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Non-local dielectric function of layered structure

The matrix elements of the electron-hole (e-h) direct Coulomb interaction in the Bethe-

Salpeter equation (BSE) represent the amplitudes of the Coulomb scattering between the

charge pair densities via the screened Coulomb interaction. The screened Coulomb inter-

action is essentially the Green's function that describes the interaction between two point

charges. With the dielectric screening of media, the screened Coulomb interaction W at r1
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with a point charge located r2 obeys the Poisson's equation1�4

∇r1 ·
∫

d3r′ ε(r1, r
′)∇r′W (r′, r2) = −e2

ε0
δ(r1 − r2), (S1)

where ε(r1, r
′) is the dielectric function. Due to the lattice translational symmetries of the

screened Coulomb interaction and the dielectric function in 2D plane, we can expand the

screened Coulomb interaction and the dielectric function by the in-plane Fourier series which

is de�ned as

fG1G2(q; z1, z2) =
1

A

∫
d2ρ1d

2ρ2 e
−i(q+G1)·ρ1f(ρ1, z1,ρ2, z2)e

i(q+G2)·ρ2 , (S2)

where G is the reciprocal lattice vector and ρ = (x, y) is the in-plane coordinate. By using

the Fourier series, the Poisson's equation is reformulated as

∑
G′

∫
dz′

[
− (q +G1) · (q +G′)εG1G

′(q; z1, z
′) +

∂

∂z1
εG1G

′(q; z1, z
′)

∂

∂z′

]
WG′G2

(q; z′, z2)

= −e2

ε0
δG1G2δ(z1 − z2). (S3)

Since the e-h direct Coulomb interaction is dominated by the long-range component,1,5,6

we take the long-range approximation (G1 = G2 = G′ = 0) for the Poisson's equation

Eq. (S3), and assume that the dielectric function is local in z-direction,1�3

ε00(q; z1, z
′) ≈ ε00(q; z1)δ(z1 − z′) . (S4)

For simpli�cation of the notations, hereafter we omit the indices of reciprocal lattice vector

G, and the notations are changed as εq(z1) = ε00(q; z1) and W (q; z1, z2) = W00(q; z1, z2).

Accordingly, the screened Coulomb interaction in the momentum space can be obtained by
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Figure S1: The schematics of the �ve-layer structure with TMD embedded in the middle,
which gives rise to the piece-wise dielectric function of Eq. (S6). The q-dependent bulk
dielectric function of TMD, εTMD(q), is adopted for the layer of TMD-ML. εb, εm, εc and εt
are the dielectric constants of the environmental media. dm and dc are the thicknesses of the
middle substrate and the middle capping layer, respectively.

solving the Poisson equation

[
−q2εq(z1) +

∂

∂z1
εq(z1)

∂

∂z1

]
W (q; z1, z2) = −e2

ε0
δ(z1 − z2). (S5)

Following the approach of Refs.[ 1�3], the dielectric function is assumed to be isotropic in

2D plane and is taken as the piece-wise function in z-direction with the values depending

on the positions of TMD-ML, substrates and capping layers (see Fig. S1). For the 5-layer

structure, εq(z1) is given by

εq(z1) =



εt, z1 >
d
2
+ dc

εc,
d
2
< z1 <

d
2
+ dc

εTMD(q), −d
2
< z1 <

d
2

εm, −d
2
− dm < z1 < −d

2

εb, z1 < −d
2
− dm

(S6)

where q = |q|, εt, εc, εm and εb are the dielectric constants of layers surrounding TMD-ML,
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Table S1: Dielectric constants of environmental materials in this work.

Material SiO2
9 hBN10,11 Al2O3

12 HfOx
13

Dielectric constant 3.9 4.5 9.2 15

d is the thickness of TMD-ML layer, dc and dm are the thickness of the middle capping

layer and middle substrate with dielectric constant εc and εm, respectively. For the layer of

TMD-ML, we adopt the q-dependent dielectric function of bulk TMD in the random-phase

approximation7,8

εTMD(q) = 1 +
1

(ε2D − 1)−1 + α q2

q2TF
+ ( ℏ2q2

2m0Epl
)2

(S7)

where ε2D is the in-plane dielectric constant of the bulk TMD, Epl is the plasma peak energy,

α = 1.558 is the �tting parameter and qTF =

√
e2m0

π2ε0ℏ2 (
3π2ε0m0E2

pl

e2ℏ2 )1/3 is the Thomas-Fermi

wave vector.1,8

Based on the piece-wise dielectric function in z-direction and the vanished potential at

in�nities (z → ±∞), the solution of the screened Coulomb interaction with the source charge

located in the layer of TMD-ML, i.e., −d
2
< z2 <

d
2
, has the form

W (q, z1, z2) =
e2

2qε0εq(z1)



C1e
−qz1 , z1 >

d
2
+ dc

C2e
−qz1 + C3e

qz1 , d
2
< z1 <

d
2
+ dc

C4e
−qz1 + C5e

qz1 + e−q|z1−z2|, −d
2
< z1 <

d
2

C6e
−qz1 + C7e

qz1 , −d
2
− dm < z1 < −d

2

C8e
qz1 , z1 < −d

2
− dm

(S8)

The coe�cients Ci can be found out by the electrostatic boundary conditions1,3,14

W (q; z1 = d+i , z2) = W (q; z1 = d−i , z2) (S9)

εq(z1 = d+i )
∂

∂z1
W (q; z1, z2)

∣∣∣∣
z1=d+i

= εq(z1 = d−i )
∂

∂z1
W (q; z1, z2)

∣∣∣∣
z1=d−i

(S10)
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where di denotes the the positions of the interfaces in the z-coordinate. After deriving

W (q; z1, z2), the e�ective dielectric function is de�ned as the ratio of the z-averaged un-

screened Coulomb interaction to the screened one

ε(q) = V (q)/W (q), (S11)

where

W (q) =
1

d2

∫ d/2

−d/2

∫ d/2

−d/2

dz1dz2 W (q, z1, z2), (S12)

and

V (q) =
1

d2

∫ d/2

−d/2

dz1

∫ d/2

−d/2

dz2

∫
d2ρV (ρ; z1 − z2) e

−iq·ρ

=
e2

4πε0

4π

dq2

(
1− 1− e−qd

qd

)
. (S13)

The dielectric function of the 5-layer structure is given by

ε(q) =
εTMD(q)

D(q)
(S14)
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where

D(q) =1 +

{{
e−2dq(edq − 1)2

×
[
sinh(dmq)

(
−edq

(
sinh(dcq)(ε

2
mε

2
c − ε2TMD(q)εbεt)− εc cosh(dcq)(ε

2
TMD(q)εb − εtε

2
m)

)
+ (εTMD(q)εb − ε2m)

(
sinh(dcq)(εTMD(q)εt − ε2c)

+ cosh(dcq)εc(εTMD(q)− εt)
))

+ εm cosh(dmq)
(
edq

(
sinh(dcq)(ε

2
TMD(q)εt − εbε

2
c)− εc cosh(dcq)(εbεt − ε2TMD(q))

)
+ (εTMD(q)− εb)

(
sinh(dcq)(εTMD(q)εt − ε2c)

+ εc cosh(dcq)(εTMD(q)− εt)
))]}

×
{
2 sinh(dq)

[
sinh(dmq)

(
sinh(dcq)

(
ε2mε

2
c + ε2TMD(q)εbεt

)
+ εc cosh(dcq)(ε

2
TMD(q)εb + εtε

2
m)

)
+ εm cosh(dmq)

(
sinh(dcq)

(
ε2TMD(q)εt + εbε

2
c

)
+ εc cosh(dcq)

(
εbεt + ε2TMD(q)

))]
+ 2εTMD(q) cosh(dq)

[
sinh(dmq)

(
sinh(dcq)

(
εtε

2
m + εbε

2
c

)
+ εc cosh(dcq)

(
εbεt + ε2m

))
+ εm cosh(dmq)

(
sinh(dcq)

(
εbεt + ε2c

)
+ εc cosh(dcq)

(
εb + εt

))]}−1

× (e−dq + dq − 1)−1

}
. (S15)

For the parameters in the bulk dielectric function εTMD(q) of WSe2-ML, we adopt α =

1.55,8 the thickness d = 6.72 Å,15 the in-plane dielectric constant ε2D = 13.8,16 and the

plasma peak energy Epl = 22.6 eV.17 The used dielectric constants of capping layers and

substrates in this work are listed in Table. S1.

After deriving the dielectric function and the screened Coulomb interaction of TMD-ML,

the matrix elements of the e-h direct Coulomb interaction in the Bethe-Salpeter equation

can be calculated. The methodology of calculating the matrix elements of the electron-hole

Coulomb interaction are detailed in the supporting information of our previous publication
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Table S2: Summary of the measured �ne structure splittings between BX and SFDX states
of WSe2 monolayers embedded in di�erent dielectric structures by the existing experiments.
The superscript ∗ marks the calculated splittings by this work.

Dielectric structure Measured ∆X
B,SF (meV) References

Air/WSe2/SiO2 51.2∗ Our BSE calculation
Air/WSe2/SiO2 47 [ 18]
Air/WSe2/SiO2 47 [ 19]
Air/WSe2/hBN 49.9∗ Our BSE calculation
Air/WSe2/hBN 43 [ 20]
hBN/WSe2/SiO2 43.7∗ Our BSE calculation
hBN/WSe2/SiO2 46 [ 20]
hBN/WSe2/hBN 42.7∗ Our BSE calculation
hBN/WSe2/hBN 41.8 Our experiment work
hBN/WSe2/hBN 38 [ 21]
hBN/WSe2/hBN 40 [ 22]
hBN/WSe2/hBN 40 [ 23�25]
hBN/WSe2/hBN 41 [ 26�28]
hBN/WSe2/hBN 41 [ 29]
hBN/WSe2/hBN 42 [ 30]
hBN/WSe2/hBN 42 [ 31]
hBN/WSe2/hBN 42 [ 32]
hBN/WSe2/hBN 43 [ 33]
hBN/WSe2/hBN 43 [ 34]
hBN/WSe2/hBN 43 [ 35]
hBN/WSe2/hBN 43 [ 36,37]
hBN/WSe2/hBN 44 [ 20]

Ref.[ 5].

Comparison of the BSE theoretical simulation and exper-

imental observations in the literature

We make the comparison of the BSE-calculated and experimentally measured BX-SFDX

splittings of WSe2-ML in the dielectric structures of air/WSe2/SiO2, air/WSe2/hBN, hBN/WSe2/SiO2

and hBN/WSe2/hBN, as summarized by Table. S2.,18�37 Basically, the BSE-calculated split-

tings are in fairly good agreement with the measured ones. From the data of Table. S2, one

can note that the magnitudes of the �ne structure splittings of WSe2-ML in the di�erent
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dielectric structures are weakly environment-dependent.

The e�ective dielectric constant

In the extended hydrogen model, we estimate the e�ective dielectric constant of S-state

exciton by averaging the dielectric function in q-space within the circle |q| ≤ 2/aXS
38

εeff,S ≈ 2

(
aXS
2

)2 ∫ 2/aXS

0

dq qε(q) (S16)

where aXS = 4πε0ℏ2
e2

εeff,S
µS

is the exciton Bohr radius, and µS is the reduced mass of the exciton.

Eq. (S16) is essentially a self-consistent equation.

For simplicity, we consider the cases of the the TMD-ML encapsulated by two semi-

in�nite dielectrics by employing εt = εc = εm = εb = εenv in the model calculations for Fig.4

of the main article. In addition, because the dielectric function of bulk TMD weakly depends

on q when q is small, we approximate εTMD(q) ≈ ε2D = 13.8 for WSe2. By expanding ε(q)

in the Taylor series with respect to q up to the �rst- or second-order terms, εeff,S is solvable

according to Eq. (S16).

First-order approximation

In the �rst-order approximation, we take ε(q) ≈ c0 + c1q and, from Eq. (S16), derive

εeff,S = c0 +
e2

3πε0ℏ2
µS

εeff,S
c1 . (S17)

Accordingly, we solve

εeff,S ≈ ε
(1)
eff,S =

c0
2
+

1

2

√
c20 +

4e2

3πε0ℏ2
µSc1 . (S18)
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De�ning ∆ε = εeff,D − εeff,B, one can show

∆ε =
1

2

√
c20 +

4e2c1
3πε0ℏ2

µD − 1

2

√
c20 +

4e2c1
3πε0ℏ2

µB . (S19)

in the �rst-order approximation for the Taylor-expanded ε(q) with respect to q.

Second-order approximation

For the better quantitative evaluation of εeff,S, one can take the second-order approximation

of ε(q) to solve Eq. (S16), which gives rise to

εeff,S = c0 +
e2

3πε0ℏ2
µS

εeff,S
c1 + 2

(
e2

4πε0ℏ2

)2
µ2
S

ε2eff,S
c2. (S20)

Because the range of the integration of Eq. (S16) is not far from q = 0, the magnitude of

the third term in RHS of Eq. (S20), which comes from the q2-term of ε(q), is small. To

avoid the complicate solution of the cubic equation, instead, we treat the third term in RHS

of Eq. (S20) as a small correction factor and approximate the εeff,S in RHS of Eq. (S20)

as the solution derived from the �rst-order approximation. (If one ignored the last term

of Eq. (S20), the solution of the second-order approximation would just return to that of

the �rst-order approximation.) Therefore, the solution of the second-order approximation is

given by

εeff,S ≈ ε
(1)
eff,S + 2

(
e2

4πε0ℏ2

)2
µ2
Sc2(

ε
(1)
eff,S

)2

=
c0
2
+

1

2

√
c20 +

4e2

3πε0ℏ2
µSc1 + 2

(
e2

4πε0ℏ2

)2
µ2
Sc2(

c0
2
+ 1

2

√
c20 +

4e2

3πε0ℏ2µSc1

)2 . (S21)
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Extended 2D-hydrogen model with the non-local dielectric

screening

The energy splitting between the bright exciton (BX) and dark excitons (DX) is determined

by

∆X
B,D = ∆c +∆

X(d)
B,D +∆

X(xc)
B,D , (S22)

where the conduction band splitting ∆c = 19.6 meV from the DFT calculation, ∆X(d)
B,D is the

direct-interaction-induced binding energy di�erence between BX and DX and ∆
X(xc)
B,D is the

di�erence of the exchange energy between BX and DX. According to the discussion of the

previous section, DX experiences the larger e�ective dielectric constant due to its heavier

mass, i.e., εeff,D = εeff + ∆ε, where εeff ≡ εeff,B. In the 2D-hydrogen model, the binding

energy di�erence of BX and DX is given by

∆
X(d)
B,D = Eb

D − Eb
B

= 4Ry

[
µD/m0

(εeff +∆ε)2
+

µB/m0

ε2eff

]

≈ 4Ry

[
∆µDB/m0

ε2eff
− 2∆ε

µD/m0

ε3eff

]
, (S23)

where ∆µDB = µD − µB is the di�erence of the reduced mass between BX and DX. In

Eq. (S23), we take the �rst-order term of ∆ε to carry out the in�uence of the ∆ε on the

BX-DX splitting.

The third term in Eq. (S26) is evaluated by ∆X
B,D = V x

B − V x
D, where V

x
S is the exchange

energy of exciton state S. For the dipole-forbidden SFDX, V x
D = 0 is vanishing. Hence,

∆
X(xc)
B,D is contributed solely from the exchange energy of BX. The exchange energy of an

exciton state S is evaluated by

V x
S =

1

A
∑
vck

∑
v′c′k′

A
(0)∗
S,kex

(vck)V x
kex

(vck, v′c′k′)A
(0)
S,kex

(v′c′k′), (S24)
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where A(0)
S,kex

(vck) is the amplitude of the e-h con�guration of the exchange-free exciton state,

V x
kex

(vck, v′c′k′) is the kernel of the e-h exchange Coulomb interaction, and A is the area of

TMD-ML. Similar to the way to evaluate the e�ective dielectric constant in Eq. (S16), we

consider the exciton wavefunction A
(0)
S,kex

(vck) to be localized around the K or K ′ valley and

simpli�ed to be a constant as |k −K| ≤ 2/aXS . Under the simpli�cation, the di�erence of

exchange energies between BX and DX can be estimated by

∆
X(xc)
B,D ≈ (µB/m0)

2

π(a0)2
1

ε2eff
v̄x(q0), (S25)

where a0 = 0.53 Å is the Bohr radius in the hydrogen atom, v̄x(q0) ≡ AV x
0 (vcK+q0, vcK+

q0) and q0 are the characteristic wave vectors for a BX with the magnitude q0 = 1/aXB .

In Eq. (S23), the second term with ∆ε arises from the non-local dielectric screening and

makes a negative ε−3
eff -contribution to the BX-DX splitting. Thus, one can rewrite Eq. (S22)

in terms of the parts respectively arising from the local and non-local screenings

∆X
B,D = ∆

X(local)
B,D +∆

X(non−loc.)
B,D , (S26)

where the part contributed from the e�ective local screening is de�ned as

∆
X(local)
B,D = ∆c + 4ε−2

eff

[
(∆µDB/m0)Ry +

(µB/m0)
2

4π(a0)2
v̄x(q0)

]
, (S27)

and the part contributed from the non-local screening is de�ned as

∆
X(non−loc.)
B,D = −8ε−3

eff∆ε(µD/m0)Ry. (S28)

Eqs. (S26) - (S28) constitute the extended exciton model with the consideration of non-

local screening used for Fig.4 in the main article.
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This work

Figure S2: Convergence of total energy of the system with respect to the vacuum height in
the DFT calculations with the use of the PBE exchange-correlation functional and the �xed
cut-o� energy 500 eV and the 9 × 9 × 1 k-grids. The vacuum height 29.78 Å used for the
simulations in the main article is marked by the red circle.

Convergence test of DFT calculation

Since the conduction band splitting ∆c ≈ 20 meV is crucial to the exciton �ne structure

splitting of WSe2-ML, we perform the convergences tests with respect to the cut-o� energy,

vacuum height and density of k-grids to verify the validity of the DFT calculations. Firstly,

we perform the convergence of the total energy of the system with respect to the vacuum

height in the exchange-correlation functional of Perdew-Burke-Ernzerhof (PBE)39 general-

ized gradient approximation. As shown by Figure S2, with increasing the vacuum height

from 4.4 Å to 36.6 Å, the total energy varies between -21.87 eV and -21.86 eV and quickly

converges to -21.872 eV as the vacuum height exceeds 10.6 Å. The di�erence between the

total energies of the system at vacuum height 10.6 Å and 36.6 Å is only 0.8 meV. This

justi�es that the vacuum height 29.78 Å used in our work is su�ciently long to guarantee

the convergence of the total energy.

Next, we perform the tests of convergences of the total energy and the conduction band

splitting∆c with respect to the cut-o� energy with the use of the HSE06 exchange-correlation

functional. As shown by Figure S3, the variation of the total energy of the system is less

than 1 meV and that of ∆c is 0.1 meV with varying the cut-o� energy from 400 ∼ 700 eV.
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This work

This work

(a) (b)

Figure S3: Convergences of (a) the total energy of the system and (b) the conduction band
splitting with respect to the cut-o� energy in the DFT calculations with the use of the HSE06
exchange-correlation functional. The vacuum height is �xed at 29.78 Å and k-grid is �xed
at 9 × 9 × 1 for the convergence test with varied cut-o� energy. The cut-o� energy 500 eV
used for the simulations presented in the main article are marked by the red circles.

This work

Figure S4: Convergence of the conduction band splitting energy with respect to the number
of k-grids in DFT calculations with the use of the HSE06 exchange-correlation functional.
The vacuum height is �xed at 29.78 Å and the cut-o� energy is �xed at 500 eV. The k-grids
9× 9× 1 used for the simulations presented in the main article is marked by the red circle.

Accordingly, the both total energy and ∆c are justi�ed to well converge as the cut-o� energy

is set to be 500 eV.

Based on the veri�ed vacuum height and cut-o� energy, we perform the convergence of

∆c with respect to the number of k-grids in the DFT-HSE06 calculations, which is shown in

Figure S4. With increasing the number of k-girds from 3×3×1 to 21×21×1, the calculated

conduction band splitting is nearly unchanged and converge to the value of ∆c ≈ 20 meV as

13



(a)

(b)

(c)

Figure S5: (a) Comparison of the band structures of WSe2-ML calculated by DFT (black
sphere) and Wannier90 TB (red line). (b) [(c)] The close-up of the conduction [valence]
bands around K valley.

Table S3: The conduction band splitting ∆c and the valence band splitting ∆v at K point
in DFT-HSE06 and Wannier90 TB model.

DFT-HSE06 Wannier90 TB Di�erence
∆c 19.303 meV 19.635 meV 0.332 meV
∆v 604.066 meV 603.811 meV 0.255 meV

the number of k-grids exceeds 9× 9× 1, which is taken in our DFT calculations throughout

this work. To save the computational cost, we choose the number of k-grids 9× 9× 1 in the

DFT calculation for the studies of the exciton �ne structure splittings throughout this work.

The validity of Wannier tight-binding model

Figure S5 presents the comparison of the band structures of WSe2-ML calculated by DFT-

HSE06 and Wannier90 tight-binding (TB) model. Overall, the calculated energy dispersions

by Wannier90 TB model are in a highly agreement with those by DFT. Additionally, Table S3

shows the energy splittings of conduction and valence bands at K point in DFT-HSE06 and

Wannier90 TB model. The conduction band splitting ∆c calculated by using DFT and

14



Table S4: The MAEs in the least square �tting of the e�ective masses for the conduction
and valence band edges at the high symmetry points k0 = K and Q

mv1,K mc1,K mc2,K mc1,Q

mean absolute error (MAE) 0.56 meV 0.44 meV 1.04 meV 0.84 meV

𝑣1

𝑐1

𝑐2

𝑐1

K → Γ K → Γ Q1 → K

K valley

Valence bands around

K valley

Conduction bands around

Q1 valley

Conduction bands around

(a) (b) (c)

Figure S6: Comparisons of the DFT-calculated band dispersions and the ideally parabolic
dispersions with the �tted e�ective masses of (a) valence bands around K valley, (b) con-
duction bands around K valley and (c) conduction bands around Q1 valley.

Wannier TB are 19.303 meV and 19.635 meV, respectively, and di�er by 0.332 meV, which

is negligible as compared with the magnitude of ∆c.

Determination of the e�ective masses

The e�ective mass of the n-th quasi-particle band dispersion is obtained by means of least

square �tting, which �ts the parabolic band, ϵ̃n,k ≈ ϵn,k0+
ℏ2|k−k0|2
2mn,k0

, with well-de�ned e�ective

mass mn,k0 to the DFT-calculated band dispersion over the k-range 0 < |k − k0| < 0.1Å
−1

with the least mean absolute error (MAE). The k-range over which the least square �tting is

carried out is determined according to the extent of the k-space wavefunction of the exciton.

The mean absolute error measures the average error of each �tting point and is de�ned by

MAE = 1
N

∑N
i=1 |ϵ̃n,ki

− ϵn,ki
|, where N = 150 is the number of k-grids. The MAEs in the

least square �tting of the e�ective masses for the conduction and valence band edges at the

high symmetry points k0 = K and Q, are summarized in the Table S4. In all the cases, the

MAEs is less than or comparable to one meV only, which is extremely small as compared

15



with the energy scale of the band dispersion over the range 0 < |k − k0| < 0.1Å
−1

which is

about 100 meV (See Figure S6). The comparisons of the DFT-calculated band dispersions

with the parabolic bands with the �tted e�ective masses by the least square method are

presented in the Figure S6, showing an excellent agreement.
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