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Abstract: The catalytic conversion of CO2 into valuable commodities has the potential to balance
ongoing energy and environmental issues. To this end, the reverse water–gas shift (RWGS) reaction is
a key process that converts CO2 into CO for various industrial processes. However, the competitive
CO2 methanation reaction severely limits the CO production yield; therefore, a highly CO-selective
catalyst is needed. To address this issue, we have developed a bimetallic nanocatalyst comprising
Pd nanoparticles on the cobalt oxide support (denoted as CoPd) via a wet chemical reduction
method. Furthermore, the as-prepared CoPd nanocatalyst was exposed to sub-millisecond laser
irradiation with per-pulse energies of 1 mJ (denoted as CoPd-1) and 10 mJ (denoted as CoPd-10)
for a fixed duration of 10 s to optimize the catalytic activity and selectivity. For the optimum case,
the CoPd-10 nanocatalyst exhibited the highest CO production yield of ∼1667 µmol g−1

catalyst, with
a CO selectivity of ∼88% at a temperature of 573 K, which is a 41% improvement over pristine
CoPd (~976 µmol g−1

catalyst). The in-depth analysis of structural characterizations along with gas
chromatography (GC) and electrochemical analysis suggested that such a high catalytic activity and
selectivity of the CoPd-10 nanocatalyst originated from the sub-millisecond laser-irradiation-assisted
facile surface restructure of cobalt oxide supported Pd nanoparticles, where atomic CoOx species were
observed in the defect sites of the Pd nanoparticles. Such an atomic manipulation led to the formation
of heteroatomic reaction sites, where atomic CoOx species and adjacent Pd domains, respectively,
promoted the CO2 activation and H2 splitting steps. In addition, the cobalt oxide support helped to
donate electrons to Pd, thereby enhancing its ability of H2 splitting. These results provide a strong
foundation to use sub-millisecond laser irradiation for catalytic applications.

Keywords: RWGS reaction; sub-millisecond laser; Pd nanoparticles; surface restructure; CO2

conversion

1. Introduction

The thriving anthropologic activities result in increased atmospheric carbon dioxide
(CO2) levels, which, consequently, has led to detrimental effects on the environment [1].
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Therefore, establishing efficient CO2 utilization strategies is imperative. In this context, the
catalytic transformation of carbon dioxide (CO2) into beneficial fuels and commodities is of
potential interest [2,3]. Such an approach not only mitigates atmospheric CO2 concentration
but also circumvents energy issues. Given that CO2 can be utilized as a C1 feedstock for
producing various fuels, such as carbon monoxide (CO), methane (CH4), and formic acid
(HCOOH), the selective CO2 hydrogenation (reduction/conversion) to CO via the reverse
water–gas shift (RWGS) reaction is the most promising path because of its well-known
industrial applications [4–6]. However, the competitive CO2 methanation (where the
CO is further hydrogenated to produce methane (CH4)) severely hampers the rate of
RWGS reaction, thereby suppressing the production yield of CO [7]. In addition, because
of the endothermic behavior of the RWGS reaction, the exothermic CO2 methanation
reaction is more favourable at low temperatures [8]. Therefore, it can be concluded that
the development of highly active and selective catalysts for an RWGS reaction that can be
operated at low temperatures is an urgent need for establishing a zero-carbon economy.

The RWGS reaction follows two main possible pathways: the redox and the associative
pathways [9,10]. For the redox pathway, the CO2 molecule first dissociates into *CO and *O
intermediates. There are two possibilities in this step: (i) the catalyst being oxidized due to *O
atoms from the dissociation of the CO2 molecule or (ii) the CO2 dissociates at the oxygen vacancy
(OV) sites to produce *CO. On the basis of the CO2 dissociation mechanism, the hydrogen (H2)
molecule can reduce the catalyst or create oxygen vacancies (H2 + M-O→H2O + M; here, M is
the notation for metal). Mostly, the catalytic materials comprising reducible oxides follow
the redox pathway for completing the RWGS reaction. [11] In contrast, the associative mech-
anism follows a completely different pathway, where the H2 molecule first dissociates into
*H atoms, which subsequently react with adsorbed *CO2 molecules to form intermediate
species, such as formate (*HCOO) or carboxyl (*COOH), and they eventually decompose to
yield *CO and *OH. As reported in the literature, reducible oxide-supported noble metals
follow the associative pathway [12]. For instance, Zhao et al. revealed the size effect of
Pt nanoparticles (NP)s on CeO2 support towards RWGS reaction [13]. On the basis of the
aforementioned discussion, it can be concluded that the RWGS reaction is sensitive to the
type of catalyst, and to achieve the optimal CO selectivity and production yield at low
temperatures, it is imperative to develop highly efficient catalysts that have two adjacent
active sites for CO2 activation and H2 dissociation. In detail, the catalytic materials with
a single reaction site for CO2 reduction lead to quick failure due to the severe coke effect,
while catalytic materials with single reaction sites for H2 dissociation are inactive towards
CO2. Consequently, potential synergy between two adjacent reaction sites (for CO2 activa-
tion and H2 dissociation) is desired for optimum product yield. For instance, our previous
study demonstrated the potential collaboration between neighbouring reaction sites of
tetrahedral symmetric nickel oxide (NiOT) and Pd in bimetallic NiOTPd-T nanocatalysts,
where NiOT and Pd synergistically trigger the CO2 activation and H2 dissociation, respec-
tively [14]. In addition, the previously published literature reported that surface OV sites in
the catalyst supports as well as in the active metal can boost the CO2 activation step during
CO2 hydrogenation, and, thus, the catalytic performance can be improved [15,16]. The
aforementioned arguments suggest that the surface atomic configuration is the cornerstone
for catalytic activity; therefore, exploration of next-generation techniques to manipulate
the surface atomic arrangement is important. In this context, thermal annealing has been
frequently employed for controlling the heteroatomic intermixing on the surface as well
as the subsurface domains of nanocatalysts for improving the catalytic performance in
various reactions; nonetheless, the longer operational time and high energy input make it
highly reluctant to use on a commercial scale [17]. In contrast, pulsed laser irradiation with
controllable duration and high energy photon flux has emerged as a potential technique
for desired atomic manipulation to design the material with optimum functionality [18].
Moreover, this method enables the opportunity to restructure the nanocatalyst surface
within a sub-nanometer range, promoting strong heteroatomic intermixing and enhancing
catalytic activity. In our previous study, multiple metal-to-metal oxide heterogeneous
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interfaces have been formed in a trimetallic system (CuNiPd) for enhanced CO2 reduction
performance by using sub-millisecond laser annealing [19].

By keeping the aforementioned scenarios in view, herein, we have fabricated Pd NPs
on the cobalt oxide support (hereafter denoted as CoPd) for high-performance RWGS
reactions. Furthermore, a pulsed laser beam with per-pulse energies of 1 mJ and 10 mJ
was used for a fixed duration of 10 s to manipulate the surface and/or sub-surface atomic
arrangements of as-prepared CoPd nanocatalyst to improve the catalytic performance to-
wards RWGS reaction. For the optimum case, when the per-pulse energy of the pulsed laser
beam was 10 mJ (hereafter denoted as CoPd-10), some cobalt oxide (CoOx) atoms migrated
on the surface of Pd nanoparticles (defect sites of Pd). With such an atomic rearrangement,
the CoPd-10 nanocatalyst delivered the CO production yield of ~1667 µmol g−1

catalyst, with
CO selectivity of ~88% at 573 K, which was enhanced 41% as compared with pristine CoPd
(~976 µmol g−1

catalyst). The results of the physical investigations and electrochemical anal-
ysis indicated that the potential synergism between surface-anchored atomic CoOx species
and adjacent Pd active sites boosted the CO production yield of the CoPd-10 nanocata-
lyst, where CoOx and Pd reaction sites simultaneously promoted the CO2 activation and
H2 splitting. We envision that the obtained results could serve as a basis for developing
catalysts with improved activity and selectivity for the RWGS reaction.

2. Experimental Section
2.1. Materials and Methods

The CoPd nanocatalysts were prepared by a sequential and vigorous wet chemical
reduction method. To improve the metal–support interaction and achieve better dispersion,
before synthesis, the surface functionalization of the catalyst support (i.e., carbon black
(UR-XC72, UniRegion Bio-Tech, Palo Alto, CA, USA)) was achieved via acid treatment. [20]
Subsequently, in the first step, 3 g of 2 wt.% acid-treated carbon black (hereafter denoted
as active carbon (AC)) solution (i.e., 60 mg of AC) was dispersed in 3.06 g of 0.1 M cobalt
(III) chloride (99%, Sigma-Aldrich Co., St. Louis, MO, USA) (i.e., the weight ratio of Co to
AC was 30 wt.%) and stirred at 600 rpm for 6 h at room temperature (solution A). In the
second step, 0.01 g of sodium borohydride (NaBH4; 99%, Sigma-Aldrich Co.) in 5 mL of
D.I. water was instantly dropped to solution A (i.e., Co3+ ions adsorbed on AC surface) to
reduce the Co3+ ions on the AC surface (i.e., formation of Co-AC) (solution B). Finally, the,
3.06 g of a palladium (Pd) precursor solution (i.e., 0.1 M solution containing 0.306 mmol
of Pd metal ions (PdCl2, 99%, Sigma-Aldrich Co.)) was added to solution B. In this step,
the Pd2+ ions were reduced on CoOx support via NaBH4 added in the second step (the
amount of NaBH4 in the second step was measured for reducing both Co3+ and Pd2+

ions), and the CoPd nanocatalyst was formed. The final product was sequentially washed
with acetone, isopropyl alcohol (IPA), and DI water several times, then dried at 70 ◦C for
24 h. As-prepared CoPd nanocatalyst was further subjected to sub-millisecond pulsed
laser irradiation with per-pulse energies of 1 mJ and 10 mJ to restructure the surface of
the material. Hereafter, the CoPd nanocatalysts irradiated with 1 mJ and 10 mJ per-pulse
energies are denoted as CoPd-1 and CoPd-10, respectively. In this study, a laser beam with
the wavelength of 976 nm and 850 µs pulses was generated from the diode laser. Further
details of laser setup are provided in supplementary information.

2.2. Physical Characterizations

The structural characteristics of as-prepared CoPd nanocatalysts were examined by
cross-referencing the results of high-resolution transmission electron microscopy (HRTEM),
X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), and X-ray photoelectron
spectroscopy (XPS). The HRTEM images were collected at National Tsing Hua University,
Taiwan. The XRD patterns were obtained at the beamline of BL-01C2 in the National
Synchrotron Radiation Research Center (NSRRC), where the wavelength of incident X-rays
was 0.688 Å (18 keV). The XAS was carried out at beamlines BL-17C and 01C1 in NSRRC,
Taiwan, whereas the XPS spectra were measured at beamline BL-24A1 in NSRRC, Taiwan.
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2.3. Electrochemical Characterizations and Gaseous Product Analysis

The CO-stripping voltammograms were collected using a three-electrode system,
where a glassy carbon electrode, Pt wire, and Ag/AgCl electrode were used as the working,
counter, and reference electrodes, respectively. The adsorption of CO on the surface of the
catalyst was performed by purging CO into 0.5 M H2SO4 at 0.05 V (vs. RHE) for 20 min.
Then, the CO stripping voltammetry was measured between −0.10 and 1.20 V (vs. RHE)
in N2-saturated 0.5 M H2SO4 solution at a scan rate of 50 mVs−1. Finally, the catalytic
performances of CoPd nanocatalysts towards CO2 conversion were evaluated by using the
previously reported protocol [14,19].

3. Results and Discussion
Structural Properties of CoPd Nanocatalysts

The crystal structure and surface atomic arrangements of pristine CoPd and laser-
irradiated CoPd nanocatalysts were revealed by HRTEM. Figure 1a shows the HRTEM
image of the pristine CoPd nanocatalyst. Accordingly, the majority of Pd domains were
covered by a thin layer of amorphous CoOx (denoted in a white square; region (a-1)),
while the minority of the Pd domains were exposed to the surface (denoted by yellow
circles; region (a-2)). Such characteristics were obvious due to the high extent of galvanic
replacement reaction between the Co atoms and Pd2+ ions (Co + Pd2+ → Co3+ + Pd0),
followed by redeposition of the residual Pd 2+ and Co3+ ions [21]. These observations were
further confirmed by the Fourier transformation (FFT), inverse Fourier transform (IFT)
patterns, and their corresponding line histograms, where ring-like FFT patterns in inner
lattices and fuzzy patterns in outer space (a-1), respectively, corresponded to the existence
of polycrystalline Pd NPs covered by amorphous CoOx [22]. In addition, symmetrically
aligned bright spots in the FFT pattern of the region (a-2) suggested the formation of locally
ordered Pd NPs. Moreover, the line histograms determined that the interlayer (d)-spacing of
regions (a-1) and (a-2) were 0.189 and 0.222, respectively, which corresponded to the Co3O4
(130) (mp-1271793) and Pd (111), which is in good agreement with the aforementioned
observations. Furthermore, a significant surface restructure was observed when the CoPd
nanocatalyst was exposed to the laser with 1 mJ per-pulse energy (i.e., CoPd-1). As shown
in Figure 1b, the majority of the Pd domains were exposed to the surface (denoted by yellow
circles; region (b-2)) and could be attributed to the removal of the surface amorphous CoOx
layer due to laser irradiation. However, some of the amorphous CoOx domains were still
present on the surface (denoted in a white square; region (b-1)) due to limited per-pulse
energy (i.e., 1 mJ). These scenarios were cross-referenced by the FFT patterns and line-
histogram-determined d-spacing, where symmetrical aligned bright spots in both regions
indicated the formation of long-range ordered structures due to the removal of surface
oxide. Further raising the per-pulse energy to 10 mJ led to the formation of a completely
different nanoarchitecture for the CoPd-10 nanocatalyst (Figure 1c), where the surface oxide
layer was completely removed, and long-range ordered Pd NPs with twin boundaries
(denoted by red circles) were formed on the surface. Moreover, the higher per-pulse energy
(i.e., 10 mJ) induced a high extent of atomic migration; therefore, some of the Co-atoms from
the CoOx support were deposited in the defect sites of Pd NPs (denoted by yellow squares).
Meanwhile, the yellow arrows denotes surface defects of Pd NPs. In this way, atomic
CoOx-species-decorated Pd NPs were formed on the CoOx support underneath. These
scenarios were further confirmed by FFT patterns and d-spacing values, where similar FFT
patterns and d-spacing values were observed on the whole surface, confirming the uniform
distribution of decorated CoOx species.
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Figure 1. HRTEM images of (a) pristine CoPd, (b) CoPd-1, and (c) CoPd-10. The forward Fourier
transformation (FFT) pattern of the selected area in HRTEM images is shown in the insets. The
d-spacing values of experimental samples are calculated by using inverse Fourier transform (IFT)
and their corresponding line histograms (insets).

The effect of laser irradiation with different per-pulse energies on the local atomic and
electronic properties of CoPd nanocatalyst was explored by cross-referencing the results
of the Co K-edge and Pd K-edge XAS analyses. Figure 2a shows the X-ray absorption
near-edge spectroscopy (XANES) spectra of pristine and laser-irradiated CoPd nanocata-
lysts, while the XANES spectra of standard Co foil and CoO were compared for reference.
The XANES spectra at Co K-edge showed three main regions, including the pre-edge
“R”, the position of the inflection point (IS), and the intensity of the absorption edge (or
whiteline) (HS), which, respectively, corresponded to the local geometry around the Co
atoms, the oxidation state, and the extent of occupied/unoccupied state (due to electronic
interaction with neighbouring atoms) of the targeting atom [23,24]. As shown in Figure 2a,
the CoPd, CoPd-1, and CoPd-10 nanocatalysts exhibited similar features in all three regions,
suggesting the unchanged local atomic and electronic properties of CoOx in CoPd after
laser irradiation. In addition, the inflection point position of experimental nanocatalysts,
similar to that of CoO, implied that the Co was present in the form of CoO in all sam-
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ples. Figure 2b shows the Fourier-transformed extended X-ray absorption fine structure
(FT-EXAFS) spectra of experimental samples at Co K-edge; the corresponding structural
parameters are summarized in Table 1, and the fitting curves are shown in Figure S1. The
peaks “P” and ”Q” in Figure 2b correspond to the Co-O and Co-Co/Pd bond pairs. Mean-
while, as listed in Table 1, the Co-O bond pairs exhibited a higher coordination number
(CN) as compared with the Co-Co and Co-Pd bond pairs, confirming that the Co was
present in oxidized form, which is in good agreement with the aforementioned results. An
even closer inspection of model-simulated fitting results revealed that CoPd-10 exhibited
the highest CN for the Co-O bond pair (CNCo-O = 2.84), suggesting that Co atoms were
exposed to the surface at the highest extent. These scenarios are in good agreement with
the HRTEM results, where atomic CoOx species were observed on the surface of Pd NPs.
Furthermore, Figure 2c shows the XANES spectra of experimental samples compared with
the Pd foil and AC-supported Pd NPs, where peaks A and B correspond to the 1s→ 5p–4f
electron transitions [25,26]. Accordingly, the inflection point position of the experimental
samples, similar to that of the Pd foil, confirmed that Pd was present in metallic form.
Moreover, the lowest white-line intensities (HA and HB) implied the lowest empty state
in Pd 5p/4f orbitals due to the highest extent of electron relocation from Co to Pd in the
CoPd-10 nanocatalyst [27]. Figure 2d shows the FT-EXAFS spectra of experimental samples
at Pd K-edge; the fitting parameters are summarized in Table 1, and the fitting curves are
shown in Figure S2. Accordingly, nearly similar CN for Pd-O, Pd-Co, and Pd-Pd bond
pairs indicateed that the Pd domains were less affected by laser irradiation. However, the
lowest radial distance for the Pd-Co bond pair (RPd-Co = 3.102) again confirmed that the
CoOx species were decorated in the defect sites of Pd NPs in CoPd-10. Moreover, the CN
for the Pd-O bond pair was higher for CoPd-1 and CoPd-10 as compared with pristine
CoPd, indicating a certain extent of Co oxide anchored on the metallic Pd defect sites.
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Table 1. Quantitative results of X-ray absorption spectroscopy model analysis at Co and Pd K-edges
of experimental samples.

Sample
Co K-Edge Pd K-Edge

Bond Pair CN R Bond Pair CN R

CoPd
Co-O 2.636 2.029 Pd-O 0.89 2.046
Co-Co 0.92 2.052 Pd-Pd 5.236 2.742
Co-Pd 0.591 3.044 Pd-Co 0.788 3.280

CoPd-1
Co-O 2.70 2.016 Pd-O 0.98 2.301
Co-Co 1.58 3.093 Pd-Pd 5.02 2.745
Co-Pd 0.685 3.133 Pd-Co 0.665 3.224

CoPd-10
Co-O 2.84 2.033 Pd-O 0.94 2.107
Co-Co 1.803 2.949 Pd-Pd 5.16 2.746
Co-Pd 0.650 3.186 Pd-Co 0.572 3.102

Pd-AC N/A Pd-Pd 4.96 2.741

To gain more insight into the electronic interaction between the Co and Pd domains
and to elucidate the binding energies of the constituting elements, the XPS was employed.
Figure 3a,b show the comparative XPS spectra of experimental samples at Pd-3d and Co-2p
orbitals. As shown in Figure 3a, the doublet peaks at ~335.6 eV and ~340.9 eV, respectively,
corresponded to the Pd-3d5/2 and Pd-3d3/2 orbitals, where the lower binding energy was
observed for CoPd-1 and CoPd-10 samples at Pd-3d orbitals as compared with pristine
CoPd. Such characteristics suggest to some extent the electron relocation from Co-to-Pd
atoms and are consistent with the aforementioned Pd K-edge XAS analysis. The results
of XPS analysis at the Co-2p core level (Figure 3b) confirmed these scenarios, where the
CoPd-1 and CoPd-10 exhibited higher binding energy at Co-2p orbitals as compared with
pristine CoPd. These results integrally confirmed the electron localization from Co-to Pd
atoms in laser-irradiated samples.
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The CO-stripping analysis was utilized to explain the effect of laser irradiation on
the surface chemical identities of the CoPd nanocatalyst. Figure 4 shows the CO stripping
curves of CoPd, CoPd-1, and CoPd-10 samples compared with the control samples (Pd-
AC and Co-AC). Accordingly, the nearly flattened current responses for AC-supported
Co NPs (i.e., the Co-AC) suggested their inert behaviour towards CO molecules [23].
Meanwhile, the AC-supported Pd NPs (i.e., Pd-AC) exhibited a sharp CO-oxidation peak
(P) at ~0.955 V vs. NHE, which corresponded to the CO-oxidation from the closely packed
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(111) facet. However, the absence of CO-oxidation peaks at lower potentials suggested
that AC-supported Pd NPs had less selectivity between open and closed facets for Co-
oxidation. For pristine CoPd, a slight offset of the main CO oxidation peak P indicated the
reduced energy barrier for CO oxidation as compared with Pd-AC and could be attributed
to some extent to the electron localization from Co-to-Pd atoms due to the electronegativity
difference and lattice mismatch (consistently conformed with the XPS spectra of pristine
CoPd (Figure S3)). Moreover, the presence of an additional peak Q referred to the CO
oxidation at the low energy barrier reaction sites (e.g., heterogenous Co-Pd interface
or CoPd alloys due to the limited extent of heteroatomic intermixing). Meanwhile, the
suppression of the CO-oxidation peak could be attributed to the surface coverage of Pd sites
by a thin layer of amorphous CoOx, as consistently proved by the flattened CO-stripping
curve of Co-AC (i.e., inert behaviour of CoOx towards CO molecules). For CoPd-1 and
CoPd-10 samples, the absence of a peak (Q) suggested the removal of the surface oxide layer
after laser irradiation. Such scenarios were further confirmed by the increased intensity of
the CO-oxidation peak for CoPd-1, where very less atomic CoOx species were decorated on
the surface of Pd NPs due to limited atomic migration (less per-pulse energy of 1 mJ). On
the other hand, the CoPd-10 sample showed a CO-oxidation peak at the lowest potential
as compared with the CoPd and CoPd-1 nanocatalysts, which could be attributed to the
highest extent of electron relocation from Co-to-Pd atoms and is in good agreement with the
XAS and XPS results. Meanwhile, the suppressed peak intensity of CoPd-10 as compared
with CoPd-1 corresponded to the high density of atomic CoOx species on the surface of Pd
NPs due to a high per-pulse energy and, thus, a higher extent of atomic migration.
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with control samples (Co-AC and Pd-AC).

By cross-referencing the outcomes of the aforementioned physical and electrochemical
characterization, the atomic structures of pristine CoPd, CoPd-1, and CoPd-10 nanocatalysts
were proposed and are shown in Scheme 1. Accordingly, the pristine CoPd nanocatalyst
comprised the CoOx-supported Pd nanoparticles with a thick oxide layer on the surface
due to the high extent of galvanic replacement reaction between Co atoms and Pd2+ ions
(Co + Pd2+ → Co3+ + Pd0), followed by redeposition of residual Pd 2+ and Co3+ ions.
Furthermore, the CoPd nanocatalyst was subjected to pulsed laser irradiation with the
per-pulse energy of 1 mJ (i.e., CoPd-1). In this case, due to the relatively lower per-pulse
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energy of 1 mJ, the atomic migration was limited; thus, the CoOx species was deposited
in the defect sites of Pd NPs to a lesser extent, while an unconformable thin oxide layer
still existed on the surface of the CoPd-1 nanocatalyst. When the per-pulse energy was
increased to 10 mJ, the surface oxide layer was completely removed from the surface of the
CoPd-10 nanocatalyst, and a high density of atomic CoOx species were anchored in the
defect sites as well as on the surface of the Pd NPs.
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10 nanocatalysts.

The catalytic performances of experimental nanocatalysts were evaluated across the
temperature range from room temperature (RT) to 573 K at ambient pressure in a gas chro-
matography (GC) system equipped with a PDHID detector under a flowing reaction gas of
H2/CO2 (3/1). Figure 5a shows the CO production yield of experimental nanocatalysts in
the reaction gas of CO2:H2 = 1:3. Accordingly, the pristine CoPd nanocatalyst was chem-
ically inert toward CO2 until reaching a temperature of 423 K, while the CO production
yields for laser-irradiated CoPd-1 and CoPd-10 nanocatalysts were 6.70 µmol g−1

catalyst

and 7.01 µmol g−1
catalyst, respectively, at 423 K, suggesting the laser-irradiation-mediated

surface restructure successfully decreased the onset temperature of the CoPd nanocat-
alyst for CO production by 50 ◦C. The laser-irradiated CoPd-1 and CoPd-10 nanocata-
lysts exhibited higher CO production yields across the temperature range as compared
with the pristine CoPd, where the CoPd-10 nanocatalyst achieved the highest CO pro-
duction yield of ∼1667 µmol g−1

catalyst at 573 K. This value reflected improvements of
∼41% and ∼33% as compared with the pristine CoPd (∼976 µmol g−1

catalyst) and CoPd-1
(∼1114 µmol g−1

catalyst) nanocatalysts, respectively. In addition, the CoPd-10 nanocata-
lyst attained CO selectivity as high as ∼80%. Such a high catalytic performance at high
temperature range was obvious because H2 splitting on Pd reaction sites increased at
high temperatures. In this case, the hydrogenation rate of adsorbed CO2 (i.e., formation
of *COOH) increased, thus increasing the CO production yield. The results of physical
characterizations along with the electrochemical analysis suggested that such an improved
catalytic performance of CoPd-10 nanocatalyst originated from the synergistic coopera-
tion between the surface-anchored atomic CoOx species and adjacent Pd domains. Thus,
the Pd reaction sites were favourable for H2 splitting, while adjacent atomic-scale metal
oxide species with possible oxygen vacancies promoted CO2 adsorption, followed by re-
duction. [28] Therefore, it can be concluded that the Pd and adjacent atomic scale CoOx
reaction sites synergistically triggered the H2 dissociation and CO2 activation steps during
the CO2 reduction reaction (CO2RR). Furthermore, as shown in Figure 5b, the experimental
nanocatalysts showed a much lower CH4 production yield as compared with the CO
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production yield in the reaction gas, which confirmed the suppressed competitive CO2
methanation process, and, therefore, the high CO-selectivity was achieved. The plausible
reaction mechanism of the RWGS reaction on the surface of the CoPd-10 nanocatalyst is
shown in Figure 5c.
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4. Conclusions

Rational manipulation of surface atomic arrangements is a cardinal performance-
determining factor for heterogeneous catalysts. Herein, we used a sub-millisecond pulsed
laser annealing technique with different per-pulse energies to manipulate the surface config-
uration of cobalt oxide supported Pd (CoPd) nanoparticles for enhanced reverse water–gas
shift (RWGS) reaction. For the optimum case, when the per-pulse energy was 10 mJ, the
CoPd-10 nanocatalyst exhibited the highest CO production yield of ∼1667 µmol g−1

catalyst
at 573 K, with the CO selectivity as high as ∼80%. This CO production yield was enhanced
∼41% and ∼33% as compared with the pristine CoPd (∼976 µmol g−1

catalyst) and CoPd-1
(∼1114 µmol g−1

catalyst) nanocatalysts, respectively. The results of physical investigations,
electrochemical analysis, and gas chromatography (GC) results indicated that the enhanced
catalytic activity and selectivity of the CoPd-10 nanocatalyst originated from the potential
synergy between surface-anchored atomic CoOx species and neighbouring Pd reaction
sites, which, respectively, promoted the CO2 activation and H2 splitting. Briefly stated,
the obtained results are expected to mark a step ahead in designing high-performance
nanocatalysts for various redox reactions by using the pulsed laser technique.
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Model analysis fitting curves compared with experimental FT-EXAFS spectra at Pd K-edge of (a) Pd AC,
(b) CoPd, (c) CoPd-1, and (d) CoPd-10; Figure S3. X-ray photoelectron spectroscopy of experimental
NCs at Pd 3D orbital of CoPd NC with Pd/AC.
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