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Abstract: Carbon nanotubes (CNTs) were considered a promising activator for persulfates due to
their high electrical conductivity, large specific surface area and low toxicity. The functional groups
and surface defects of CNTs could significantly affect their activation performance. In this study,
CNTs with high C=O ratio and defect density (CNT-O-H) were prepared through a facile treatment
of raw CNTs with HNO3 oxidation followed by calcination at 800 ◦C under an argon atmosphere.
X-ray photoelectron spectroscopy (XPS) and Raman results showed that the C=O proportion and
defect degree (ID/IG) rose to 75% and 1.53, respectively. The obtained CNT-O-H possessed a superior
performance towards peroxydisulfate (PDS) activation, and the degradation efficiency of tetracycline
(TC) in the CNT-O-H/PDS system was increased to 75.2% from 56.2% of the raw CNTs/PDS system
within 40 min. Moreover, the activity of CNT-O-H after use could be easily recovered with re-
calcination. In addition, the CNT-O-H/PDS system exhibited high adaptabilities towards wide
solution pH (2–10), common coexisting substances and diverse organic pollutants. Singlet oxygen
(1O2) was confirmed to be the dominant reactive oxygen species (ROS) generated in the CNT-O-
H/PDS system. It was inferred that surface C=O groups and defects of CNTs were the key site to
activate PDS for TC degradation.

Keywords: carbon nanotube; carbonyl group; surface defect; peroxydisulfate activation; singlet
oxygen; tetracycline degradation

1. Introduction

Tetracycline (TC), one of the most common antibiotics, is widely used in the treatment
and prevention of various diseases and infections due to its broad-spectrum antibacterial
property [1–3]. However, TC has been frequently detected in natural aquatic environ-
ments resulting from uncontrolled discharge of pharmaceutical and hospital effluents [4,5].
Considering water solubility and recalcitrance, TC could seriously jeopardize aquatic or-
ganisms, destroy the balance of ecological system and even threaten human health via
bio-concentration and food chain transmission [6–8]. Hence, it is of great significance to
develop an effective and environmentally-friendly method to remove TC from wastewater.

Recently, advanced oxidation processes (AOPs) [9–12], particularly peroxymono-
sulfate (PMS) and peroxydisulfate (PDS)-based AOPs [13–15], have become one of the
research hotspots in getting rid of refractory antibiotics due to their virtues like fast reac-
tion rate, high degradation efficiency, no secondary contaminant and wide applicable pH
range [16–18]. So far, a great deal of techniques, including heat [19], ultraviolet light [20], ul-
trasound [21], transition metal [22] and carbonaceous material [23,24], have been applied to
activate PMS/PDS to produce strong oxidizing reactive oxygen species (ROS) for antibiotic
degradation. Carbonaceous materials have attracted increasing attention due to their low
price, nontoxicity and metal-free leaching [25–28]. Among them, carbon nanotubes (CNTs)
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with a high surface area, excellent electrical conductivity and special sp2-hybridized atom
configuration have been reported to effectively activate persulfates for organic pollutant
degradation [29,30].

It was reported that surface groups and defects of CNTs would remarkably affect the
catalytic performance towards persulfate activation [31,32]. Several studies tried to tune
the type and density of surface functional groups of CNTs in order to improve the catalytic
performance [25,33]. Adil et al. [34] fabricated CNTs with surface oxygen functional groups
through a repeated oxidation–reduction cycle of cobalt oxide, which displayed 6 times
higher degradation rate in PMS activation to degrade 4-chlorophenol than that of primitive
CNTs. After treating with concentrated H2SO4, H3PO4, KMnO4 and H2O2 in sequence,
the CNTs could effectively activate PMS to degrade acetaminophen, and the pyridinic
N and surface carbonyl groups of CNTs were dominate active sites [35]. Zhao et al. [36]
used the radio-frequency Ar/O2 plasma technique to graft oxygen-containing functional
groups (like C–O and O–C=O) onto vertically-aligned CNTs, and the O–C=O fraction could
increase to around 20% from 3.7% of pristine CNTs. Additionally, the defect degree of CNTs
could be adjusted by ethanol-flame treatment [37], atom doping [38] and ultrasonication
in oxidative solution [39]. However, the above-mentioned modification methods suffered
from tedious processes, high cost and required specific equipment, limiting their further
application.

Herein, a facile strategy was developed to modify raw CNTs through a combination
process of HNO3 oxidation and calcination at 800 ◦C. This method could effectively pro-
mote the C=O proportion and defect degree of CNTs, facilitating PDS activation without
transition metal components and complex equipment. A series of characterization tech-
niques including X-ray diffractometer (XRD), transmission electron microscopy (TEM),
X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR) spectroscopy
and Raman spectroscopy were utilized to analyze the changes of structure, morphology
and chemical component of CNTs after modification. The performances of CNTs before
and after treatment were comparatively evaluated by activating PDS to degrade TC. Fur-
ther, the effects of activator dosage, PDS dosage, initial solution pH and temperature on
TC degradation were investigated in detail. In addition, the adaptability of modified
CNTs and their regeneration were explored for potential practical application. Additionally,
quenching experiments and electron paramagnetic resonance (EPR) tests were conducted to
determine the dominant ROS contributing to TC degradation, and an activation mechanism
of modified CNTs towards PDS was proposed on the basis of XPS and EPR tests.

2. Materials and Methods
2.1. Chemical Materials

Raw CNTs (97 wt%) were purchased from Shenzhen Nanotech Port Co., Ltd. (Shen-
zhen, China). Melamine, Rhodamine B (RhB, 98 wt%), methyl orange (MO, 98 wt%), methyl
blue (MB, 98 wt%), chlortetracycline hydrochloride (CTC, 98 wt%), sodium chloride (NaCl,
99.5 wt%), sodium bicarbonate (NaHCO3, 99.5 wt%), sodium nitrate (NaNO3, 99 wt%),
ethanol (C2H5OH, 99.7 wt%), sulfuric acid (H2SO4, 95–98 wt%), nitric acid (HNO3, 65–68
wt%), sodium sulfate (Na2SO4, 99 wt%), hydrochloric acid (HCl, 36–38 wt%), sodium
hydroxide (NaOH, 96 wt%) and p-benzoquinone (pBZQ, 97 wt%) were purchased form
Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). Humic acid (HA, 90 wt%), tetra-
cycline (TC, 98 wt%), potassium peroxydisulfate (PDS, 98 wt%), furfuryl alcohol (FFA,98
wt%), 4-hydroxy-TEMPO (TEMPOL, 98 wt%), 5,5-dimethyl-pyridine N-oxide (DMPO,
97 wt%) and 4-amino-2,2,6,6-tetramethylpiperidine (TEMP, 98 wt%) were provided by
Aladdin Reagent Co., Ltd. (Shanghai, China). All chemicals were of analytical grade and
used without any purification in the experiments.

2.2. Treatment of Raw CNTs

First, 0.2 g of raw CNTs and 200 mL of nitric acid (12 M) were added to a round-
bottomed glass flask and stirred at 80 ◦C for 48 h. After oxidation, the slurry was taken
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out, cooled, centrifuged and washed with water and ethanol several times until the pH
was neutral. Then, the wet solid was dried at 60 ◦C in a vacuum oven overnight, and the
collected sample was denoted as CNT-O. Further, CNT-O was heated in a tube furnace
under an argon atmosphere from room temperature to 800 ◦C with a heating rate of 5
◦C/min and kept at 800 ◦C for 2 h. After cooling to room temperature, the final product
was obtained and labeled as CNT-O-H.

2.3. Characterization Methods

Phase structures were characterized by a Philips/X’Pert PRO X-ray powder diffrac-
tometer (XRD) equipped with Cu Kα radiation (λ = 0.15406 nm) (PANalytical B.V., Almelo,
The Netherlands), and the morphologies of samples were explored with a Tecnai G2 20
transmission electron microscopy (TEM) with a working voltage of 200 kV (FEI company,
Hillsboro, OR, USA). The composition and chemical state of samples were examined with a
Kratos/Axis Ultra DLD-600 W X-ray photoelectron spectrometer (XPS, Shimadzu/Kratos
company, Kyoto, Japan). The specific surface area and pore size distribution were deter-
mined with a Micromeritics ASAP2020 surface area analyzer (American Mike Instruments,
Atlanta, GA, USA). The defect and disorder degree of materials were analyzed with a
LabRAM HR800 Raman spectroscopy (Horiba JobinYvon, Paris, France). A Bruker VERTEX
70 Fourier transform infrared spectroscopy (FT-IR) equipped with a KBr beam splitter in the
regular scanning region of 4000–400 cm−1 (Bruker company, Berlin, Germany) was carried
out to determine chemical functional groups. The electron paramagnetic resonance (EPR)
signals were detected on a Bruker X-band A200 spectrometer (Bruker company, Berlin,
Germany). The electrochemical measurements were tested via a CHI660 electrochemical
workstation with a standard three-electrode system (Shanghai Chenhua Instruments Co.,
Shanghai, China).

2.4. Degradation Experiment Procedure

The degradation reaction was carried out in a glass beaker containing 100 mL of
50 mg/L TC solution and a different amount of activator. The initial pH of TC solution
could be adjusted using 0.1 M NaOH or H2SO4 and measured with a pH meter. Common
matrix species were introduced into the initial TC solution to determine the adaptability
of CNT-O-H. After magnetically stirring for 30 min to reach adsorption equilibrium, the
degradation experiment was initiated by adding PDS under the corresponding conditions.
At set intervals, about 3 mL of the suspension was collected and filtered through a 0.22
µm pore-size syringe in order to remove the insoluble residue. The TC concentration in
solution was measured with a UV-Vis spectrometer (UV-670, Shanghai Mapada instruments
Co., Ltd., Shanghai, China) at the wavelength from 280 to 700 nm. According to Lambert-
Beer law, the degradation efficiency of TC was calculated by the difference between C0
(concentration of TC after adsorption) and Ct (concentration of TC at a selected time),
according to the following Equation (1):

Degradation efficiency =
Ct − C0

C0
× 100% (1)

3. Results and Discussion
3.1. Morphological and Structural Analyses

The morphologies of raw CNTs, CNT-O and CNT-O-H were examined with the TEM
technique. As shown in Figure 1a–c, all samples exhibited long-tube structure with lengths
from hundreds of nanometers to micrometers. Compared with the raw CNTs, CNT-O
and CNT-O-H displayed shorter length and smaller diameter (Figure 1 and Figure S1),
indicating the shrinking effect of acid oxidation and calcination on the length and diameter
of the tubes. X-ray diffraction patterns of raw CNTs and modified CNTs samples were
exhibited in Figure 1d, where the peaks at 25.9◦ and 42.0◦ could be ascribed to the (002) and
(100) planes of graphite structure (JCPDS card No. 02-0212), respectively [40]. There were
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no extra peaks detected in the patterns, indicating the CNTs after treatment well remained
the pristine crystal structure. Additionally, the peak intensities of CNT-O-H were markedly
stronger than those of the other two, demonstrating a high crystallinity of CNTs obtained
after the acid oxidation and calcination treatment.
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The defect degrees of CNTs before and after treatment were determined with a Raman
microscope. As illustrated in Figure 2a, the Raman spectra of CNTs exhibited two character-
istic bands at 1349 and 1586 cm−1, originating from the D-(defect) and G-(graphitic) bands,
respectively [41]. The ratios of the intensities of D-band to G-band (ID/IG) were estimated
as 1.19, 1.21 and 1.53 for raw CNTs, CNT-O and CNT-O-H, respectively. The increase of
ID/IG ratio might be attributed to the generated defects from the decomposition of some
groups at 800 ◦C. Clearly, the surface defects were significantly promoted in the carbon
network of CNTs after heat treatment, similar to other reported results [42]. It was reported
that the defects of CNTs could serve as active sites for ROS generation, which might be in
favor of persulfate activation [32].

The functional groups of raw CNTs, CNT-O and CNT-O-H were checked with an
FT-IR spectrometer and shown in Figure 2b. In comparison with raw CNTs, the intensities
of C–O adsorption peak at 1048 cm−1 and C=O at 639 cm−1 remarkedly increased in
CNT-O, which was attributed to the introduction of oxygen-containing groups after acid
oxidation [43]. However, the intensity of the C–O peak markedly weakened while the C=O
signal slightly decreased in CNT-O-H. This point suggested that more C–O groups were
decomposed during the calcination process because of the relatively lower bond energy
of C–O (326 kJ/mol) than that of C=O (728 kJ/mol) [44]. The broad peak at about 3430
cm−1 was attributed to the stretching vibration of the O–H groups, resulting from the
absorbed moisture [45,46]. Apparently, a relatively strong and wide O–H signal appeared
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in CNT-O, owing to more hydrophilic oxygen-containing groups on the surface of CNTs.
After calcination at 800 ◦C, the peak of O–H groups became weaker, further implying the
decomposition of functional groups at high temperature.
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3.2. BET and XPS Analyses

The nitrogen adsorption/desorption isotherms for raw CNTs, CNT-O and CNT-O-H
were shown in Figure 3a–c, respectively, which were classified as typical type IV isotherms
with a cycle of hysteresis [47]. Compared to raw CNTs and CNT-O, CNT-O-H had a larger
surface area (193.2 m2/g) and pore volume (1.27 cm3/g), which would be conductive
to the interaction between CNT-O-H and persulfate. The pore size distribution curves
of CNTs before and after modification were calculated with the Barrett-Joyner-Halenda
(BJH). As shown in Figure 3d, the average pore size for raw CNTs, CNT-O and CNT-O-H
were determined about 22.59, 19.61 and 22.03 nm, respectively, indicating the mesoporous
structure for all samples.

Further, XPS was employed to examine the surface chemical components of raw and
modified CNTs. The high-resolution C 1s spectra of all CNTs (Figure S2) could be divided
into four sub-peaks positioned at 286.9, 286.0, 285.5 and 284.7 eV, which could be allocated
to C=O, C–O, C–C and C=C units, respectively [48,49]. In the O 1s XPS spectra (Figure 4a–c),
the peak centered at 532.2 eV corresponded to the C=O bond while the peak located at
533.6 eV was assigned to the C–O bond [50]. Interestingly, the ratios of C=O/C–O changed
during the treatment process. In comparison with raw CNTs, the ratio in CNT-O decreased
to 0.56 from 1.63, implying an increase of C–O groups, which was in agreement with the
above FT-IR results. After calcination at 800 ◦C, the ratio in CNT-O-H conversely increased
to 3.01, indicating a high C=O proportion in CNT-O-H. Considering that C=O could serve
as active sites for persulfate activation [35], CNT-O-H with high C=O ratio was expected to
possess high activity towards persulfate activation.



Nanomaterials 2023, 13, 216 6 of 14Nanomaterials 2023, 13, x FOR PEER REVIEW 6 of 15 
 

 

 
Figure 3. N2 adsorption-desorption isotherms of raw CNTs (a), CNT-O (b), CNT-O-H (c), and pore 
size distributions (d). 

Further, XPS was employed to examine the surface chemical components of raw and 
modified CNTs. The high-resolution C 1s spectra of all CNTs (Figure S2) could be divided 
into four sub-peaks positioned at 286.9, 286.0, 285.5 and 284.7 eV, which could be allocated 
to C=O, C−O, C−C and C=C units, respectively [48,49]. In the O 1s XPS spectra (Figure 4a–
c), the peak centered at 532.2 eV corresponded to the C=O bond while the peak located at 
533.6 eV was assigned to the C−O bond [50]. Interestingly, the ratios of C=O/C−O changed 
during the treatment process. In comparison with raw CNTs, the ratio in CNT-O de-
creased to 0.56 from 1.63, implying an increase of C−O groups, which was in agreement 
with the above FT-IR results. After calcination at 800 °C, the ratio in CNT-O-H conversely 
increased to 3.01, indicating a high C=O proportion in CNT-O-H. Considering that C=O 
could serve as active sites for persulfate activation [35], CNT-O-H with high C=O ratio 
was expected to possess high activity towards persulfate activation. 

Figure 3. N2 adsorption-desorption isotherms of raw CNTs (a), CNT-O (b), CNT-O-H (c), and pore
size distributions (d).Nanomaterials 2023, 13, x FOR PEER REVIEW 7 of 15 

 

 

 
Figure 4. O 1s spectra of raw CNTs (a), CNT-O (b) and CNT-O-H (c). 

3.3. PDS Activation for Tetracycline Degradation 
3.3.1. Activation Abilities of Raw CNTs, CNT-O and CNT-O-H  

Activities of raw CNTs, CNT-O and CNT-O-H were evaluated in PDS activation for 
TC degradation. First, the adsorption experiments showed that the removal efficiencies of 
TC by raw CNTs, CNT-O and CNT-O-H were 32.2%, 33.1% and 39.8%, respectively (Fig-
ure S3a), demonstrating the better adsorption performance based on the large surface area 
of CNTs [51]. As shown in Figure 5a, it could be found that individual PDS removed only 
6.7% of TC, showing a negligible removal ability of PDS alone. With the combination of 
raw CNTs, a degradation efficiency of 56.2% was observed within 40 min. However, the 
degradation efficiency of TC in the CNT-O/PDS system deteriorated to 18.7%, which 
might be attributed to the dramatically decreasing C=O ratio (Figure 4) in CNT-O com-
pared with raw CNTs. After further heat treatment of CNT-O, the activation ability was 
remarkably improved, and 74.5% of TC was degraded in the CNT-O-H/PDS system. The 
promoting effect benefited from the significant increase of C=O ratio and defect degree. 

The data of TC degradation was fitted with a pseudo-first kinetic model and pseudo-
second kinetic model. It could be found that the degradation process was in better agree-
ment with pseudo-first order model (Figure 5b) due to its higher correlation coefficients 
compared to the pseudo-second order model (Figure S3b). Clearly, the reaction rate con-
stant (k) of CNT-O sharply decreased to 0.006 min−1, which was only a quarter of k of raw 
CNTs (0.024 min−1). After heat treatment, the k was 0.049 min−1 much higher than those of 
raw CNTs and CNT-O. In addition, the chemical oxygen demand (COD) removal rates in 
the CNT-O-H/PDS system were estimated to be about 44.2%, 47.9% and 54.6% at 1.5 h, 3 
h and 4.5 h, respectively (Figure S4), suggesting an effective mineralization of TC in the 
CNT-O-H/PDS system. 

Figure 4. O 1s spectra of raw CNTs (a), CNT-O (b) and CNT-O-H (c).

3.3. PDS Activation for Tetracycline Degradation
3.3.1. Activation Abilities of Raw CNTs, CNT-O and CNT-O-H

Activities of raw CNTs, CNT-O and CNT-O-H were evaluated in PDS activation for
TC degradation. First, the adsorption experiments showed that the removal efficiencies of
TC by raw CNTs, CNT-O and CNT-O-H were 32.2%, 33.1% and 39.8%, respectively (Figure
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S3a), demonstrating the better adsorption performance based on the large surface area of
CNTs [51]. As shown in Figure 5a, it could be found that individual PDS removed only
6.7% of TC, showing a negligible removal ability of PDS alone. With the combination of
raw CNTs, a degradation efficiency of 56.2% was observed within 40 min. However, the
degradation efficiency of TC in the CNT-O/PDS system deteriorated to 18.7%, which might
be attributed to the dramatically decreasing C=O ratio (Figure 4) in CNT-O compared with
raw CNTs. After further heat treatment of CNT-O, the activation ability was remarkably
improved, and 74.5% of TC was degraded in the CNT-O-H/PDS system. The promoting
effect benefited from the significant increase of C=O ratio and defect degree.
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TC).

The data of TC degradation was fitted with a pseudo-first kinetic model and pseudo-
second kinetic model. It could be found that the degradation process was in better agree-
ment with pseudo-first order model (Figure 5b) due to its higher correlation coefficients
compared to the pseudo-second order model (Figure S3b). Clearly, the reaction rate con-
stant (k) of CNT-O sharply decreased to 0.006 min−1, which was only a quarter of k of raw
CNTs (0.024 min−1). After heat treatment, the k was 0.049 min−1 much higher than those
of raw CNTs and CNT-O. In addition, the chemical oxygen demand (COD) removal rates
in the CNT-O-H/PDS system were estimated to be about 44.2%, 47.9% and 54.6% at 1.5 h, 3
h and 4.5 h, respectively (Figure S4), suggesting an effective mineralization of TC in the
CNT-O-H/PDS system.

3.3.2. Effects of Initial pH, Temperature, CNT-O-H Dosage and PDS Dosage

The initial solution pH usually changes the surface charge of catalysts or ROS activities
during the degradation reaction. Here, the influence of initial pH on TC degradation in
the CNT-O-H/PDS system was studied (Figure 6a). When pH was in the range of 2–10,
the degradation efficiencies of TC were higher than 70%, indicating CNT-O-H/PDS could
work effectively in a wide pH scope. Notably, 84.1% of TC could be degraded within 40
min at pH 10, with the kinetic rate constant of 0.053 min−1 (Figure S5), demonstrating
that alkaline facilitated ROS generation, whereas the degradation efficiency significantly
dropped to 16.5% at pH 12. This was because excessive OH− would inhibit PDS adsorption
on the surface of CNTs [52].
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50 mg/L TC).

The ability of the CNT-O-H/PDS system for TC degradation was also examined under
different temperature (Figure 6b). The degradation efficiency of TC dramatically increased
as the temperature raised from 5 to 45 ◦C. Correspondingly, the k increased from 0.030
min−1 at 5 ◦C to 0.051 min−1 at 45 ◦C. Interestingly, their k values well conformed to
Arrhenius behavior (inset in Figure 6b), and the activation energy (Ea) was calculated to be
16.09 kJ/mol, indicating that high temperature was conducive to TC degradation in the
CNT-O-H/PDS system.

From Figure 6c, it could be discovered that the degradation efficiency of TC was
gradually promoted with increasing the amount of CNT-O-H. When the CNT-O-H dosage
was more than 0.2 g/L, the degradation efficiency slightly increased. As shown in Fig-
ure 6d, the degradation efficiency of TC could reach over 75% within 40 min when PDS
concentration was ranging from 0.1 to 0.4 g/L. When the PDS dosage increased to 0.6 g/L,
the degradation efficiency was conversely reduced to a certain extent. Thus, taking into
account of cost and efficiency, 0.2 g/L CNT-O-H and 0.4 g/L PDS were suitable for TC
degradation.

3.3.3. Adaptability and Reusability

The adaptability of CNT-O-H/PDS system was explored using common matrix species
and different organic pollutants. First, 100 mg/L Cl−, 10 mg/L HCO−

3 , 10 mg/L NO−
3 and

5 mg/L HA were selected as matrix species to study their influences on TC degradation in
the CNT-O-H/PDS system. Obviously, the introduction of these matrix species inhibited
TC degradation to a certain extent (Figure 7a), accompanying with the decrease of k value
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(Figure S6). A relatively strong inhibitory effect of HA was found, resulting from the
competitive degradation between HA and TC. In the presence of common inorganic anions,
the degradation efficiencies of TC still reached over 75%, indicating strong resistance to
common matrix species.
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In addition to TC, the degradation performances of the CNT-O-H/PDS system to-
wards MO, MB, RhB and CTC were investigated. As illustrated in Figure 7b, the removal
efficiencies of MO, MB, RhB and CTC achieved 90.4%, 93.0%, 100% and 64.5%, respectively.
Clearly, the CNT-O-H/PDS system exhibited high adaptabilities to various matrix species
and different organic pollutants.

In practical application, the reusability and regeneration of activators were also key
factors for their use. After the degradation reaction, the precipitates were collected with
centrifugation, washing and drying at 60 ◦C. The reusability of CNT-O-H was estimated by
adding collected CNT-O-H into fresh TC solution (100 mL, 50 mg/L) after every run. As
depicted in Figure 8a, the degradation efficiency sharply decreased with the reuse of CNT-
O-H without regeneration. To explore the reason, the used CNT-O-H were characterized
with the XRD, Raman and XPS techniques. As shown in Figure S7a, the XRD pattern of
used CNT-O-H rarely changed in comparison with fresh CNT-O-H, implying no change
in the crystal structure. Nevertheless, the ID/IG value dropped significantly from 1.53 of
fresh CNT-O-H (Figure 2a) to 1.11 of used CNT-O-H (Figure S7b), indicating a decrease
of surface defect after use. Moreover, the C=O ratio decreased from 75% of fresh sample
(Figure 4c) to 48% of used sample (Figure S7c). The results firmly proved the crucial roles
of surface defect and C=O ratio of CNT-O-H in PDS activation.

To regain the activation ability of CNT-O-H, the collected CNT-O-H was re-calcined at
800 ◦C under Ar atmosphere. Surprisingly, the TC degradation efficiency of regenerated
CNT-O-H reverted to over 70%, even recycling for four runs. Based on above results,
CNT-O-H possessed high regeneration ability and reusability after a facile re-calcination
process to recover its activation performance.

3.4. Identification and Generation of ROS

Aiming to identify the probable ROS generated in the CNT-O-H/PDS system, quench-
ing experiments were conducted under a set of different chemical quenchers (Figure 9a). It
could be observed that IPA and EtOH (probe chemicals to quench SO•−

4 and •OH) could
rarely affect TC degradation, demonstrating the minimal contribution of SO•−

4 and •OH
to TC degradation. The addition of TEMPOL as scavenger of O•−

2 had a weak inhibitory
effect on TC degradation, suggesting that O•−

2 might play a minor role in TC degrada-
tion. Noticeably, the introduction of FFA could significantly inhibit TC degradation in



Nanomaterials 2023, 13, 216 10 of 14

the CNT-O-H/PDS system, demonstrating 1O2 was the main ROS responding for TC
degradation.
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Further, EPR analyses were performed to confirm O•−
2 and 1O2 generated in the CNT-

O-H/PDS system. As presented in Figure 9b, the triplet signals related to TEMP-1O2 were
observed in the CNT-O-H/PDS system, and the signal intensities were much higher than
those of individual PDS. This verified that 1O2 generated in the CNT-O-H/PDS system,
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which was consistent with the results of quenching experiments. While no obvious O•−
2

and •OH/SO•−
4 signals were found in Figure 9c,d, suggesting the weak/no contribution to

TC degradation. Combined with the quenching experiments, it could be inferred that the
TC degradation reaction was mainly a non-radical process while 1O2 was the dominant
ROS accompanied with a small amount of O•−

2 .
Although persulfates could self-decomposition to form ROS [53], this function of indi-

vidual PDS was negligible for TC degradation (Figure 5a). The dominant ROS generated for
TC degradation was attributed to the interaction between PDS and the active sites of CNTs.
As mentioned above, the combination of acid and calcination could result in high defect
degree (Figure 2a) and C=O ratio (Figure 4). The surface defects of CNTs would enhance
the electron transfer and adsorption of PDS molecules on CNTs [32,54]. On the other hand,
the high C=O ratio of CNTs would easily transfer electrons to PDS molecules, facilitating
the activation of PDS via the scission of O–O bond [32,55]. In addition, the impedance of
CNTs after the combination treatment significantly reduced (Figure S8), demonstrating a
favorable transmission of electrons in CNT-O-H. On the basis of the above discussion and
analyses, the possible mechanism of TC degradation in the CNT-O-H/PDS system was
schematically illustrated in Figure 10.
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4. Conclusions

To sum up, the CNTs with high C=O ratio and defect degree (CNT-O-H) were success-
fully obtained via treating raw CNTs with nitric acid oxidation and calcination at 800 ◦C,
which exhibited an enhanced performance towards PDS activation; 0.2 g/L CNT-O-H and
0.4 g/L PDS could degrade 75.2% of 50 mg/L TC at room temperature within 40 min. More
importantly, The CNT-O-H/PDS system had strong anti-interference ability to common
matrix species (100 mg/L Cl−, 10 mg/L HCO−

3 , 10 mg/L NO−
3 and 5 mg/L HA) and high

adaptability to initial solution pH range (2–10) and various organic pollutants. Moreover,
the activity of used CNT-O-H was easily recovered for reuse via re-calcination. The main
ROS for TC degradation was revealed to be 1O2, resulting from the interaction between
PDS and active sites (C=O groups and surface defects) of CNT-O-H. This study provided
a simple strategy to prepare CNTs with high C=O ratio and defect degree for persulfate
activation, which possessed great potential in the practical treatment of organic-polluted
wastewater.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/nano13010216/s1. Figure S1: TEM images and corre-
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sponding diameter distributions of raw CNTs (a,b), CNT-O (c,d) and CNT-O-H (e,f); Figure S2: C 1 s
spectra of raw CNTs (a), CNT-O (b) and CNT-O-H (c); Figure S3: TC adsorption over CNTs, CNT-O
and CNT-O-H (a) and pseudo-second-order kinetic fitting curves of TC degradation in different
systems (b); Figure S4: COD removal rates of CNT-O-H/PDS system at different time; Figure S5:
First-order kinetic curves of TC degradation under different initial pH (a), temperature (b), CNT-O-H
dosage (c) and PDS dosage (d); Figure S6: First-order kinetic curves of TC degradation with matrix
species; Figure S7: XRD pattern (a), Raman spectrum (b) and O 1s spectrum (c) of used CNT-O-H;
Figure S8: Impedances of raw CNTs, CNT-O and CNT-O-H.
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