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Abstract: Lithium metal batteries (LMBs) are a dazzling star in electrochemical energy storage thanks
to their high energy density and low redox potential. However, LMBs have a deadly lithium dendrite
problem. Among the various methods for inhibiting lithium dendrites, gel polymer electrolytes
(GPEs) possess the advantages of good interfacial compatibility, similar ionic conductivity to liquid
electrolytes, and better interfacial tension. In recent years, there have been many reviews of GPEs,
but few papers discussed the relationship between GPEs and solid electrolyte interfaces (SEIs). In this
review, the mechanisms and advantages of GPEs in inhibiting lithium dendrites are first reviewed.
Then, the relationship between GPEs and SEIs is examined. In addition, the effects of GPE preparation
methods, plasticizer selections, polymer substrates, and additives on the SEI layer are summarized.
Finally, the challenges of using GPEs and SEIs in dendrite suppression are listed and a perspective on
GPEs and SEIs is considered.
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1. Introduction

Against the background of the carbon peak and carbon neutrality era, large-scale
development of clean energy (wind energy, solar energy, etc.) is imminent. However,
clean energy has the problem of an uneven distribution of time and space. Therefore,
research on safe and efficient energy storage systems is extremely urgent [1]. Current
commercial batteries (lead-acid batteries, nickel-cadmium batteries, LIBs, etc.) cannot meet
the increasing energy storage requirements due to their low energy density [2]. Metallic
lithium (Li) possesses a theoretical capacity of 3860 mAh/g and a low reduction potential
(−3.04 V vs. a standard hydrogen electrode) [3,4]. The energy density of lithium metal
batteries (LMB) is 3~5 times than that of lithium ion batteries [5], which has attracted
extensive attention.

In general, Li ions are reduced to Li0 during the charging process. Li0 is oxidized to
Li+ during the discharge process [6]. However, during the cycle process, Li0 is unevenly
deposited on the surface of the anode, forming various lithium dendrites due to the ther-
modynamic instability of lithium metal in the organic liquid electrolyte [7]. Uncontrolled
dendrite growth may penetrate the separator, causing a series of safety problems such as
internal short circuits, overheating, and explosions. Moreover, reparation of the fragile
solid electrolyte interface (SEI) films happens at the expense of consuming the electrolyte,
resulting in low Coulombic efficiency [8,9]. Therefore, the formation of a robust SEI layer
and uniform lithium deposits are essential to LMB stability [10,11].

At present, the research on SEI layers and the even deposition of lithium examines elec-
trolytes and lithium metal anode (LMA) in situ protective layers (customizable artificial SEI
layers) [12–14]. However, the artificial SEI cannot be repaired by the reduction products of
electrolytes when it becomes damaged during the course of cycling [15]. Liquid electrolyte
(LE) additive regulates SEI components to promote lithium deposition. Unfortunately,
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the finite service life of the additive is not good for improving long-term cycles [16,17].
Moreover, polymer electrolytes (PEs) have attracted attention as a substitute for LE and sep-
arators. PE are divided into solid polymer electrolytes (SPEs) and gel polymer electrolytes
(GPEs) [18–20]. However, SPEs have the disadvantages of poor room-temperature (RT)
ionic conductivity and high interfacial resistance [21–23]. Fortunately, as a combination of
SPEs and LEs, GPEs can effectively improve RT ionic conductivity and decrease interface
resistance [24,25]. Furthermore, the functional groups of GPE polymers can anchor lithium
salt anions, which prevents the formation of space charge zones at the lithium anode
interface. It also reduces the occurrence of side reactions caused by anions. This facilitates
the formation of a uniform and robust SEI layer during cycling [4].

Recently, there have been few reviews on the relationship between GPEs and SEIs. This
review first introduces the mechanism of GPE-inhibiting lithium dendrites. Meanwhile,
the importance of SEIs formed using GPEs in dendrite suppression is suggested. Secondly,
the advantages of GPEs forming SEIs are discussed. Then, the effects of GPE preparation
methods, additives, plasticizers, and polymer substrate selections on SEIs are described.
Finally, the relationship between GPEs and SEIs is summarized and the future development
of GPEs and SEIs is considered.

2. GPE Builds the Dendrite-Free Lithium Metal Anode
2.1. The Development of GPE

The research and development of solid polymer electrolytes (SPEs) began with Wright’s
discovery of ionic conductivity in the PEO-alkali metal ion complex in 1975. He provided
a new idea to solve the problem of LE leakage in lithium batteries [22]. However, SPEs
have the defects of low RT ionic conductivity and high interfacial resistance. In this context,
gel polymer electrolytes (GPEs), the intermediate products of SPEs and liquid electrolytes
(LEs), have the advantages of both electrolyte forms. GPEs have the advantages of the
good machining performance of polymer electrolytes and the high RT ionic conductivity
of LEs, while also improving the energy density of lithium batteries by replacing separa-
tors [26–28]. Moreover, GPEs are mainly divided into two categories: physical or chemical
cross-linking GPEs. In 1975, Feuillade et al. [29] prepared a physically cross-linked GPE by
utilizing polyvinyl acetals (PVAs) and polyacrylonitrile (PAN); additionally, they prepared
a chemically cross-linked GPE using hydroxylated polyvinyl acetals and poly(vinylidene
fluoride-hexafluoropropylene) (PVDF-HFP). The electrochemical and intrinsic test results
showed that the chemically cross-linked GPE had decent conductivity, mechanical prop-
erties, and swell ability. In 1983, Iijima et al. [30] used polymethyl methacrylate (PMMA)
as a gelatinizing agent to prepare GPEs, the RT ionic conductivity of which reaches up to
1~3 mS·cm−1. In addition, there was no leakage phenomenon observed, even after being
stored at 60 ◦C for a month. Furthermore, following Bellcore’s development in 1994, GPEs
entered a period of rapid development in LIBs.

GPE composition has its own role [31]. As the sources of charge carriers, lithium salts
require low dissociation energy to promote the movement of lithium ions. Commonly
used lithium salts include LiPF6, lithium bis(trifluoromethanesulphonyl)imide (LiTFSI),
lithium bis(fluorosulfonyl)imide (LiFSI), LiNO3, LiClO4, and LiBF4, etc. [23,32,33]. The
plasticizers are linear carbonate (EMC, DMC, and DEC, etc.), cyclic carbonate (PC, EC),
and ether (DME, TEGDME, DOL, THF) [34–37]. The carbonate plasticizer is conducive
to the dissolution of lithium salt. Compared to a carbonate liquid electrolyte, an ether
liquid electrolyte has the advantages of lower voltage lag and higher Coulombic efficiency.
However, ether liquid electrolytes have the drawback of volatilization [38]. The polymer
substrate can facilitate the dissociation of lithium salts and provide excellent mechani-
cal properties. In addition, LE is fixed in the polymer substrate crosslinking network to
reduce the contact area between the LE and the anode. Common polymer substrates include
polyvinyl alcohol (PVA), polyethylene glycol (PEG), polyacrylonitrile (PAN), polyethylene
oxide (PEO), polyvinylidene fluoride (PVDF), polymethyl methacrylate (PMMA), etc. [39–42].
Castillo et al. [43] introduced polyethylene glycol dimethyl ether (PEGDME) and LiTFSI
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into PVDF-HFP to prepare GPE (Figure 1a). As luck would have it, GPEs produce tight
LiF-rich SEIs upon contact with LMAs. No obvious lithium dendrite structures can be seen
in the SEM images (Figure 1b,c). Moreover, GPEs contain dilithium salts that favor the
dissociation of lithium salts and reactions in the positive direction. Fan et al. [44] prepared
a novel dilithium salt GPE through in situ polymerization introducing LiTFSI-LiPF6 into a
3D cross-linked network. The irregular deposition of lithium in LEs leads to the appearance
of a large number of dendrites. In contrast, the lithium ions’ uniform distribution in GPEs
is conducive to lithium deposition, thus avoiding the formation of dendrites (Figure 1d).
Moreover, the stable SEIs formed between GPEs and LMAs effectively inhibit the growth
of lithium dendrites (Figure 1e,f).
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Figure 1. (a) Schematic illustration of a GPE; (b) SEM images of a Li anode; (c) an F 1s region
corresponding to the XPS spectra of Li0 deposition [43]. Reproduced from Ref. [43] with permission
from American Chemical Society; (d) a step process for in situ polymerization of GPEs; (e) the Li
anodes of the LiFePO4||separator liquid electrolyte||Li cell and (f) LiFePO4||GPE||Li cell [44].
Reproduced from Ref. [44] with permission from Wiley.
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2.2. Effect of GPE Composition on Lithium Ionic Conductivity
2.2.1. Lithium Salts

The low migration volume of lithium ions leads to serious concentration polarization,
which affects the uniform deposition of Li0 [45]. According to the results of previous
theoretical calculations, the Sand’s time of lithium dendrite formation is proportional to the
number of lithium ion transfers. In the case of lithium ion transfer alone, the Sand’s time is
extended indefinitely to create a dendrite-free anode [24,46,47]. Notably, lithium salt anions
are anchored by functional groups on their polymer skeleton, which facilitate lithium
ion transfers. Jeong et al. [48] prepared cross-linked single-ion conducting gel polymer
electrolytes (CSGE#s) through in situ polymerization using methacrylate graphene oxide
(MGO), lithium 1-[3-(methacryloyloxy)propylsulfonyl]-1-(trifluoromethane sulfonyl)imide
(LiMTFSI), and PVDF-HPF (Figure 2a). Compared with Celgard with an ordinary LE,
CSGE1.0 can inhibit the formation of lithium dendrites well (Figure 2b). Zhong et al. [49]
prepared a LiSFSI–PETMP–PET4A@PVDF single ion polymer electrolyte (LFPP@PVDF
SIPE) using lithium [(4-styrenesulfonyl)(fluorosulfonyl) imide] (LiSFSI), pentaerythritol
tetrakis (3-mercaptopropionate) (PETMP), and pentaerythritol tetraacrylate (PET4A) with
in situ photopolymerization. As a single ion conductor, the SO2-F group of LiSFSI is con-
ducive to the generation of an SEI on the anode surface (Figure 2c). LFPP@PVDF SIPE has
a high ionic conductivity of 5.81 mS·cm−1 and a lithium ion transfer number of 0.91. More-
over, the LiFePO4 || LFPP @ PVDF SIPE || Li cell initial capacity is 140 mAh·g−1. There
is no significant capacity attenuation after 230 cycles at 0.2 C (Figure 2d,e). Li et al. [50]
prepared porous nanofiber single-ion conducting polymer membranes (es-PVPSI) using
PVDF-HFP and lithium poly(4,4′-diaminodiphenylsulfone, bis(4-carbonyl benzene sul-
fonyl)imide) (LiPSI) and electrospinning (Figure 2f–h). The es-PVPSI has a porous structure,
and it can be seen from the contact angle test that the absorption rate of LEs (1M LiPF6,
EC:DEC = 1:1, v/v) is fast, while the adsorption uptake ratio (144.57%) is twice as high
as that of polypropylene (PP) separators (Figure 2i,j). The es-PVPSI lithium ion transfer
number is 0.85.

In general, lithium salts with low lattice energy have excellent stability, solubility, and
high conductivity [51,52]. Subadevi et al. [53] studied the effects of different lithium salts
(LiClO4, LiBF4, LiCF3SO3) on the electrochemical performance of GPEs using PVDF-PEMA
as a polymer substrate and EC and PC as plasticizers. Experimental results showed that
GPEs containing LiClO4 had the highest ionic conductivity, because LiClO4 is more easily
dissociated and its anion size is larger than those of LiBF4 and LiCF3SO3. Notably, LiClO4
and LiBF4 have low ion pairing, which is favorable for ionic conductivity. Lithium ion
transport occurs mainly in the amorphous region of the polymer. In addition, a large
number of polar groups on the polymer surface coordinate with lithium ions to improve
ionic conductivity. Liu et al. [54] prepared a PEGDA/CA GPE by introducing cellulose
acetate (CA) into PEGDA. The PEGDA/CA GPE was activated in a LE (1 M LiPF6 in
EC: DEC = 1:1 v/v). CA containing a large number of ether bonds and carbonyl groups
enhanced ion-dipole interactions that weaken ion pairing, which promoted Li+ transference.

Concentration polarization is avoided when the lithium ion migration number of GPEs
is close to 1 [55,56]. However, there is a sufficient but unnecessary relationship between the
increase in the lithium ion migration number and the increase in ionic conductivity [57,58].
Therefore, the improvement of the GPE ionic conductivity is the result of the synergistic
effect of a high LE absorption rate, the use of a polymer substrate as a cationic conductor,
and a stable SEI.



Nanomaterials 2023, 13, 1789 5 of 29Nanomaterials 2023, 13, x FOR PEER REVIEW 5 of 28 
 

 

 
Figure 2. (a) Graphical illustration of lithium dendrite growth suppression by ICSGE1.0; (b) surface 
SEM images of lithium metal before cycling and cells with LE-Celgard, ISGE, ICSGE1.0, respec-
tively, after cycling [48]. Reproduced from Ref. [48] with permission from Elsevier; (c) the SEI for-
mation mechanism of the LFPP@PVDF SIPE on the lithium anode; (d) ionic conductivity of 
LFPP@PVDF SIPEs with various ratio fractions at RT; (e) cycle performance of Li|LFPP-4/2/1@PVDF 
SIPE|LFP ba eries at 0.2 C [49]. Reproduced from Ref. [49] with permission from Royal Society of 
Chemistry; schematic illustration of the fabrication (f), composition (g), and operation (h) of the es-
PVPSI nanofiber-based membrane, acting as single-ion conducting polymer electrolyte in LIBs; (i) 
SEM images of the es-PVPSI nanofiber membrane; (j) the solvent contact angle (EC/DMC (v:v = 1:1)) 
evolution on the es-PVPSI nanofiber membrane at 2 s and 27 s [50]. Reproduced from Ref. [50] with 
permission from Wiley. 

2.2.2. Polymer Substrates 
The carbonate liquid electrolyte has a high reactive activity with the LMA, meaning 

it easily generates lithium dendrites. The LE was fixed in the GPE polymer substrate to 
reduce the contact area between the LE and the LMA. This can alleviate the problem of 
lithium dendrite growth [59]. The polymer substrate of GPEs should have the following 
properties: (1) efficient chain segment movement to promote the migration of lithium ions; 
(2) facilitated dissociation of special atoms or groups from lithium salt; (3) a low Tg value, 

Figure 2. (a) Graphical illustration of lithium dendrite growth suppression by ICSGE1.0; (b) surface
SEM images of lithium metal before cycling and cells with LE-Celgard, ISGE, ICSGE1.0, respectively,
after cycling [48]. Reproduced from Ref. [48] with permission from Elsevier; (c) the SEI formation
mechanism of the LFPP@PVDF SIPE on the lithium anode; (d) ionic conductivity of LFPP@PVDF
SIPEs with various ratio fractions at RT; (e) cycle performance of Li|LFPP-4/2/1@PVDF SIPE|LFP
batteries at 0.2 C [49]. Reproduced from Ref. [49] with permission from Royal Society of Chemistry;
schematic illustration of the fabrication (f), composition (g), and operation (h) of the es-PVPSI
nanofiber-based membrane, acting as single-ion conducting polymer electrolyte in LIBs; (i) SEM
images of the es-PVPSI nanofiber membrane; (j) the solvent contact angle (EC/DMC (v:v = 1:1))
evolution on the es-PVPSI nanofiber membrane at 2 s and 27 s [50]. Reproduced from Ref. [50] with
permission from Wiley.

2.2.2. Polymer Substrates

The carbonate liquid electrolyte has a high reactive activity with the LMA, meaning
it easily generates lithium dendrites. The LE was fixed in the GPE polymer substrate to
reduce the contact area between the LE and the LMA. This can alleviate the problem of
lithium dendrite growth [59]. The polymer substrate of GPEs should have the following
properties: (1) efficient chain segment movement to promote the migration of lithium
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ions; (2) facilitated dissociation of special atoms or groups from lithium salt; (3) a low Tg
value, which corresponds to more amorphous regions in the polymer substrate, which are
conducive to improving ionic conductivity; (4) good thermal stability; and (5) excellent
electrochemical performance [46,60,61]. Ye et al. [62] used PMMA, PVDF-HFP, PEO, and
LE succinonitrile (SN)/LiTFSI/FEC to prepare 3D-GPE (Figure 3a).The introduction of
plasticizer FEC into the polymer matrix can reduce the interface resistance and promote the
formation of a stable SEI (Figure 3b,c). Moreover, the molecular dynamic (MD) simulations
indicate that lithium ions interact strongly with the ether group of PEO and the cyanide
group of SN, which promote the dissociation of LiTFSI (Figure 3d–f). Lu et al. [63] used
diglycidyl ether of bisphenol-A (DEBA), poly(ethylene glycol) diglycidyl ether (PEGDE),
and diamino-poly(propylene oxide) (DPPO) to prepare 3D-GPE through the ring-opening
polymerization reaction (Figure 3g). EO and PO groups have a high affinity for the LE
(1M LiPF6, EC/DMC = 1:1, v/v), which firmly wraps the solvent molecules in the polymer
network. Moreover, 3D-GPE forms a highly uniform SEI layer on the lithium electrode.
The SEI layer and the GPE dense network structure act synergically to inhibit dendrite
growth (Figure 3h).
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Figure 3. (a) Synthetic scheme of PEO/PMMA/P(VDF-HFP) GPEs; (b) the time evolution of
the impedance response of Li/GPEs/Li symmetrical batteries at RT; (c) cycling performances of
the Li/SNLF3P/LiFePO4 battery at 0.3 C and the MD−calculated structure of a different system;
(d) SN/LiTFSI; (e) PEO/PMMA/PVDF-HFP; (f) SN/LiTFSI combined with a PEO/PMMA/PVDF−HFP
system [62]. Reproduced from Ref. [62] with permission from Elsevier; (g) schematic of the synthesis
of the GPE membrane; (h) 3D−GPE during the Li plating/stripping [63]. Reproduced from Ref. [63]
with permission from Wiley.

In the initiative of green chemistry, eco-friendly and low-cost natural polymer ma-
terials, such as cellulose, protein, and sodium alginate, etc., have attracted attention [42].
Moreover, the high flexibility and elastic modulus of natural polymer materials provide
good mechanical properties for GPEs to tolerate anode volume changes. Surprisingly, the
polar groups (-NH2, -OH, -C=O, etc.) and heteroatoms (N, O, S, etc.) present in natural
polymer materials effectively anchor anions using hydrogen bond interactions [64–66].
Wen et al. [67] prepared a 3D porous GPE (LA-PEO-PAM-3-1-1) using natural polymer
alginate granules (LA), polyacrylamide (PAM), and PEO. LAs not only provide additional
lithium ions, but also promote the dissociation of LiTFSI. Meanwhile, the mechanical and
electrochemical properties of the GPE are improved due to the strong hydrogen bond inter-
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action between PAM and the LA. Wang et al. [68] used carboxylated nanocellulose (CMNC)
with anionic properties and epichlorohydrin (ECH) to synthesize an environmentally
friendly GPE (CCMNC) (Figure 4a). A large number of hydroxyl groups in CMNC enhance
the mechanical properties of GPEs through intermolecular or intramolecular hydrogen
bonding. Moreover, CCMNC’s strong hygroscopic and porous structure immobilizes LEs
(1 M LiPF6, EC/DMC/DEC = 1:1:1, W/W/W) in the polymer network, alleviating dendrite
problems caused by LEs’ high reactivity with lithium anode (Figure 4b). Wang et al. [69]
prepared lignin-based films using lignin and linear binder poly(N-vinylimidazole)-co-
poly(poly(ethylene glycol) methyl ether methacrylate) copolymer (LCP) (Figure 4c).
The film was activated in a LE (TC-E201), had an absorption rate of 276%, and reached
swelling saturation at 16 S. Moreover, the lignin base electrolyte can quickly generate
a stable SEI after contact with lithium metal electrodes. Therefore, Li|| lignin-base
electrolyte ||Li cells generate less potential time (~30 h) than Li|| Celgard 2300-LE
||Li cells (~110 h) (Figure 4d).
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membrane; (d) galvanostatic cycles for Li||separator−liquid electrolyte||Li and Li||lignin−based
electrolyte||Li symmetrical cells under a current density of 1 mA cm−2 [69]. Reproduced from
Ref. [69] with permission from American Chemical Society.
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To sum up the mechanical properties of GPEs, LE absorption rate and ionic conductiv-
ity are related to polymer structure, functional group properties, and heteroatomic types.
The ether group is a two-ionic conductor which dissociates lithium salts and anchors anions
to promote lithium ion transference. Meanwhile, the heteroatoms (N, S, P, etc.) are indis-
pensable components of polymer substrates. The complex reaction between heteroatoms
and lithium ions is conducive to lithium ion transference. Moreover, the uniform structure
with an appropriate pore size improves the LE absorption rate and improves the poor
mechanical properties of the polymer substrates after activation in a LE. However, in this
case, too much is too little—a higher LE absorption is not always better. This is mainly
because an excessive amount of LE in a GPE can cause security problems (liquid leakage,
combustion, or even explosion), which is the opposite of what LEs are designed for.

2.2.3. GPE Additives

GPE additives have a great impact on dendrite inhibition. Qualified additives should
have high mechanical properties, high chemical/electrochemical stability, easy dispersion,
and should facilitate lithium ion transport. Commonly used additives are SiO2, BN, LiNO3,
MOF, FEC, and ceramic nanoparticles [70–74]. For example, the addition of LiNO3 to ether
or carbonate-based liquid electrolytes, even in small amounts, can significantly improve the
interface chemical formation of a Li3N-rich SEI. Liu et al. [75] prepared a carbonate-based
GPE with LiNO3 as an additive, and detected lithium metal deposition/stripping using an
operando neutron depth profile (NDP). Nitrate ions can alter the nucleation of lithium metal,
leading to spherical metal nucleation and growth to form a densely structured SEI and
inhibit the formation of lithium dendrites (Figure 5a). Furthermore, the high conductivity
of Li3N reduces the overpotential of the lithium anode. Compared to the bilayer SEI
formed by adding LiNO3 to a LE, the combination of LiNO3 and a polymer substrate
effectively generates a SEI that is thin, uniform, and LiNO2-free. This SEI significantly
inhibits the generation of porous/dendritic lithium dendrites (Figure 5b,c). Shim et al. [76]
introduced multilayer hexagonal boron nitride (BN) nanosheets functionalized with the
multifunctional additive perfluoropolyether (PFPE) into PVDF-HFP to prepare G-CFBN.
BN has a graphene-like structure. B-N bonds have ionic properties, which provide them
with excellent electrical insulation, mechanical properties, and electrochemical stability. In
addition, thanks to its Lewis acid properties, the N atom of BN interacts with the lithium
salt anions in LE (1M LiTFSI, EC/DEC = 1:1, v/v) to promote lithium ion transfer. Therefore,
Li || G-CFBN || Li can reach stable circulation 1940 h at 1 mA·cm−2, while LiFePO4 ||
G-CFBN || Li can cycle than 500 times at 10 ◦C.

When ceramic particles are introduced into polymer electrolysis, the phenomenon of
agglomeration and phase separation occurs. In addition, the excessive size and amount of
filler will affect the ionic conductivity and energy density of the battery. In order to combine
the advantages of ceramic fillers and polymer electrolytes to fully exploit their properties,
it is necessary to establish a stable interface with a low diffusion barrier on the GPE surface.
Cui et al. [77] introduced MOF and Al2O3 on one side of the polymer substrate to prepare a
novel heterostructure GPE (Figure 5d). The ZIF-8 and (2-Methylimidazole zinc salt) Al2O3
coatings significantly improve the electrochemical performance of the GPE, which is mainly
due to the homogenization effect of lithium ion transfer and the solvation effect of the two
coatings. Al2O3 has a strong affinity with the LMA, which reduces nucleation overpotential
and inhibits the generation of lithium dendrites. Moreover, Al2O3 interacts with LiPF6 to
generate highly conductive AlF3. In addition, SEIs containing large volumes of AlF3 and
LiF significantly promote charge transfer and reduce the diffusion barrier to stabilize the
lithium anode/electrolyte interface (Figure 5e).
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Figure 5. (a) Schematic representation of the plating and stripping process in LE, LE-LNO, and
GPE-LNO electrolytes based on the operando NDP and XPS results; (b) SEM measurement at
0.2 mA/cm−2 in the LE and (c) at 0.2 mA/cm−2 in the GPE [75]. Reproduced from Ref. [75] with
permission from American Chemical Society; (d) schematic diagram of the heterostructured GPE,
the increase in the lithium ion transference number with the varying structure, and the electrostatic
potential distribution and intrinsic channel of ZIF-8, (e) schematic illustrations of SEI components
formed on the interface between GPE-ZIF8-Al2O3 film and the Li anode [77]. Reproduced from
Ref. [77] with permission from American Chemical Society.

2.3. GPE Design
2.3.1. Structural Design

The mechanical properties of the polymer substrate decrease after absorbing the LE, then
the lithium dendrites penetrate the GPE and destroy the SEI layer at the same time. The
continuous repair of the SEI layer consumes a large amount of LE, leading to decreases in
the Coulombic efficiency in the battery. Therefore, a tough GPE structure is essential [78–80].
Gou et al. [81] prepared different internal structures of GPEs by adjusting the degree of
crosslinking of nanocellulose (NC). Moreover, the experiment found that the drying method
for polymer substrates has a great impact on the mechanical properties of GPEs. Compared
with forced air drying, freeze drying can eliminate the capillary effect between NC and
effectively ensure the morphology and structure of polymer substrate. However, freeze
drying reduces the mechanical properties of a polymer film. In addition, a dual-network
structure can significantly improve the mechanical properties of the polymer substrate. The
excessive crosslinking density leads to a decrease in the pore size, which is not conducive
to the electrochemical performance of GPEs. Gou et al. [82] prepared a dual network
structure GPE using cellulose and PEGDA through chemical crosslinking and UV radiation.
The hydrogen bond formed by cellulose-OH and the PEGDA ether bond are beneficial to
interfacial compatibility (Figure 6a). Interestingly, Zhai et al. [83] developed a bionic GPE
(PVFH-PMC-PEGC) using PVDF-HFP and PMC-PEGC (Figure 6b,c). PMC acts as a lumen
to promote the absorption of LE (1M LiTFSI, DME/DOL = 1:1, v/v). PVFH-PMC-PEGC
acts as a cell membrane to conduct lithium ions and anchor anions. The vacuolar structure
of the GPE enables the effective fixation of the LE, which leads the anode surface to be
covered with a dense SEI layer. This is conducive to the uniform deposition of lithium.
Moreover, the yield strength of PVFH-PMC-PEGC is up to 52.1 MPa, and the elongation at
break is 615% (Figure 6d,e).

In addition, the thermostable, electrochemical stable glass fiber, or Celgard, introduced
to the GPE can effectively solve the problem of mechanical property degradation after
GPE activation [84–86]. Wu et al. [87] prepared a gel polymer electrolyte (GF-PBA) using
poly(butyl acrylate), a glass fiber membrane, and LiTFSI. The introduction of glass fiber not
only improves the mechanical properties of the GPE, but also promotes the dissociation of
lithium salt by Si-O bonds. Moreover, Chen et al. [88] added poly(methyl methacrylate-
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acrylonitrile-butyl acrylate) [P(MMA-AN-BA)] solution to both sides of the PE Celgard and
the prepared GPE membrane using the phase transformation method. The experimental
results show that the mechanical properties of GPEs can be significantly improved by using
PE Celgard as a support material, resulting in a fracture strength of up to 82.3 MPa.
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Figure 6. (a) a schematic to explain the interaction between anions and polymer chains [82]. Re-
produced from Ref. [82] with permission from Elsevier; (b) a plant cell-inspired composite GPE;
(c) the synthesis procedure of PVFH-PMC-PEGC; (d) optical image of the PVFH-TOC-PEG mem-
brane during stress–strain measurement; (e) stress–strain curves of the PVFH-based membranes [83].
Reproduced from Ref. [83] with permission from Elsevier.

2.3.2. Functional Design

A flame-retardant GPE design can further increase the safety of LMBs. However,
conventional LE flame retardants are not conducive to the electrochemical stability of
batteries [89,90]. Fortunately, the introduction of a polymer with flame retardant properties
into the polymer substrate can alleviate the problem of flame retardant and electrode
incompatibility. Long et al. [91] prepared a P(AN-DEVP) multifunctional GPE (PAxDy) by
phase separation. P(AN-DEVP) functional groups, the N and O atoms of phosphoric acid,
and nitrile groups promote lithium ion transference by coupling and decoupling. Moreover,
the phosphoric acid groups of DEVP undergo cyclization reactions with nitrile groups,
making a pyknotic polymer network and preventing battery overheating. In addition,
compared to LEs, PA1D1 has excellent interfacial compatibility with graphite anodes and
good cyclic stability after being assembled into batteries with different cathodes (LiFePO4,
NCM622), which are traits related to the stable growth of SEIs. Additionally, the synergistic
action of flame-retardant polymers and nanoparticles in the construction of a fast ion
transfer channel not only effectively improves the conductivity of GPEs, but also guarantees
the safety of the battery. TEP used as flame retardant also reduces the crystallinity of the
polymer substrate because of its small molecular properties (Figure 7a–c). Furthermore,
the surface diffusion layer of TiO2 nanoparticles promotes lithium salt dissociation and
lithium ion migration [61].
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3. SEIs Formed by GPEs and Their Advantages
3.1. The Brief Overview of SEIs

In the 1970s, Dey et al. discovered that LMA surfaces have a protective crystal layer.
In 1979, Peled et al. proposed the concept of the SEI, which serves as a barrier between the
electrolyte and anode to improve the electrolyte’s dynamic stability. The SEI is similar to
solid electrolytes, which are not electron conductors but ionic conductors [92–94]. Moreover,
because ions and electrons continuously undergo electrochemical reactions at this interface,
the composition and structure of the SEI have a profound effect on the battery cyclic stability.
A brittle SEI can lead to undesirable side reactions that affect the battery performance [95,96].
When a lithium dendrite punctures the SEI, the uncontrolled consumption of the LE causes
a decrease in Coulombic efficiency [97–99]. Therefore, a stable SEI is desirable.

3.1.1. SEI Formation

The lowest unoccupied molecular orbital (LUMO) potential of the electrolyte is lower
than that of the Fermi energy of the anode, resulting in a reduction reaction, which is
a prerequisite for SEI formation. The SEI is composed of decomposition products of
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electrolytes [100,101]. The formation of a SEI involves three stages: (1) the reduction of
electrolytes; (2) the formation of a SEI layer between the anode and electrolyte; (3) the depo-
sition of a SEI (Figure 8a) [102]. In addition, the structure of electrolyte solvents has a direct
effect on the structural stability of SEIs [103]. Lithium ethylene carbonate (LEC) generated
by the reaction of DEC with the LMA has high dispersion in the electrolyte and cannot
be used as a stable component of SEIs. In contrast, lithium ethylene decarbonate (LDEC)
produced by EC reacting with the LMA has low dispersion in LEs. This is conducive to the
formation of stable SEI layers. Moreover, the continuous lithium consumption of LEs is
reduced, thus improving the battery’s Coulombic efficiency. Li et al. [9] investigated the
effects of lithium content in electrolytes on SEI formation. Compared with low concen-
tration electrolytes (LCEs), the high concentration electrolytes (HCEs) formed SEIs with
more inorganic components, which are conducive to lithium ion transference (Figure 8b).
Moreover, the HEC-derived SEI is especially flat and dense, which can effectively inhibit
the intercalation of electrolyte solvent molecules (Figure 8c–h). Interestingly, an SEI layer is
not formed between aqueous LiOH electrolytes and the anode during initial cycling [104].
Minakshi et al. studied the application of aqueous LiOH electrolytes in lithium batteries.
An aqueous rechargeable lithium battery with MnO2 as a cathode and Zn as an anode has
the advantages of low cost and environmental friendliness [105,106]. However, compared
with organic electrolyte lithium batteries, there is still room for improvement in the energy
density and electrochemical window of aqueous LiOH lithium batteries [107,108].
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(b) scheme of SEI formation and lithium ion intercalation in HCE and LCE; quasi in situ AFM
of the SEI formed on HOPG electrodes under (c) LCE and (d) HCE conditions; SEM images and
corresponding EDS spectra are shown in (e,f) for LCE conditions and (g,h) for HCE conditions [9].
Reproduced from Ref. [9] with permission from Elsevier.
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In addition, the effect of electrode material on SEIs should not be ignored. Electrode
polarization and electronic properties are also important for SEI formation. For example, as
graphene layers increase, the anode electronic structure is constantly changing. Electrons
shift from vertical transfer to diffusion along the electrode layer, resulting in a slower SEI
formation rate. Moreover, the Löwdin number of the lithium ion layer (L) and graphene
layer (C) is significantly lower for symmetrical structures than for asymmetrical structures.
In the morphologies of graphene anodes, a single layer of symmetrical graphene has the
lowest Löwdin number. Therefore, a decrease in the Löwdin number indicates an increase
in the reducibility of the electrode material, which is more conducive to SEI generation [109].

3.1.2. Composition and Structure of SEIs

SEIs include organic regions next to the electrolyte (oligomers and lithium carbonate
salts) and inorganic regions near the anode (Li2O, LiF, etc.) (Figure 9a) [110]. The outer organic
region is a porous heterogeneous structure, where both lithium ions and solvent molecules can
reach the interface. The inner inorganic region can transfer lithium ions [93,111]. However,
if the SEI produced by electrolytes with the same properties has a similar composition,
its structure is highly variable. Researchers found that even in two similarly composed
LEs, LE-1(0.6M LiBF4 and 0.6M LiBOB, EC:EMC = 3:7, v/v) and LE-2 (1.2M LiDFOB,
EC:EMC = 3:7, v/v), the cycle stability of electrolyte-2 is obviously better than that of
electrolyte-1 [112]. This is mainly due to the formation of nanostructured LiF in the SEI
of electrolyte-2. The capping ability of oxalic acid in LiDFOB can induce the uniform
growth of nanostructured LiF. Nanostructured LiF in SEIs forms a diffusion field gradient
on the surface of the LMA, which is beneficial to the cycle performance of the battery. In
addition, the SEI formation rate is the key to achieving high Coulombic efficiency. HCE
can induce dense lithium deposition. However, HCE is expensive and suffers from poor
wettability. Chen et al. [113] used 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether
(TTE) to dilute electrolyte D5 (nTHF:nLiFSI:nTTE = 14:5:0, molar ratio) and prepared local
high concentration electrolyte H1 (nTHF:nLiFSI:nTTE = 14:5:14, molar ratio). The solvation
structure of lithium ions in H1 is consistent with that in D5, which maintains the high
concentration effect of electrolyte (Figure 9b). Notably, the essence of an SEI is to reduce
the thermodynamic properties of electrolytes and the kinetic properties of the LMA to
reduce electrolyte consumption. Therefore, it is worth considering introducing additives
that inhibit electrolyte decomposition to establish robust SEIs. Luo et al. [114] prepared a
multifunctional SEI for dendritic anodes using catechol and acrylic groups as electrolyte
additives (Figure 9c). Catechol reduces electrolyte consumption. The acrylic anion forms
a uniform polymerization layer on the anode surface, which is beneficial to long-term
cyclic stability.
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3.2. The Relationship between GPEs and SEIs

The composition and structure of SEIs can be effectively regulated by introducing
additives into the electrolyte. However, with the continuous charge-discharge cycle of
the battery, the additives gradually fail, which is not favorable to the long-term stability
of the lithium battery. An artificial polymer SEI layer constructed on the surface of the
LMA can solve the problem of electrolyte additive failure [115–117]. Nonetheless, the
electrochemical performance of the SEI layer formed by the electrolyte and electrode ma-
terial during the initial charge and discharge is different from that of the artificial SEI
layer constructed at the interface of the anode material [118]. The structure, composition,
and mechanical properties of an artificial SEI can be precisely controlled to separate the
anode and electrolyte. This design goal is the same as those of liquid electrolyte additives
and polymer electrolytes. However, with the increase in battery charging and discharg-
ing times, the damaged artificial SEI cannot be repaired by the reduction products of the
electrolyte [119–121]. As can be imagined, the artificial SEI is not a one-size-fits-all option
for battery stability. The way to reduce the reactivity of LEs and LMAs without seriously
sacrificing RT conductivity is to reduce the contact area between them. The GPE with a
LE fixed on the polymer substrate meets this requirement. The GPE has good RT conduc-
tivity, the polymer substrate toughness can tolerate the volume expansion of the lithium
anode, and the polymer substrate-fixed LE has anode wettability to reduce interfacial
resistance. Under the combined action of the polymer base, lithium salt, and plasticizer or
additive, the SEI stability of a GPE is higher than that of a pure LE. Yao et al. [122] used
PVDF-HFP and ceramic-particle LATP to form a uniform SEI layer by in situ polymeriza-
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tion of a 3D network structure PEO-based composite polymer electrolyte. (Figure 10a,b).
Shen et al. [123] prepared a GPE (PVDF/PSPEG GPE) composed of PVDF and an organic
polysulfide polymer (PSPEG) for Li-S cells to form a stable SEI with Li2S/Li2S2 inorganic
components and organic sulfide or polysulfide. It is delightful that Li|| PVDF/PSPEG
GPE ||Li lithium batteries did not exhibit lithium dendrite formation after long cycling
(Figure 10c–h). The functional group of the GPE polymer substrate is electronegative and
can form a solvated structure of lithium ions, which is conducive to the uniform deposition
of lithium ions. Chai et al. [124] prepared PALE GPEs using polyacrylonitrile/polylactic
acid-block-ethylene glycol polymer (PALE) by adjusting the chain length and the cross-
linked segments structure. The groups (-OH, -C-O-C-, -C=O, and -C≡N) on the polymer
chain induce the migration of lithium ions along the polymer chain. Moreover, the cross-
linked structure can buffer the volume change in the LMA (Figure 10i). Furthermore, Li||
PALE GPE-3-6 ||Li cell maintains stable cycling after 890 h at 0.5 mA g−1.
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Figure 10. (a) Interfacial oxidation reaction and Li dendrites keep propagating (pure PEO electrolyte),
and (b) introducing LATP powders and anti-oxidative PVDF–HFP fiber promotes the uniform depo-
sition of lithium ions and improves the mechanical strength (3D CPE-5 separator) [122]. Reproduced
from Ref. [122] with permission from Elsevier; SEM images of the lithium anodes after repeated
stripping/deposition processes at a current density of 0.5 mA cm−2 using (c–e) PVDF GPE and
(f–h) PVDF/PSPEG GPE [123]. Reproduced from Ref. [123] with permission from Elsevier; (i) the
deposition mechanism of Li+ ions and a schematic diagram of the Li anode surface in batteries
assembled with LE, PAL, and PALE-3-6 GPEs [124]. Reproduced from Ref. [124] with permission
from Wiley.

4. The Effect of GPE Performance on SEIs

The SEI is an indispensable component of the battery, and plays an important role
in regulating lithium ion deposition [125,126]. Therefore, the generation of an SEI with
uniform, appropriate thickness, good ionic conductivity, and good mechanical properties is
necessary. GPEs can reduce the contact area between LEs and the LMA, and the functional
groups on their polymer substrates contribute to the deposition of lithium ions, which is
good for the formation of a robust SEI. In addition, this avoids the failure of an artificial SEI
that cannot be repaired during the battery cycle and avoids the poor compatibility between
the SPE and the LMA interface [127–129].

The GPE polymer substrate, lithium salts, plasticizers, additives, and even synthesis
methods have significant effects on the composition and structure of SEIs. For example,
polymer substrates have an effect on the dissociation and transference of lithium salts.
Lithium salts (LiFSI, LiTFSI, LiPF6, etc.) control the inorganic composition of the SEI (LiF,
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Li2CO3, Li2O, etc.). Plasticizers (carbonates, ethers) direct the organic components of SEI
(alkyl carbonates). Additives affect the composition and performance of the SEI. Therefore,
it is necessary to study the influence of GPEs on SEIs.

4.1. Effect of GPE Preparation Method on SEIs

The problem of incomplete contact between the anode and the independently prepared
polymer electrolyte leads to the impossibility of maximizing the capacity of the battery.
Therefore, an in situ preparation method has been proposed [130]. In situ-prepared GPEs
can solve the interface problem between the anode and polymer electrolyte. However, it is
not enough to only solve the interface problem to improve battery performance [131–133].
Jiao et al. [134] used LiPF6 as an initiator to prepare a GPE in situ through ring-opening
polymerization of DOL (Figure 11a). Moreover, a LiF-rich dense SEI was formed between
a GPE and a lithium anode with the addition of FEC, which caused uniform deposition
of lithium ions and improved cyclic stability. Wang et al. [135] prepared a sandwich
structure GPE (PPL-6.7%) using in situ polymerization of PAN, trihydroxymethylpropyl
trimethylacrylate (TMPTMA), and 1, 6-hexanediol diacrylate (HDDA). LMAs pretreated
with FEC (Li-FEC) not only reduced interface impedance, but also formed a LiF-rich SEI
layer. Li-FEC is still a smooth surface after Li-FEC || PPL-6.7% || Li-FEC cell cycles
100 times. Moreover, the existence of the SEI can stop the consumption of the electrolyte
(Figure 11b–e). Zhu et al. [136] prepared a c-GPE through in situ cationic ring-opening
polymerization of pentaerythritol glycidyl ether (PEE, a four-arm crosslinking agent) and
DOL. When FEC is introduced, the compatibility of c-GPEs with high voltage cathodes is
improved. Furthermore, compared to b-LE liquid electrolytes, c-GPE-50 forms LiF, B-O, and
B-F SEI inner layers and polyether, LiNxOy SEI outer layers. Consequently, Li ||c-GPE-50
|| LFP cells achieved a lifespan of 2000 super long cycles, and their capacity retention rate
was still 78% even at 2 C (Figure 11f).

In situ polymerization of GPEs has the main advantage of reducing interface resistance.
However, there are still problems to be worked out: (1) volume change in the electrolyte
before and after polymerization reactions; (2) controlling the degree of polymerization;
(3) the influence of incomplete cells on battery performance; (4) appropriate initiation
temperature, the reactivity of the initiator type to lithium metal, etc. [137–139]. In addition,
the main problem of ex situ polymerized GPEs is that the mechanical properties decrease
after activation in LEs. Therefore, it is imperative to improve the mechanical strength
of the polymer substrate. The interaction between the polymer functional groups and
the LE also needs to be enhanced. Yu et al. [140] prepared a GPE with good mechanical
properties using allyl modified cellulose and methylcellulose triggered by UV irradiation.
Methylcellulose has strong adsorption to LE (628.5%), improving the interface compatibility
(Figure 11g). The introduction of allyl improves the mechanical strength and decreases the
crystallinity of cellulose, thus increasing the ionic conductivity of the GPE (4.36 mS cm−1).
Moreover, the GPE contains a large number of polar functional groups to enhance lithium
salt dissociation and increase the lithium ion transference number to 0.902.
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uid (PFIL) into PEO and PAN polymers to prepare a GPE (PPL-IL). The phosphate groups 
not only improved the poor cathode reactivity, but also increased the GPE’s flame retard-
ant performance. Moreover, the phosphorus oxide group reduced the interaction force 
between Li+ and TFSI-, which promoted the dissociation of lithium (Figure 12d). Surpris-
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Figure 11. (a) Schematic illustration of the interfacial contact between the Li metal anode and the
ex situ GPE or in situ GPE [134]. Reproduced from Ref. [134] with permission from American
Chemical Society; (b) surface SEM images of the lithium anode of a Li−FEC||PPL−6.7%||Li−FEC
battery after cycling for 200 h at 0.2 mA cm−2; (c) lithium anode of Li ||PPL−6.7%||Li battery after
being tested for 120 h at 0.2 mA cm−2; (d,e) TEM of Li anodes of Li−FEC||PPL−6.7%||Li−FEC
after cycling for 200 h [135]. Reproduced from Ref. [135] with permission from Elsevier; (f) cycling
performances of Li||LFP batteries with cm−LE (blue), b−LE (black), c−GPE−50 (red), and h−PE
(green) at 2 C [136]. Reproduced from Ref. [136] with permission from Elsevier; (g) the swelling
property of film MC and ACMC3.5%, 4.5%, and 5.5% [140]. Reproduced from Ref. [140] with
permission from Elsevier.

4.2. Effect of GPE Plasticizer Selection on SEIs

In order to promote the dissociation of lithium, the plasticizer must have a higher
dielectric constant than lithium salt. Additionally, the plasticizer regulates the chemical
composition of the SEI to form a stable interface between the electrolyte and the anode.
High boiling point and high flash point plasticizers are beneficial to the safety performance
of the battery [141–143]. An EC with a high dielectric constant is a common plasticizer used
in GPEs. However, the high melting point of EC implies its use in combination with linear
carbonate plasticizers. Jia et al. [11] prepared a porous GPE using PVDF-HFP, 1M LiPF6 in
propylene carbonate (PC) +2wt% ethylene sulfite (ES) +2wt% vinylene carbonate (VC). The
effect of the plasticizer on the SEI composition was studied (Figure 12a,b). Moreover, XPS
analyzed the effects of different plasticizers on SEI composition before and after cycles. The
SEI thickness of LP30-GPE without ES and VC increased significantly compared to that of
the PEV-GPE without ES and VC after 200 cycles. The SEI organic outer layer thickness
of the LP30-GPE without ES and VC increased significantly, which is not conducive to a
stable battery cycle (Figure 12c).

Excessive decomposition caused by the high activity of organic carbonates reacting
with the lithium anode will lead to uneven deposition/stripping of lithium. Notably,
imidazole ionic liquid is a GPE plasticizer candidate due to its good conductivity and low
viscosity. However, C2 of the imidazole ring is prone to protonation, resulting in poor
cathode stability. Song et al. [32] introduced phosphate-functionalized imidazole ionic
liquid (PFIL) into PEO and PAN polymers to prepare a GPE (PPL-IL). The phosphate
groups not only improved the poor cathode reactivity, but also increased the GPE’s flame
retardant performance. Moreover, the phosphorus oxide group reduced the interaction
force between Li+ and TFSI−, which promoted the dissociation of lithium (Figure 12d).
Surprisingly, PPL-IL can form a uniform and stable SEI layer rich in inorganic layers, inhibiting
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the growth of lithium dendrites. In addition, room temperature ionic liquids (RTILs) can
decrease the crystallinity of polymer chains and increase the number of lithium ion transfers.
However, excess IL can decrease the mechanical properties of GPEs [144,145]. Therefore,
polymer ionic liquids (PIL) modified by IL functionalization have been extensively studied.
Martinez-Ibañez et al. [146] used PIL as a polymer scaffold to prepare a high concentration
bis(fluorosulfonyl)imide (FSI)-based ternary gel polymer electrolyte (FSI-TGPEs). The
EIS test shows that Li || FSI-TGPE || Li symmetric cells have a lower interface resis-
tance (830 Ω cm−2 at 25 ◦C, 19 Ω cm−2 at 70 ◦C) because the S-F bond of the FSI-anion
formed a robust SEI. Furthermore, the synergistic actions of plasticizers and additives
not only improve the mechanical properties of GPEs, but also generate stable SEIs. By
introducing VC into an EMITSI plasticizer and adding nanoparticles (SiO2:Al2O3

1/4 = 5:5)
into poly(methyl methacrylate-acrylonitrile-ethyl acrylate) (P(MMA-AN-EA)), Li et al. [34]
prepared a porous GPE with high mechanical properties (fracture strength 160 MPa) and
high ionic conductivity (3.2 mS cm−1) (Figure 12e).
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Figure 12. SEM image of a porous PVDF-HFP membrane: (a) surface; (b) cross-section and thickness
change; (c) SEI formed in cells containing LP30-GPE and PEV-GPE upon cycling [11]. Reproduced
from Ref. [11] with permission from Elsevier.; (d) schematic illustrations of the dual lithium-ion
transport channels for the PPL-IL and flammability test [32]. Reproduced from Ref. [32] with
permission from American Chemical Society; (e) mechanical stress-strain curves [34]. Reproduced
from Ref. [34] with permission from Elsevier.

4.3. Effect of GPE Polymer Substrate on SEIs

The polymer substrate includes crystalline regions that provide chemical stability
and mechanical properties and non-crystalline regions that facilitate lithium ion transfer.
The polymer properties include the dissociation of lithium salts, the fixation of LEs, and
the formation of lithium ion complexes [147,148]. Hu et al. [149] prepared a PUCMA-
GPE using cyclic carbonate urethane methacrylate (2-(((2-oxo-1, 3-dioxolan-4-yl) methoxy)
carbonylamino) ethyl methacrylate) (CUMA). PCUMA is rich in rigid cyclic carbonate
motifs with low LUMO levels, which are conducive to the formation of a strong SEI layer
(Figure 13a–c). Moreover, Li || PUCMA-GPE ||Li cells display stable cycles for 1000 h
at 0.5 mA cm−2 (Figure 13d). In addition, the interaction between different polymers is
beneficial to the electrochemical performance of GPEs. PAN is widely used in GPE polymer
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substrates due to its excellent film forming properties and high ionic conductivity. How-
ever, PAN has the disadvantages of poor compatibility with LMAs and high crystallinity.
Li et al. [150] prepared a GPE by mixing hydroxypropyl methyl cellulose (HPMC) with
PAN. A large amount of -OH in HPMC can form hydrogen bonds with -CN in PAN,
which can reduce the crystallinity of PAN. Furthermore, this interaction between hydro-
gen bonds improves the lithium ion transference and the interface compatibility with the
anode (Figure 13e).

Nanomaterials 2023, 13, x FOR PEER REVIEW 19 of 28 
 

 

improves the lithium ion transference and the interface compatibility with the anode (Fig-
ure 13e). 

Efficient and low-cost GPEs could reduce the manufacturing cost of polymer ba er-
ies. Cellulose is a suitable choice because it contains a large number of polar functional 
groups that can dissociate lithium salt. In addition, cellulose has the advantages of low 
cost, biodegradability, and good thermal stability. Hadad et al. [37] prepared a GPE using 
amorphous cellulose acetate (CA) and oxidized carboxymethyl cellulose (OCMC) as pol-
ymer substrates. Additionally, the effects of the long-chain crosslinking agent PVA and 
short-chain crosslinking agent citric acid on polymerization networks were compared 
(Figure 14h–k). Surprisingly, the GPE prepared with CA and OCMC showed excellent 
ionic conductivity, at ~10−2 S cm−2. The introduction of dilithium salts into the polymer 
substrate is conducive to the formation of a stable SEI. Lin et al. [151] prepared an SGPE 
with a separator (Celgard 2325) by blending PVDF-HFP with poly(2-hydroxyethyl meth-
acrylate) (PHEMA) and introducing dilithium salts (LiTFSI and LiPF6). The introduction 
of PHEMA mainly reduces the crystallinity of PVDF-HFP and enhances the interfacial 
compatibility between the GPE and the LMA. There is no lithium dendrite formation after 
cycling the Li || SGPE || Li cell for 500 h. This suggests that the SGPE forms a stable SEI 
layer on the lithium metal surface. 

 
Figure 13. Schematic diagram of the evolution of SEI layers during cycling within the ba eries: (a) 
commercially available LE-based LMBs, (b) commercial LE-based LMBs with artificial coating lay-
ers on the Li anode, and (c) GPE-assembled LMBs with in situ formed polymer-reinforced SEI layers 
on the Li anode; (d) Li plating/stripping experiments for symmetric Li/Li cells with PCUMA-GPE 
and the LE at a current density of 0.5 mA cm−2 [149] Reproduced from Ref. [149] with permission 
from Wiley-VCH.; (e) uneven Li+ transference direction in the PAN matrix; (f) a diagram of hydro-
gen bond interactions between PAN and HPMC; (g) a comparison of Li plating/stripping cycling 
with two types of GPEs [150]. Reproduced from Ref. [150] with permission from Elsevier; (h–k) FE-
SEM of GPEs surfaces before cycling [37]. Reproduced from Ref. [37] with permission from Elsevier. 
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Figure 13. Schematic diagram of the evolution of SEI layers during cycling within the batteries:
(a) commercially available LE-based LMBs, (b) commercial LE-based LMBs with artificial coating
layers on the Li anode, and (c) GPE-assembled LMBs with in situ formed polymer-reinforced SEI
layers on the Li anode; (d) Li plating/stripping experiments for symmetric Li/Li cells with PCUMA-
GPE and the LE at a current density of 0.5 mA cm−2 [149] Reproduced from Ref. [149] with permission
from Wiley-VCH.; (e) uneven Li+ transference direction in the PAN matrix; (f) a diagram of hydrogen
bond interactions between PAN and HPMC; (g) a comparison of Li plating/stripping cycling with
two types of GPEs [150]. Reproduced from Ref. [150] with permission from Elsevier; (h–k) FE-SEM
of GPEs surfaces before cycling [37]. Reproduced from Ref. [37] with permission from Elsevier.

Efficient and low-cost GPEs could reduce the manufacturing cost of polymer batter-
ies. Cellulose is a suitable choice because it contains a large number of polar functional
groups that can dissociate lithium salt. In addition, cellulose has the advantages of low
cost, biodegradability, and good thermal stability. Hadad et al. [37] prepared a GPE us-
ing amorphous cellulose acetate (CA) and oxidized carboxymethyl cellulose (OCMC) as
polymer substrates. Additionally, the effects of the long-chain crosslinking agent PVA
and short-chain crosslinking agent citric acid on polymerization networks were compared
(Figure 14h–k). Surprisingly, the GPE prepared with CA and OCMC showed excellent ionic
conductivity, at ~10−2 S cm−2. The introduction of dilithium salts into the polymer sub-
strate is conducive to the formation of a stable SEI. Lin et al. [151] prepared an SGPE with a
separator (Celgard 2325) by blending PVDF-HFP with poly(2-hydroxyethyl methacrylate)
(PHEMA) and introducing dilithium salts (LiTFSI and LiPF6). The introduction of PHEMA
mainly reduces the crystallinity of PVDF-HFP and enhances the interfacial compatibility
between the GPE and the LMA. There is no lithium dendrite formation after cycling the Li
|| SGPE || Li cell for 500 h. This suggests that the SGPE forms a stable SEI layer on the
lithium metal surface.
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4.4. Effect of GPE Additives on SEIs

The structure-activity relationships between the additives introduced in GPEs and
SEIs effect the performance of the battery [152]. The additives need to have a LUMO level
lower than lithium salt and the LE solvent [153–155]. Additives are generally divided into
organic and inorganic additives. Inorganic additives include LiNO3, LiF, Li2Sn, boric acid,
etc. LiNO3 can improve ionic conductivity and inhibit the S-shuttle effect in Li-S batteries.
LiF can improve the battery cycle performance and CE [156,157]. Organic additives include
FEC, VC, etc. Organic additives can adjust the components of the SEI and improve the
SEI’s toughness [158]. In addition, the flexible layer and rigid layer of the SEI are regulated
by the synergistic action of organic and inorganic additives.

LiNO3 has low solubility in carbonate LEs, so how to apply it to a carbonate LE is a
problem that needs to be considered. Wang et al. [72] dissolved LiNO3 into polyether PEO
solution to prepare a GPE (PV-PM-PE-LN). LiNO3 dissolved in PEO can generate a Li3N-
containing SEI to improve ionic conductivity. Moreover, compared with a GPE (PV-PM-PE)
without LiNO3, PV-PM-PE-LN can effectively regulate Li0 deposition (Figure 14a,b). It is
well known that the structure and composition of SEIs change constantly during cycling.
Therefore, real-time monitoring of the dynamic process can help to better understand the
structure-activity relationship. In situ electrochemical atomic force microscopy (EC-AFM)
can meet this detection requirement. Taking the structure-activity relationship between
LiNO3 and SEIs as an example, EC-AFM can detect that the lithium of GPEs without LiNO3
is deposited unevenly and forms spherical nuclei. The volume of the spheres increases
and more defects occur during cycling, which leads to the formation of lithium dendrites
and a short circuit of the battery. In contrast, a LiNO3-containing GPE first forms a dense
amorphous SEI layer, inducing the uniform deposition of lithium ions to form dense
blocks. Furthermore, the stripping of lithium starts from the edge of the lithium block and
then gradually involves the central position, which is conducive to interface stability and
prevents the appearance of lithium dendrites (Figure 14c,d) [159].

The boron atom of boron acid is a Lewis acid. The PF6
− anion of LiPF6 is a Lewis

base. B atoms and PF6− cause a complex reaction which forms a B-containing SEI that
inhibits dendrite formation. Han et al. [160] in situ polymerized TEGDA at 1 M LiPF6
(EC/DMC/DEC = 1:1:1, v/v/v) using azodihetonitrile (ABVN) heat initiation, then intro-
duced n-butyl boric acid (BBA) into the GPE precursor solution to form a B-GPE (Figure 14e).
Compared with the LFP || GPE || Li cells, the LFP || B-GPE || Li cell capacity retention
rate is still 87.7% after 950 cycles at 0.5C. This is due to the fact that BBA forms a stable SEI
to promote the battery circulation performance (Figure 14f). The doping mode of additives
directly influences battery performance. SiO2 is the most commonly used ceramic additive,
and its main role is to degrade the crystallinity of polymer substrates and thereby improve
ionic conductivity. Uneven dispersion occurs when SiO2 is introduced directly into poly-
mer precursors. Noteworthily, the surface modification of SiO2 can solve this problem.
Yang et al. [161] coated SiO2 modified by 3-isocyana-topropyl-triethoxysilane (IPTS) and
DOL on the LFP cathode through in situ preparation of SiO2-GPE (Figure 14g,h). The
modified SiO2 effectively reduces the interfacial resistance and forms a stable SEI. The
retention rate of the LFP|| SiO2-GPE||Li cell is 88.42% after 700 cycles at 1 C (Figure 14i).
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5. Conclusions and Outlook

The high reactivity between LEs and LMAs leads to the formation of fragile SEIs and
lithium dendrites, causing low Coulombic efficiency and serious safety problems for LMBs.
GPEs possess the advantages of both SPEs and LEs, reducing the contact surface between
the LE and the LMA while preserving LE-like ionic conductivity. Therefore, GPEs have a
potential advantage in the practical application of LMBs. This review focuses on the effects
of GPE composition and preparation methods on SEIs. Some existing problems and their
remedies are summarized. (1) The initiator is involved in the formation of SEIs by in situ
polymerization. At present, the most commonly used method is to use suitable lithium salt
as initiator to induce polymerization. (2) The introduction of ceramic nanoparticles, MOF,
and glass fiber, etc., can improve the mechanical properties of GPEs after plasticization.
Furthermore, the introduction of these additives can promote the dissociation of lithium
salt and reduce the concentration polarization. This is conducive to the formation of stable
SEI layers. (3) High crystallinity of polymer substrates is not conducive to lithium ion
transference. The introduction of nanoparticles (Al2O3, TiO2, GO nanosheets, vermiculite
sheets, MXene, etc.) can reduce the crystallinity of the polymer substrate. Furthermore,
high lithium ion transference numbers can effectively avoid concentration polarization and
inhibit the formation of dead reason. It is beneficial to improve the stability of the SEI layer.
(4) Carbonates are commonly used as plasticizers for GPEs. However, linear carbonate
plasticizers have the defects of low flash points and dielectric constants, although their
low viscosity is conducive to lithium dissociation. Cyclic carbonate plasticizers are the
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opposite. Therefore, the combination of circular carbonate and linear carbonate plasticizers
can improve the electrochemical performance of batteries.

Although GPEs have made great progress in inhibiting the formation of lithium
dendrites, several challenges remain. (1) Increasing the LE absorption rate of GPEs is
conducive to improving the ionic conductivity of GPEs. However, a high LE absorption rate
will lead to deteriorated stability of the SEI, causing safety problems. (2) How to effectively
reduce the transference path of lithium ions in GPEs and improve the power density
of LMBs should be considered. (3) GPEs improve interfacial compatibility with lithium
anodes. However, the interfacial resistance of GPEs with different lithium battery cathodes
needs to be investigated. (4) Under the initiative of green chemistry, it is imperative to
choose natural polymer materials as GPE polymer substrates. (5) Understanding of SEIs
is still limited. It is necessary to use real-time monitoring technology to characterize the
composition and structural changes of SEIs. Furthermore, the components of SEIs are
constantly changing. The existing calculation model is periodic. It cannot represent the
SEIs formed during the whole cycling.

In summary, GPEs have practical applications in replacing LEs in LMBs, but they also
presents serious challenges. The dynamic formation process and action mechanism of SEIs
formed by GPEs need further study. In addition, GPEs are currently only available in the
laboratory. Industrial production of GPEs is low. Additionally, the disadvantages of high
price, low compatibility between different lithium batteries, and lack of a fixed model leads
to poor market sustainability. Therefore, a great deal of energy needs to be invested in
scientific research. We believe that GPEs can be widely used in the LMB market in the
near future.
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EMC ethyl methyl carbonate
DMC dimethyl carbonate
DEC diethyl carbonate
PC propylene carbonate
EC ethylene carbonate
DME 1,2-dimethoxyethane
TEGDME Tetraethylene glycol dimethyl ether
DOL dioxolane
THF tetrahydrofuran
FEC fluoroethylene carbonate
LiDFOB Lithium Difluoro(oxalato)borate
LATP Li1.3Al0.3Ti1.7(PO4)3
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