nanoparticles on biofilms, this study
evaluated the activity of TMPn with/without fluoride (F) on the pH, inorganic composition and
extracellular matrix (ECM) components of dual-species biofilms of Streptococcus mutans and Candida
albicans. The biofilms were cultivated in artificial saliva in microtiter plates and treated with solutions
containing 1% or 3% conventional/microparticulate TMP (TMPm) or TMPn, with or without F. After
the last treatment, the protein and carbohydrate content of the ECM was analyzed, and the pH and F,
calcium (Ca), phosphorus (P), and TMP concentrations of the biofilms were determined. In another
set of experiments, after the last treatment, the biofilms were exposed to a 20% sucrose solution,
and their matrix composition, pH, and inorganic component contents were evaluated. 3% TMPn/F
significantly reduced ECM carbohydrate and increased biofilm pH (after sucrose exposure) than
other treatments. Also, it significantly increased P and F levels before sucrose exposure in comparison
to 3% TMPm/F. In conclusion, 3% TMPn/F affected the biofilm ECM and pH, besides influencing
inorganic biofilm composition by increasing P and F levels in the biofilm fluid.

Keywords: phosphates; fluorides; nanotechnology; Streptococcus mutans; Candida albicans; dental
caries; biofilms; extracellular matrix

1. Introduction

Dental caries consists of a non-communicable, multifactorial disease modulated by
diet and mediated by biofilms, resulting from the acid released by the biofilm, leading
thus to the progressive dissolution of the dental hard tissues and further tooth loss [1].
In brief, the biofilm is a very well-organized microbial community embedded in a self-
produced extracellular matrix (ECM) [2]. The ECM consists of a structure composed mainly
of carbohydrates, proteins, lipids, and nucleic acids, which confers to biofilm resistance,
adhesivity, and a three-dimensional network that interconnects and immobilizes the cells,
which makes ECM an important virulence factor for caries onset and progression [3,4].
Based on this assumption, the disruption of the ECM by affecting its components (especially
proteins and carbohydrates) is considered an important target strategy for caries control [5].

In addition to the ECM, taking into account the caries etiology, the concentration of
inorganic components such as fluoride (F), calcium (Ca), and phosphorus (P) in the oral
environment has been shown to exert a crucial role in the caries process, which the higher
the levels of these components in the oral environment, the lower the caries incidence, since
the teeth become more prone to resist to the acid challenges [6–8].
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Among the main microorganisms involved in the cariogenic process, Streptococcus
mutans stands out for its ability to colonize the dental surface, produce extracellular polysac-
charides from sucrose, and metabolize salivary glycoproteins [9]. Candida albicans has also
been identified as an important microorganism in caries development and progression,
acting synergistically with S. mutans and contributing to the maintenance of virulence
factors in cariogenic biofilms [10–12].

Since caries is one of the most prevalent diseases worldwide, particularly in the most
vulnerable population groups [13], strategies have been proposed to enhance the anticaries
activity of fluoridated vehicles, such as the supplementation of such vehicles with different
compounds. Among the various compounds studied, sodium trimetaphosphate (TMP) can
be highlighted due to its high adsorption capacity on the dental enamel surface, acting on
the selective enamel permeability, and facilitating Ca, P, and F diffusion. When adsorbed,
this phosphate binds to hydroxyapatite, forming a partial barrier to acids, which retains the
ions released during de-mineralization, thus aiding dental re-mineralization [14]. Moreover,
F and Ca ions are retained in the biofilm as mineral deposits; when this biofilm is exposed
to a cariogenic challenge, these ions can be released into the biofilm fluid and then further
participate in enamel de- and re-mineralization [15,16].

Fluoride dentifrices supplemented with conventional/micro-sized TMP (TMPm) sub-
stantially affect enamel de- and re-mineralization and the inorganic composition of biofilms,
in comparison to conventional dentifrices (i.e., dentifrices containing 1100 ppm F) [15,16].
Furthermore, studies evaluating the effects of TMPm, with or without F, on dual-species
S. mutans and C. albicans biofilms have demonstrated that this association maintains the
biofilm pH close to neutral even under highly cariogenic conditions, in addition to increas-
ing F and P concentrations in the biofilm fluid [16]. It is noteworthy that although TMPm
and F do not affect the microbial viability of such biofilms [17], TMP and F combination
substantially reduces the expression of the ECM components, the biofilm’s metabolism
and inorganic components of these biofilms, which play crucial roles in dental caries dy-
namics [17]. The effects of TMPm are further enhanced after administering this phosphate
as nanoparticles (TMPn), in which TMPn combined with F increases the protective ef-
fect of fluoride vehicles against dental de-mineralization, in addition to improving their
re-mineralization patterns compared to fluoride vehicles containing TMPm [14,18].

Despite the promising results on the effect of TMPm on the inorganic components of
biofilms and on the biofilm ECM [16,17], information on the effects of TMPn with F is still
scarce. In addition, due to the benefits of the use of TMPn over the conventional particles
(i.e., TMPm) on enamel de- and re-mineralization [14,18], evaluating whether the use of
TMPn and F could potentiate the effect of this phosphate on biofilms would be interesting.
Therefore, in light of the crucial role of the ECM on the cariogenic process, in addition to
the importance of the supersaturation of the inorganic components in the biofilm for caries
control, this study aimed to evaluate the effects of TMPn, with or without F, on the pH,
inorganic composition, and ECM components of mixed S. mutans and C. albicans biofilms.
The null hypothesis of this study was that TMPn combined with F would not affect the
analyzed biofilms.

2. Results
2.1. ECM Composition

All treatments reduced the protein and carbohydrate concentrations in comparison
to the CTL group (Figure 1). The groups 1TMPmF, 3TMPmF, and 3TMPnF treatments
significantly reduced protein and carbohydrate concentrations more than other treatments
(Figure 1). The carbohydrate concentration after 3TMPnF treatment was significantly lower
than that of other treatments (Figure 1B).
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Figure 1. Values of protein (A) and carbohydrate (B) of the extracellular matrix of Streptococcus mutans
and Candida albicans biofilms obtained after treatment with different concentrations of TMPm or
TMPn, combined or not with F. Different letters denote statistical differences among the experimental
groups. Bars denote the interquartile ranges. Data were submitted to Kruskal Wallis, followed
by Student-Newman-Keuls’ post hoc test for multiple comparisons (p < 0.05). The experiments
were performed in triplicate, in three different moments (n = 9). F: fluoride (1100 ppm F); TMPm:
micro-sized sodium trimetaphosphate; TMPn: nano-sized sodium trimetaphosphate; CTL: negative
control.

2.2. F, Ca, P, and TMP Concentration in Biofilm Fluids

The F, P, and TMP ion concentrations in the fluids of sucrose-exposed biofilms were
lower than those in the fluids of biofilms without sucrose exposure (p < 0.001), regardless
of treatment (Figure 2). The fluids of 3TMPnF-treated biofilms had a higher F concentration
than the fluids of all other biofilms before sucrose exposure. However, the F levels in the
fluids of 3TMPmF- and 3TMPnF-treated biofilms were similar to that of 1100 ppm F and
higher than those of the fluids of 1TMPmF- and 1TMPnF-treated biofilms (p < 0.001) after
sucrose exposure (Figure 2A).

The Ca concentrations in the fluids of 1100 ppm F-treated biofilms after sucrose
exposure were significantly higher than those of biofilms without sugar exposure. However,
TMPn treatment did not change Ca concentrations after sucrose exposure (Figure 1B).

The 3TMPnF-treated biofilms presented significantly higher P and TMP concentrations
both prior to and after sucrose exposure (Figure 2C,D). In addition, the P concentrations
were significantly higher for the biofilms treated with TMP-containing solutions without F,
in comparison to their counterparts with F, both prior to and after sucrose exposure, except
for the 3TMPn and 3TMPnF-treated biofilms, which were similar after sucrose exposure
(Figure 2C). Also, 3% TMP presented the highest TMP concentration in the biofilm fluid in
comparison to all the other groups (Figure 2D).
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Figure 2. Mean values of F (A), Ca (B), P (C), and HMP (D) in the biofilm fluid, prior to and after
exposure to sucrose (cariogenic challenge). Distinct upper-case letters indicate statistical within each
group regarding exposure to a 20% sucrose solution (in two levels—yes or no). Distinct lower-case
letters indicate statistical differences among the experimental groups (all test solutions) within each
condition of sucrose exposure). Data were submitted to 2-way ANOVA, followed by Fisher LSD’s
post hoc test for multiple comparisons (p < 0.05). Bars denote standard deviations of the means.
The experiments were performed in triplicate, in three different moments (n = 9). Ca: calcium; F:
fluoride; P: phosphorus; TMPm: micro-sized sodium trimetaphosphate; TMPn: nano-sized sodium
trimetaphosphate; CTL: negative control.

2.3. F, Ca, P, and TMP Concentration in Biofilm Biomass

F, P, and TMP concentrations in the biomass of sucrose-exposed biofilms were lower
after the cariogenic challenge than those in the biomass of biofilms without sucrose exposure
(p < 0.001), regardless of treatment (Figure 3). Moreover, only the biomass of F-treated
biofilms had significantly higher F ion concentrations than that of all other biofilms before
and after sucrose exposure (Figure 3A). In addition, the biomass of 1TMPmF- and 1TMPnF-
treated biofilms showed significantly higher F concentrations than the 3TMPmF- and
3TMPnF-treated biofilms before and after sucrose exposure (Figure 3A).

The biomass of F-treated biofilms had a significantly higher Ca ion concentration
than that of other biofilms before and after sucrose exposure (Figure 3B). In addition, the
biomass of biofilms treated with 3TMPm and 3TMPn, with and without F, had higher Ca
concentrations than the biomass of those treated with 1TMPm and 1TMPn, with or without
F (Figure 3B).

TMP presented the highest P values, regardless of particle size or the presence of F,
before sucrose exposure (Figure 3C). The TMP levels in the biomass were proportional to
those observed in the treatment solutions, in which 3TMPnF promoted a greater amount of
TMP in the biomass than the other treatments before sucrose exposure (Figure 3D).
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Figure 3. Mean values of F (A), Ca (B), P (C), and HMP (D) in the biofilm biomass, prior to and after
exposure to sucrose (cariogenic challenge). Distinct upper-case letters indicate statistical differences
within each group regarding exposure to a 20% sucrose solution (in two levels—yes or no). Distinct
lower-case letters indicate statistical differences among the experimental groups (all test solutions)
within each condition of sucrose exposure). Data were submitted to 2-way ANOVA, followed by
Fisher LSD’s post hoc test for multiple comparisons (p < 0.05). Bars denote standard deviations of the
means. The experiments were performed in triplicate, in three different moments (n = 9). Ca: calcium;
F: fluoride; P: phosphorus; TMPm: micro-sized sodium trimetaphosphate; TMPn: nano-sized sodium
trimetaphosphate; CTL: negative control.

2.4. pH Measurement

The pH of biofilms after the cariogenic challenge was lower than that of biofilms not
exposed to sucrose (p < 0.001; Figure 4). Regardless of the concentration, the biofilms treated
with TMPn, combined with F, presented significantly higher pH than that of biofilms treated
only with F (i.e., 1100 ppm F) and their micro-sized counterparts before and after sucrose
exposure (Figure 4).
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Figure 4. Mean pH values prior to and after exposure to sucrose (cariogenic challenge). Distinct
upper-case letters indicate statistical differences within each group regarding exposure to a 20%
sucrose solution (in two levels—yes or no). Distinct lower-case letters indicate statistical differences
among the experimental groups (all test solutions) within each condition of sucrose exposure). Data
were submitted to 2-way ANOVA, followed by Fisher’s LSD post hoc test for multiple comparisons
(p < 0.05). Bars denote standard deviations of the means. The experiments were performed in
triplicate, in three different moments (n = 9). TMPm: micro-sized sodium trimetaphosphate; TMPn:
nano-sized sodium trimetaphosphate; CTL: negative control.

3. Discussion

Recent studies have observed that combined TMP and F treatment substantially
affect the pH, ECM composition, and inorganic components of S. mutans and C. albicans
mixed biofilms [16,17]. Furthermore, reducing the particle size to the nanometer scale
(i.e., TMPn) improves its effectiveness [14,18]. This study evaluated the effects of TMPn
with or without 1100 ppm F on the inorganic composition, pH, and ECM components of
S. mutans and C. albicans mixed biofilms, demonstrating that the nanoparticles increased
the F concentration in the biofilm fluid, promoted pH maintenance close to a neutral level,
and significantly decreased the carbohydrate and protein concentrations in the biofilm
ECM than its microparticulate counterpart or the solution containing only 1100 ppm F, thus
rejecting the null hypothesis of the study.

The production of an ECM containing water-insoluble glucans is an important viru-
lence factor associated with dental caries pathogenesis [19–21], which is the reason why
such variables were analyzed in the present study. Therefore, the reduction of protein and
carbohydrate concentrations observed in this study is interesting, as it may influence by
reducing cell adhesion and aggregation, biofilm resistance, and acid niche formation in
biofilms [19]. The ECM of 3TMPnF-treated biofilms was substantially reduced in terms of
protein and carbohydrate concentrations, which may reflect the TMP and F concentration,
mainly because of the particle size, as these smaller particles have a high proportion of
surface area in relation to volume, as well as a high percentage of atoms on the surface
than larger particles, which increases their reactivity [22,23]. These results corroborate
those of in situ studies, which showed that the combined treatment of 1100 ppm F and 3%
TMPm or TMPn substantially reduced carbohydrate in comparison to 1100 ppm F without
TMP [18]. In line with these trends, similar data were observed for another phosphate salt
(i.e., sodium hexametaphosphate) using the same biofilm model, which showed that the
reduction of the particle size to nanoscale also enhanced the effects of the phosphate on
the biofilm ECM components [24]. In addition, in line with the above-mentioned trends,
disaggregated hydroxyapatite nanoparticles demonstrated increased inhibitory effects on
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the metabolism and acidogenicity of oral biofilms formed in vitro in comparison to their
micrometric counterpart [25].

The action of TMP in reducing carbohydrates in the ECM may be partially related to
the increased Ca availability in the biofilm [26]; however, the S. mutans and C. albicans mixed
biofilms with high Ca concentrations (CTL for biofilm fluid and F for biofilm biomass) did
not demonstrate the greatest reductions in the matrix components evaluated. Although
the reasons for this pattern are not fully understood, some factors may have influenced
the results. The evaluations performed in the present work were conducted in vitro in
microtiter 6-well plates without the presence of a dental substrate for biofilm formation and
continuous salivary flow, which might have influenced the pattern of the ionic composition
of the biofilms assessed. Also, as nanometric TMP particles present a high percentage
of atoms on the surface, increase reactivity [14,18,22,23] with the biofilm, and possibly
improve interaction with the Ca ions present in the culture medium and the structures
of microorganisms (i.e., cell wall and outer membrane), so that these ions might not be
available for quantification in the biofilm fluid or biomass [26,27].

High TMP concentrations in the biofilm fluid can interfere with the pH, as TMP is
also used as a buffering agent [28]. The buffering capacity of TMP associated with F with
respect to the pH drop has already been reported in a previous study, which reported that
1% TMPm associated with 500 ppm F maintains the pH of biofilms close to neutral, even
after cariogenic challenge [16]. These results are related to the buffering capacity of this
phosphate due to its chelating property; accordingly, the presence of TMP in the biofilm
fluid causes the binding of TMP to H+ and Na to OH− [28].

Interestingly, the reduction in the TMP particle size led to an additive effect on the pH
of the biofilms as even after sucrose exposure, the biofilms treated with 1TMPn and 3TMPn,
combined with F, had significantly higher pH than those treated with their microparticulate
counterparts and the positive control (1100 ppm F). In fact, such data are in line with those
in literature for another phosphate, which demonstrated that the reduction of sodium
hexametaphosphate particle size enhanced its buffering capacity [29]. Such a trend can
also be justified by the higher reactivity of nanoparticles over the microparticles, leading
to the enhancement of the effects observed for the groups treated with the conventional
particles [22,23].

With respect to the inorganic composition of biofilms, this study demonstrated that
the F and P concentrations were reduced in the biofilms after sucrose exposure, as observed
in situ [30] and in vivo [31]. Almost all biofilm minerals (fluid and biomass) were reduced
after a cariogenic challenge [32]. 3TMPnF treatment promoted F concentration in the
biofilm fluid higher than other treatments with the same F concentration (1100 ppm), but
reduced ionic P and P from TMP concentration than treatment with its counterpart without
F, possibly because TMP is considered an inorganic polyphosphate and therefore a metal
chelator [33]. Therefore, biofilm cations, such as Ca, may induce the binding of TMP to
bacterial cells [34,35], decreasing the number of F ions binding with the bacteria, thus
reducing and increasing their levels in the biofilm biomass and fluid, respectively, showing
that TMP particle size can potentiate this interaction.

The high availability of P in the fluids of TMP-treated biofilms may also interfere with
CaHPO4

0 formation, which is of extreme importance for enamel re-mineralization due to
its higher diffusion coefficient in enamel than that of ionic Ca [36]. The combination of
TMP and high concentration F in the biofilm fluid would release more CaF+ in the oral
environment, reacting with HPO4

2– and forming CaHPO4
0 and HF0, elements with higher

diffusion coefficients in subsurface caries lesions than that of ionic Ca [36], which can affect
mineral dynamics and enamel de-mineralization.

In line with previous data, which demonstrated that F concentrations in the envi-
ronment are dependent on Ca concentrations [37], treatments with 1100 ppm F led to
significantly higher Ca concentrations in the biomass, and the Ca and F concentrations
were proportional. For bivalent cations (e.g., Ca), the binding to the microbial wall becomes
monovalent in the presence of F once this ion competes with anionic macromolecular
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groups. This promotes the binding of F to the bacteria via the Ca bridge (Ca-F) and in-
creases the negative sites in the bacteria, which favors the cation binding to the bacterial
surface [35].

The limited number of microorganisms used, the absence of a dental substrate for
biofilm formation, and the lack of continuous salivary flow found in clinical conditions
limit the protocol used in this study. Nonetheless, these limitations became necessary to
minimize possible interference and not induce the results. Therefore, taking into account
the influence that these aspects exert on caries dynamics [38–40], developing new studies
using other experimental models would be interesting.

4. Materials and Methods
4.1. Details on the Processing and Characterization of the TMP Nanoparticles

The processing and characterization of the TMP nanoparticles were performed as de-
scribed by Danelon et al. [14]. In brief, 70 g of pure (micrometric) sodium trimetaphosphate
(Na3O9P3, Sigma Aldrich [St. Louis, MO, USA] purity ≥ 95% CAS 7785-84-4) was ball
milled with zirconia spheres (2 mm diameter) in 1 L of isopropanol. After 48 h, the resulting
powder was separated from the alcoholic media and ground in a mortar. The powder
crystallinity was characterized by X-ray diffraction (XRD) using a Rigaku Dmax 2500 PC
(Austin, TX, USA) diffractometer, by which it was observed that the milling processing
reduced the particle size of the TMP powders without affecting their crystalline structure.
Also, it was noted a pattern of the broader peaks due to the smaller crystallites for the TMP
after 48 h ball milling, estimating an average particle size of 22.7 nm. In addition, scanning
electron microscopy (SEM) images were obtained using Philips XL-30 FEG (Amsterdam,
the Netherlands), showing the particles agglomerated before the milling [14].

4.2. Microorganisms and Growth Conditions

American Type Culture Collection (ATCC) reference strains were used: S. mutans
ATCC 25175 and C. albicans ATCC 10231. C. albicans cultures were seeded in Sabouraud
dextrose agar (ASD Difco [Le Pont de Claix, France]) and cultivated for 24 h at 37 ◦C, while
cultures of S. mutans were seeded in brain heart infusion (BHI Agar; Difco [Le Pont de
Claix, France]) and incubated in 5% CO2 at 37 ◦C for 24 h. After the cultivation of the
ASD plates, 10 mL were suspended in Sabouraud dextrose broth (Difco [Le Pont de Claix,
France]) and incubated at 37 ◦C overnight, under shaking at 120 rpm for C. albicans. For
S. mutans, a loop was suspended in 10 mL of BHI broth (Difco) and incubated statically
overnight in 5% CO2 at 37 ◦C [16].

After incubation, the microorganisms were recovered by centrifugation (8000 rpm,
5 min at 15 ◦C), and pellets were formed, which were washed twice with 10 mL of saline
solution (0.85% NaCl). Subsequently, the cells had their concentration adjusted: the fungal
cells at 107 cells/mL, through a Neubauer chamber and an optical microscope, and the
bacterial cells through the spectrophotometer at 640 nm to a concentration of 108 cells/mL
in artificial saliva [16]. The artificial saliva used was supplemented with sucrose and thus
had the following composition for 1 L of deionized water: 2 g of yeast extract (Sigma-
Aldrich, St Louis, MO, USA), 5 g of bacteriological peptone (Sigma-Aldrich), 4 g of sucrose
(Sigma-Aldrich), 1 g of mucin (Sigma-Aldrich), 0.35 g NaCl (Sigma-Aldrich), 0.2 g CaCl2
(Sigma-Aldrich), and 0.2 g KCl (Sigma-Aldrich). The pH of the saliva was adjusted with
NaOH to 6.8 [8]. For the preparation of biofilms, suspensions of 4 mL (1 × 107 cells/mL C.
albicans + 1 × 108 cells/mL S. mutans) were made in artificial saliva, and then they were
inserted into the wells of microtiter 6-well plates and incubated at 37 ◦C for 72 h. The
artificial saliva renewal was done with 2 mL every 24 h [16].

4.3. Treatment of the Biofilms

The biofilms formed for 72 h were treated a total of three times (72, 78, and 96 h) for
1 min [16]. The treatment solutions used were: 1% TMPm (1TMPm), 3% TMPm (3TMPm),
1% TMP + 1100 ppm F (1TMPmF), 3% TMPm + 1100 ppm F (3TMPmF), 1% TMPn (1TMPn),
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3% TMPn (3TMPn), 1% TMPn + 1100 ppm F (1TMPnF) and 3% TMPn + 1100 ppm F
(3TMPnF) [6–8,10]. For the positive control group, 1100 ppm F (as NaF) was used, and the
negative control was artificial saliva (CTL).

4.4. Analysis of the Composition of the Extracellular Matrix of Biofilms

Biofilms were formed as described above in 6-well plates containing 4 mL of the
inoculum. After the last treatment with the solutions, the biofilms were washed with NaCl
(0.85%) and scraped from the bottom of the wells using cell scrapers (Kasvi [São José dos
Pinhais, Brazil]) and resuspended in NaCl (0.85%). Subsequently, the biofilm samples were
sonicated for 30 s at 30 W, and the suspensions obtained were vortexed for 2 min. Finally,
the suspensions were centrifuged at 3000× g for 10 min, and the supernatant was filtered
using a nitrocellulose filter (0.22 µm; Orange Scientific [Braine-l’Alleud, Belgium]) [41].
This supernatant was used for the analysis of proteins and carbohydrates.

For the determination of the biofilm dry weight, the sample of the scraped biofilms
was filtered through a cellulose acetate membrane (0.22 µm), and the membrane was dried
at 60 ◦C until the dry weight was constant [17]. The membrane was also weighed before
biofilm filtration. Therefore, the final dry weight of the biofilms was the difference between
the two measurements.

The protein content of the extracellular matrix of the biofilms was determined by the
bicinchoninic acid method (BCA Kit, Sigma-Aldrich [St. Louis, MO, USA]), using bovine
serum albumin as a standard. For this, a volume of 25 µL of the obtained supernatant was
transferred to wells of 96-well plates containing 200 µL of the mixture of reagents A and B
from the BCA kit. The plates were incubated at 37 ◦C for 30 min, and the absorbance of the
obtained solutions was read at 562 nm [17,41]. Carbohydrate was quantified as described
by Dubois et al. [42] using glucose as a standard. 500 µL of the supernatant was collected
and deposited in glass tubes, and to the supernatant was added 500 µL of 9% phenol and
2.5 mL of sulfuric acid (95–98%; Sigma-Aldrich). The obtained solution was homogenized
and kept at rest for 15 min at room temperature, after which the absorbance was read
at 490 nm.

4.5. pH Measurement

The pH was determined using a pH electrode (PHR-146 Micro Combination pH
Electrode; Fisher Scientific), which was previously calibrated with pH 7.0 and 4.0 standards.
At another time of the experiments, after the last treatment, the biofilm was exposed to a
20% sucrose solution for three min simulating a cariogenic challenge. The sucrose was then
removed, and the biofilms scraped off and transferred to microtubes (after 1 min of sucrose
removal), allowing pH determination [16].

4.6. Analysis of F, Ca, P and TMP in the Biofilm Fluid

After transferring the biofilm to the microtubes, they were centrifuged (15,267× g) at
4 ◦C for 5 min, and the biofilm fluid was separated and collected [16]. F analysis was per-
formed using an ion-selective (Orion 9409 BN; Thermo Scientific [Waltham, MA, USA]) and
reference electrodes (Orion 900100; Thermo Scientific [Waltham, MA, USA]), both coupled
to a potentiometer (Orion; Thermo Scientific [Waltham, MA, USA]). Calibration curves
for fluid F analysis were made using standards of 0.09, 0.18, 0.36, 0.72, and 1.44 µg F/mL
(for biofilms treated with solutions without F) and 6.25, 12.5, 25, 50, and 100 µg F/mL
(for biofilms treated with F-containing solutions). The total ionic strength adjusting buffer
(TISAB II) was added, which was administered under the same conditions as the samples
in a 1:1 ratio [16].

Ca ion was measured by spectrophotometry in a plate reader (EON Spectrophotome-
ter; EON, Biotek, Winooski, VT, USA) at a wavelength of 650 nm, adapting the method
described by Vogel et al. [43], in which Arsenazo III was used. An aliquot of 5 µL in
duplicate for both standards and samples was added with 50 µL of Arsenazo III and 50 µL
of deionized water. Subsequently, they were shaken for 60 s in the microplate reader,
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promoting the reaction between the sample and Arsenazo III before obtaining the resulting
absorbance.

Phosphorus ion and phosphorus from TMP were measured according to the method by
Fiske and Subbarow [44]. Whereas, for samples that were exposed to cariogenic challenge,
determination of P from TMP was done by boiling water bath process at 60 ◦C for 6 h [7].

4.7. Analysis of F, Ca, P and TMP in the Biofilm Biomass

To measure the inorganic composition of the biofilm biomass, 0.5 mol/L of HCL was
added to the microtubes containing the transferred biofilms at a rate of 0.5 mL/10.0 mg
of wet plate weight [45] and then it was homogenized. The resulting combination was
kept for 3 h at room temperature under constant stirring (120 rpm) and then centrifuged
(11,000× g) for 1 min [46]. 400 µL of the sample was removed, and the same volume of
0.5 mol/L NaOH was added.

F ion was measured as previously described, using standards containing 0.09, 0.18,
0.36, 0.72, and 1.44 µg F/mL (for biofilms treated with solutions without F) and 0.8, 1.6,
3.2, 6.4, and 12.8 µg F/mL (for biofilms treated with solutions containing F). For biofilms
exposed to cariogenic challenge, the calibration curve was performed using standards of
0.2, 0.4, 0.8, 1.6, and 3.2 µg F/mL [16]. Ca and P were determined as described above for
biofilm fluid.

4.8. Statistical Analyzes

Data on the protein and carbohydrate of the ECM passed the normality test (Shapiro–
Wilk) and were submitted to 1-way ANOVA, followed by the Student-Newman-Keuls test.
Data on the pH and the inorganic components of the biofilms passed the normality test and
were submitted to 2-way ANOVA, followed by Fisher LSD’s test. Statistical analyzes were
performed using the SigmaPlot 12.0 (Systat Software Inc., San Jose, CA, EUA) software,
adopting p < 0.05. All experiments were performed in triplicate, in three different moments
(n = 9).

5. Conclusions

Given the context discussed above, it can be concluded that 3% TMPn combined with
F led to significant reductions in the biofilm ECM carbohydrate content and increases in
the biofilm pH (after sucrose exposure) in comparison to its microparticulate/conventional
counterpart (i.e., 3% TMP) combined with F, or the 1100 ppm F solution (the positive
control). In addition, this combination affected the inorganic components of the biofilms,
increasing the P and F availability in the biofilm fluid before the sucrose exposure. The
data presented in this study contribute to the understanding of how TMPn and F act on
the dynamics of dental caries, elucidating the activity of this combination on cariogenic-
related biofilms.
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