Synthesis, Development and Characterization of Nanotubes
Acknowledgments
Conflicts of Interest
References
- Tuyen, N.; Kim, H.; Yoon, Y. Effect of Co3O4 Nanoparticles on Improving Catalytic Behavior of Pd/Co3O4@MWCNT Composites for Cathodes in Direct Urea Fuel Cells. Nanomaterials 2021, 11, 1017. [Google Scholar] [CrossRef] [PubMed]
- González-García, Y.; Cadenas-Pliego, G.; Alpuche-Solís, Á.; Cabrera, R.; Juárez-Maldonado, A. Carbon Nanotubes Decrease the Negative Impact of Alternaria solani in Tomato Crop. Nanomaterials 2021, 11, 1080. [Google Scholar] [CrossRef] [PubMed]
- Cortés, A.; Sánchez-Romate, X.; Jiménez-Suárez, A.; Campo, M.; Esmaeili, A.; Sbarufatti, C.; Ureña, A.; Prolongo, S. Complex Geometry Strain Sensors Based on 3D Printed Nanocomposites: Spring, Three-Column Device and Footstep-Sensing Platform. Nanomaterials 2021, 11, 1106. [Google Scholar] [CrossRef] [PubMed]
- Breitwieser, A.; Sleytr, U.; Pum, D. A New Method for Dispersing Pristine Carbon Nanotubes Using Regularly Arranged S-Layer Proteins. Nanomaterials 2021, 11, 1346. [Google Scholar] [CrossRef] [PubMed]
- Gerasimenko, A.; Kuksin, A.; Shaman, Y.; Kitsyuk, E.; Fedorova, Y.; Sysa, A.; Pavlov, A.; Glukhova, O. Electrically Conductive Networks from Hybrids of Carbon Nanotubes and Graphene Created by Laser Radiation. Nanomaterials 2021, 11, 1875. [Google Scholar] [CrossRef] [PubMed]
- Petrescu, E.; Cirtoaje, C. Electric Properties of Multiwalled Carbon Nanotubes Dispersed in Liquid Crystals and Their Influence on Freedericksz Transitions. Nanomaterials 2022, 12, 1119. [Google Scholar] [CrossRef]
- Kupferer, A.; Mensing, M.; Lehnert, J.; Mändl, S.; Mayr, S. Carbon and Neon Ion Bombardment Induced Smoothing and Surface Relaxation of Titania Nanotubes. Nanomaterials 2021, 11, 2458. [Google Scholar] [CrossRef]
- Liu, C.; Wang, R.; Zhang, Y. Tellurium Nanotubes and Chemical Analogues from Preparation to Applications: A Minor Review. Nanomaterials 2022, 12, 2151. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dobromir, M. Synthesis, Development and Characterization of Nanotubes. Nanomaterials 2023, 13, 1762. https://doi.org/10.3390/nano13111762
Dobromir M. Synthesis, Development and Characterization of Nanotubes. Nanomaterials. 2023; 13(11):1762. https://doi.org/10.3390/nano13111762
Chicago/Turabian StyleDobromir, Marius. 2023. "Synthesis, Development and Characterization of Nanotubes" Nanomaterials 13, no. 11: 1762. https://doi.org/10.3390/nano13111762
APA StyleDobromir, M. (2023). Synthesis, Development and Characterization of Nanotubes. Nanomaterials, 13(11), 1762. https://doi.org/10.3390/nano13111762