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Abstract: Having access to accurate electron densities in chemical systems, especially for dynamical
systems involving chemical reactions, ion transport, and other charge transfer processes, is crucial for
numerous applications in materials chemistry. Traditional methods for computationally predicting
electron density data for such systems include quantum mechanical (QM) techniques, such as density
functional theory. However, poor scaling of these QM methods restricts their use to relatively small
system sizes and short dynamic time scales. To overcome this limitation, we have developed a deep
neural network machine learning formalism, which we call deep charge density prediction (Deep-
CDP), for predicting charge densities by only using atomic positions for molecules and condensed
phase (periodic) systems. Our method uses the weighted smooth overlap of atomic positions to
fingerprint environments on a grid-point basis and map it to electron density data generated from QM
simulations. We trained models for bulk systems of copper, LiF, and silicon; for a molecular system,
water; and for two-dimensional charged and uncharged systems, hydroxyl-functionalized graphane,
with and without an added proton. We showed that DeepCDP achieves prediction R2 values greater
than 0.99 and mean squared error values on the order of 10−5 e2 Å−6 for most systems. DeepCDP
scales linearly with system size, is highly parallelizable, and is capable of accurately predicting the
excess charge in protonated hydroxyl-functionalized graphane. We demonstrate how DeepCDP can
be used to accurately track the location of charges (protons) by computing electron densities at a
few selected grid points in the materials, thus significantly reducing the computational cost. We also
show that our models can be transferable, allowing prediction of electron densities for systems on
which it has not been trained but that contain a subset of atomic species on which it has been trained.
Our approach can be used to develop models that span different chemical systems and train them for
the study of large-scale charge transport and chemical reactions.

Keywords: machine learning; electron density; quantum chemistry; charge transfer

1. Introduction

Electron density is a fundamental concept in quantum mechanics that describes the
distribution of electrons in a molecule. The electron density is calculated from the solution
of the Schrödinger equation, which provides a measure of the probability of finding an
electron at a specific location in space. Electron density is important for the calculation
of properties, such as total energy, the dipole moment, and atomic charges. The density
and density differences provide insight into charge transfer, chemical reactions, types
of chemical bonding, etc. Charge densities can be measured experimentally through X-
ray diffraction [1], allowing for a comparison of calculated and experimental quantum
mechanical information.
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There are several methods that can be used for calculating electron densities. These
include (Kohn–Sham) density functional theory (DFT) and the Hartree–Fock and post-
Hartree–Fock methods. The cost of these calculations typically scales within the range
O(N3)-O(N7) where N is the number of electrons in the system, rendering these methods
prohibitive for very many atoms. In addition, dynamical simulations based on molecular
dynamics (MD) can only be carried for relatively short simulation times (typically no more
than 102–103 ps). These computational limitations make it desirable to develop alternative
methods that can accurately predict molecular properties without resorting to quantum
mechanical calculations.

There has been a recent surge in the application of machine learning (ML)-based
algorithms applied to problems in computational chemistry and material science. A popular
framework is to train regression models that behave like atomic forcefields [2–11]. These
ML-based potentials make it possible to predict molecular energies using only atomic
coordinates as input. Training data are commonly generated from DFT or higher-level
quantum chemical calculations. Most of these methods employ featurization techniques
of generating atomic descriptors that are mapped to physical properties, which are the
total energy and atomic forces in most ML-based atomic potentials. These methods allow
for linear-scaling MD simulations of systems with near-quantum mechanical accuracy.
A similar approach can be used to predict more fundamental properties of a system,
such as the electron density. Several ML techniques have been developed to map atomic
coordinates onto electron densities [12–20]. Bogojeski et al. [12] were among the first
to use an atom-centered basis set representation to machine learn 3-D electron densities.
Similar atom-centered approaches were used by Fabrizio et al. [13] to study non-covalent
systems and by Grisafi [14] to study hydrocarbons. Rackers et al. [16] used Euclidean
neural networks with atom-centered Gaussian basis functions to train models for bulk
water. Gong et al. [18] used a grid-point-based approach with crystal graph convolution
neural networks to train electron densities. Similarly, Chandrasekaran et al. [15] used a
grid-point-based approach with Gaussian-based fingerprints to build models for electron
density and density of states (DOS) for periodic systems. To the best of our knowledge,
these approaches have only addressed charge neutral systems. It remains an open question
whether modeling condensed systems with positive or negative charges can be achieved
with comparable levels of accuracy and efficiency. Another important aspect of electron
density prediction methods that has not been addressed so far is the ability of a given
model to account for only specific electron density regions, avoiding a global mapping of
atomic positions to electron densities. In addition to making predictions faster and more
efficient, this feature can be used to streamline the analysis of electron density-dependent
physical properties, particularly during molecular dynamics simulations on large systems.

In this work, we developed a deep learning approach for charge density prediction,
which we call DeepCDP. We demonstrate the use of the smooth overlap of atomic positions
(SOAP) descriptors to map atomic coordinates to electron densities. SOAP descriptors con-
structed at atomic centers are commonly used to train ML potentials, such as the Gaussian
approximation potential (GAP) [2]. We instead generated such fingerprints at spatial grid
points of a system and trained a neural network (NN) to predict densities at those points.
The grid-point-based approach is known to use significantly fewer training images as
compared to the atom-centered basis representation approach [15]. We show the advantage
of using a weighting function in SOAP to generate more sensitive fingerprints. The local
nature of DeepCDP makes it possible to model large periodic systems. Our method can
also model charged systems due to the addition of a special constraint that maintain the
number of electrons in the system. This is of particular importance because it allows the
use of our DeepCDP models in conjunction with ML potentials that we have generated
for charged systems, such as hydroxyl-functionalized graphane (graphanol) [21,22]. This
allows us to have a framework that can compute dynamics, geometries, energetics, and
electron densities with near-DFT accuracy at a very small fraction of the computational
cost required for DFT calculations.
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2. Methods
2.1. Fingerprinting

Input data for training an NN was in the form of atomic descriptors that were projected
as a 1-D vector of arbitrary features. We used the SOAP formalism to construct our
descriptors, as implemented by De et al. [23]. SOAP encodes each region of the atomic
geometry by utilizing local expansions of empirical functions, such as Gaussian-smeared
atomic densities, spherical harmonics, and radial basis functions. As with most atomic
descriptors, the SOAP formalism represents the atomic neighborhood of a point in space
(r) inside a cutoff radius rcut. The partial power spectrum p encodes information on the
relative arrangement of pairs of species (Z1 and Z2), which is written as

pZ1Z2
nn′ l = π

√
8

2l + 1 ∑
m

cZ1
nlmcZ2

n′ lm, (1)

where cZ
nlm are coefficients that are computed as inner products of the above-mentioned

empirical functions. Indices for different radial basis functions are labeled by n and n′,
up to nmax. The angular degree of the spherical harmonics is indicated as l, which can
range to lmax. Parameters such as nmax and lmax are chosen by the user. High values of nmax
and lmax will result in larger p, which allows for more detailed fingerprinting. However,
larger p vectors will increase the time needed to train ML models. The magnetic quantum
number is labeled as m. We generate the vectors p using a grid-point basis, rather than
using an atom-centered basis. The coefficients are given by

cZ
nlm =

∫∫∫
R3

dVgn(r)Ym
l (θ, φ)ρZ(r), (2)

where gn(r) are radial basis functions. We chose Gaussian-type orbitals to define gn(r).
Ylm(θ, φ) are the spherical harmonics. We used a weighting function w(r), which should
ideally be included in the integrand. However, this complicates the calculation of the
integral, and we therefore included w(r) in the function that defines the Gaussian-smeared
atomic densities

ρZ(r) =
|Zi |

∑
i

w(|Ri|)e−1/2σ2|r−Ri |2 , (3)

where σ is the standard deviation of the Gaussian densities. We chose the polynomial form
of w(r), [24] which is defined as

w(r) =

 c
[

1 + 2
(

r
r0

)3
− 3
(

r
r0

)2
]m

, for r ≤ r0

0, for r > r0

. (4)

Note that r0 and rcut can be different. The optimal set of parameters that define w(r) (c,
m, and r0) can vary from one kind of system to another. Including the weighting function
in the SOAP formalism helps with radially distributing the scale of atomic densities, thus
giving more weight to atoms that are closer to any point r [25]. Without such a weighting
function, we observe instances where the p vectors for different points in space are nearly
indistinguishable, as will be discussed in the Results section. We used the DScribe Python
package [26] to construct our p vectors.

2.2. NN Training

In this work, we obtained grid-based electron densities ρDFT(r) from DFT. However,
we note that generation of training data does not require the use of DFT. One could use high-
accuracy wavefunction methods or even experimental data to train and evaluate DeepCDP.
The process of generating training data, constructing fingerprints using weighted SOAP
(p), training and testing a DeepCDP model is illustrated in Figure 1. We constructed
our NNs via the Pytorch [27] package. We also used the Multi-layer Perceptron (MLP)
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regressor implementation in scikit-learn [28] to build a few simple models for testing
purposes. The input layer of the NN takes into account the p vector for a given point
in space r. We built a cylindrical NN that contained 3 hidden layers having 300 neurons
each. This architecture was used throughout for all examples. We used rectified linear
units (ReLu) [29] non-linear activation between layers of each NN. We also used batch
normalization [30] and induced dropout of some neurons to increase robustness of the
models. Each p for a given r was mapped to its corresponding scalar “true” electron density
ρDFT(r). The loss function (L) was estimated using either the mean absolute errors (MAEs)
or the mean squared errors (MSEs), based on the system. We started each NN optimization
with MSE because it converged quickly toward the answer, but then we switched to MAE
to improve convergence in the vicinity of the solutions. MSE is known to penalize large
errors and outliers and so we found prediction accuracies to quickly improve and then
plateau. Switching to MAE then allowed us to fine-tune the predictions as it linearly
weights all errors and outliers at that point were few. We used the stochastic optimization
method (Adam) [31] to minimize the loss function. The learning rate for the loss function
was dynamically reduced during training when the value of loss plateaued. We used a
weight decay of 1× 10−4 for regularization. We found that just using MAE or MSE as the
loss function did not correctly predict the total number of valence electrons. We therefore
modified the loss function L by adding a constraint for the total number of valence electrons
in the system:

L′(ρDFT , ρCDP) = L(ρDFT , ρCDP) + α
∣∣∑ ρDFT(ri)−∑ ρCDP(ri)

∣∣dV (5)

where L′ is the modified loss function, L is either MAE or MSE, a prefactor α was set to
1.0 for MAE and 0.1 for MSE, ρDFT are the DFT electron densities, ρCDP are the densities
predicted by DeepCDP, and dV is the differential volume.

Figure 1. Overall schematic of the process of building a DeepCDP model. The first step involves
generating DFT training data that are composed of atomic coordinates for a system and the corre-
sponding electron density ρDFT(r) at each grid point r. Other quantum mechanics methods can also
be used to generate training data and are not limited to DFT. The next step is to generate grid-based
fingerprints with weighted SOAP by just using the atomic coordinates as input. Gaussian-smeared
atomic densities ρZ(r) and spherical harmonics Ym

l are used to generate expansion coefficients cZ
nlm.

These coefficients are used to compute the partial power spectrum p for each point r. These vectors
are then used to train an NN by minimizing a loss function L′. The loss function L′ is defined as the
error in the NN’s prediction (ρCDP(r)) compared to ρDFT(r). The converged NN is tested on unseen
configurations and then used to generate electron density data (ρCDP(r)) for new systems.



Nanomaterials 2023, 13, 1853 5 of 18

2.3. Data Generation with DFT

We generated our training data by randomly sampling configurations from den-
sity functional theory molecular dynamics (DFT-MD) simulations. We performed sim-
ulations for five different systems: a bulk metal (Cu), a semiconductor (crystalline Si),
a wide band-gap insulator (LiF), a molecular fluid (water), and a 2-D system (graphanol,
or hydroxyl-functionalized graphane [21,22,32,33]). These calculations were performed
using the Quickstep [34] module in the CP2K package [35]. DFT simulations to generate
electron density data for water were performed using the BLYP [36] generalized gradient
approximation (GGA) exchange-correlation functional with D3 dispersion corrections [37].
The BLYP functional is traditionally used to model liquid water and is also shown to give
good results when compared to experiments [38]. We used the Perdew–Burke–Ernzerhof
(PBE) [39] GGA functional for all other systems. The PBE functional is commonly used in
solid-state systems. The hybrid Gaussian and plane-wave method [40] was used. DZVP
basis sets [41] with GTH pseudopotentials [42] were employed for water. All other systems
used the DZVP-MOLOPT-SR basis sets with the GTH pseudopotentials. The focus of our
work is to show that DeepCDP predicts electron densities with the same accuracy as DFT
and so we are not primarily concerned with the accuracy of the DFT calculations them-
selves. The choice of functionals in our work reflects common choices from the literature for
specific systems. We used a Monkhorst–Pack k-point grid size of 2× 2× 2 for the Brillouin
zone sampling in bulk Cu and Si. We used only the Γ-point for all other systems.

DFT-MD simulations were performed within the NVT (canonical) ensemble using a
GLE thermostat [43]. We used MD simulations of 25 ps to generate data. Data generation
for Cu, Si, LiF, and graphanol was performed at T = 1000 K. Data generation for water
was performed at T = 298 K. The size of the training data was dependent on the total
number of grid points that were selected. Smaller systems such as bulk Cu (containing
2 atoms in its primitive cell) had just over 5000 grid points per training image. We used
just 10 DFT images to train models for Cu, which resulted in a total of over 50,000 training
data points. Larger systems such as graphanol with 61 atoms in the cell had 324,000 grid
points per image. We used just 6 images in our training data set, which led to a total of over
1.9 million data points. All our models were trained on an Apple M1 GPU. Total training
time depended on the system size that was used and the p vector. Simpler systems such as
bulk Cu with fewer p vector features per data point (180) took less than 8 s per training
epoch. Larger systems such as graphanol with larger p vector features per data point (390)
took about 110 s per training epoch. For comparison, we tested these systems on an 8-core
CPU and found training to take 15 s per epoch for the bulk Cu example and 170 s per epoch
for the graphanol example.

3. Results and Discussion
3.1. Bulk Cu

We first tested the importance of the polynomial weighting function, w(r), Equation (4),
that is added to the definition of SOAP. This testing was performed by comparing two NNs
for Cu that were trained with and without the weighting function. A periodic face-centered
cubic crystal structure of Cu (Figure 2a) was used to generate our models.
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Figure 2. Comparing the importance of weighting function in SOAP. (a) Snapshot of the bulk
Cu system with a 3-D plot of the DFT electron density. (b) Contour plot of DFT electron density
integrated along the z axis. (c) DeepCDP-predicted electron densities and errors when trained using
non-weighted SOAP (top row) and weighted SOAP (bottom). Color bar units are in e Å−3.

We performed preliminary tests to check for the sensitivity of SOAP, generated with
and without weighting, by sampling points along a line connecting two Cu atoms. We
observed that non-weighted SOAP appeared less sensitive to where these vectors were
generated compared to weighted SOAP. Features that are less sensitive to the location of
the point relative to the atom can make it harder for the NN to converge. We estimated the
sensitivity of these SOAP vectors relative to each other by computing the quantity

S =
mini 6=j ‖pi − pj‖

maxi ‖pi‖
, (6)

where pi and pj are two different SOAP vectors in the given set of SOAP vectors, and ‖ · ‖
denotes the L2 norm (i.e., the Euclidean distance). The S value is the ratio between the
smallest separation between any two vectors in our set of pj vectors (numerator) and the
largest magnitude among all the vectors in that set (denominator). This ratio is a measure of
how much the vectors in our set are influenced by changes in their positions relative to their
sizes. So, a high S value indicates that even a small change in the vector positions can have a
significant impact on the overall vector magnitude. Using non-weighted SOAP fingerprints
resulted in an S score of 7.3× 10−4, while using weighted SOAP fingerprints yielded a
score of 0.13. A score close to zero indicates that fingerprints generated at different points in
space are identical to each other. These results show that a model trained on non-weighted
SOAP fingerprints will converge less easily than a model trained on weighted SOAP. We
then conducted a practical test by comparing two NN models that were trained with and
without the weighting function. The architecture, data set, and training protocol of the two
NN models were exactly the same, as discussed in the Methods section. We used a data
set containing electron density data from 10 DFT-MD images of bulk Cu (with 2 atoms per
cell, as shown in Figure 2a). The electron density prediction accuracy of these models was
assessed using test configurations that were not part of the training set. The contour plot of
ρDFT integrated along the z axis for a given snapshot is shown in Figure 2b. The predictions
from the model trained with weighted SOAP and the corresponding absolute error relative
to DFT are shown in the top row of Figure 2c. The results from the weighted SOAP model
are shown in the bottom row of Figure 2c. It is clear that using the weighting function
has an advantage for mapping out the 3-D electron density function. We compared the
R2 and MSE values for the predictions of these two models. These results are reported in
Table 1. The weighted SOAP model gives an R2 value of 0.991 for the predicted densities.
We also see more than an order of magnitude reduction in the MSE with the weighted



Nanomaterials 2023, 13, 1853 7 of 18

SOAP model. These results demonstrate that weighting of the SOAP function is critical to
achieving high accuracy.

Table 1. Comparing R2 and MSE values for electron density prediction using two models that were
trained without and with weighting applied to SOAP.

Model R2 MSE (e2 Å−6)

Non-weighted SOAP 0.619 4.8× 10−2

Weighted SOAP 0.991 9.8× 10−4

3.2. Bulk Si and LiF

We tested our DeepCDP formalism on two other periodic bulk systems, Si and LiF. We
chose these systems because of qualitative differences in their electron density distribution
compared to Cu. Bulk Si is a semiconductor with covalent Si-Si bonds, which results in
electron density accumulation along the bonds. LiF is a wide-gap insulator with ionic
bonds, which results in electrons being more localized in the vicinity of the nuclei. We
generated training data for both these systems and trained models for LiF and Si. We
used the same NN architecture as the one used for Cu. The electron densities from DFT
integrated along the z axis and the corresponding DeepCDP predictions and absolute errors
for the two systems are plotted in Figure 3. We obtained an R2 value of 0.996 and 0.998
on the test data for Si and LiF, respectively. Their corresponding MSEs are 3.3× 10−6 and
2.2× 10−5 e2 Å−6, respectively. These values of the R2 and MSE indicate that generating
descriptors using weighted SOAP can accurately describe systems having very different
electron density profiles.

Figure 3. Comparing electron density predictions for Si and LiF. (a) (Left to right): Snapshot of the
bulk Si system (light brown atoms) with a 3-D plot of the DFT electron density (green). Contour plot
of the DFT electron density integrated along the z axis. Contour plot of the DeepCDP electron density
integrated along the z axis. Contour plot of prediction error of DeepCDP integrated along the z axis.
(b) (Left to right): Snapshot of bulk LiF system (Li atoms in green, F atoms in purple) with a 3-D
plot of the DFT electron density. Contour plot of DFT electron density integrated along the z axis.
Contour plot of the DeepCDP electron density integrated along the z axis. Contour plot of prediction
error of DeepCDP integrated along the z axis. Color bar units are e Å−3.
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3.3. Scaling with System Size

We used the model built for Cu to test it on larger system sizes. The test data containing
10 images of a 2× 2× 2 Cu supercell with 16 atoms was generated with DFT. The integrated
density plots are shown in Figure 4a. We observed an R2 value of 0.997 and an MSE of
4.4× 10−4 e2 Å−6. These results demonstrate that NNs trained on small system sizes can
be used to predict densities for much larger system sizes, which have atomic configurations
not observed in the small systems, without a loss of accuracy. This is made possible by the
local nature of the SOAP fingerprints.

In addition to accuracy, we tested the computational scaling with increasing system
size. We observed linear scaling with the number of atoms in the system. We used the
Cu model to perform these tests. The scaling relation is shown in Figure 4b. We collected
the compute times for systems containing from 2 to 54 atoms. The number of grid points
increases linearly with the number of atoms in the system, which explains the linear scaling
for the compute time.

Figure 4. (a) (Left to right): Contour plot of DFT electron density integrated along the z axis for a
2× 2× 2 supercell of bulk Cu. Contour plot of DeepCDP electron density predictions for the same
system. Contour plot of prediction error between DFT and DeepCDP integrated along the z axis.
Color bar units are e Å−3. (b) (Left): DeepCDP electron density compute times as a function of
the number of Cu atoms, N (circles). Linear fit (dashed line) of the data points. (Right): Images of
DeepCDP electron density predictions for N = 2 (bottom) and N = 54 (top).
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3.4. Water

The systems considered so far were simple bulk periodic structures that are highly
ordered. Predicting electron densities for dynamically amorphous systems, such as liquids,
can be more challenging due to the absence of symmetry. We generated structures and
electron densities from DFT-MD simulations of a very small system consisting of 5 water
molecules in a periodic simulation cell at T = 298 K and a fluid density of about 300 kg/m3.
Note that this density is within the two-phase region of bulk liquid water, but the system is
a homogeneous fluid because the simulation time is too short to allow for phase segregation.
We used 10 snapshots from this simulation to build a DeepCDP model for fluid water. We
trained our NN by switching between the MAE and MSE loss functions. We found that the
model was able to fine-tune its predictions because of the use of these two loss functions
together. Our tests are shown in Figure 5a. We obtained an R2 value of 0.996 and an MSE
value of 2× 10−5 e2 Å−6 for the test data. A comparison of the DFT and DeepCDP density
isosurfaces is shown in Figure 5b. To demonstrate the local nature of the densities predicted
from DeepCDP, we computed electron densities for 2 regions of the water molecules taken
from a snapshot of a simulation containing 139 water molecules. This large structure was
obtained by selecting 139 molecules of water from a classical simulation containing 266,667
water molecules [44]. Each region contains 16 water molecules. The electron densities were
generated from two independent DeepCDP calculations. Figure 5c shows the predictions
of the two connected regions, with the blue mesh giving the density isosurface from one
calculation and the green mesh from the other calculation. This comparison shows that our
approach can be used to estimate electron densities for specific regions of a large system in
parallel and independently.

Figure 5. (a) (Left to right): Contour plot of DFT electron density integrated along the z axis
for a system containing five water molecules. Contour plot of DeepCDP electron density prediction
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for the same system integrated along the z axis. Contour plot of prediction error between DFT and
DeepCDP integrated along the z axis. Color bar units are in e Å−3. (b) (Top) 3-D electron density
isosurface plots from DFT (grey) and (bottom) DeepCDP (red). An isosurface value of 0.08 au was
used. Red indicates oxygen atoms and white indicates hydrogen atoms. (c) DeepCDP electron density
prediction isosurfaces of small sections (blue and green) of a large cell containing 139 water molecules.
An isosurface value of 0.08 au was used. Each section contains 16 water molecules.

3.5. Graphanol

It has been shown that graphanol is a promising material for use in proton exchange
membrane fuel cells [21,22,32,33]. As such, graphanol may either be neutral or positively
charged due to the addition of protons. We therefore used graphanol to assess the ability
of DeepCDP to predict electron densities for charged systems and to track the location
of the excess charge. We generated DFT data for 2 graphanol systems: u24C, which is
uncharged graphanol with 24 carbon atoms, and c24C, which is the same as u24C but has
a net positive charge due to the addition of 1 proton. We trained two DeepCDP models,
one for each of these systems. Figure 6a contains the top and side views of c24C, where
the added proton is depicted as a blue atom. The results from our predictions are reported
in Table 2. Both of these models were capable of achieving high R2 values and low MSE
values on the test data. Figure 6b,c show the z-axis integrated electron densities of the c24C
system predicted using the two models. We used the total number of predicted valence
electrons as a metric to test for the model’s ability to account for charges. We found that the
model trained using only u24C data overestimated the total number of valence electrons
in c24C. This is because the model treats an added proton as a hydrogen atom. However,
the model trained using c24C data did not overestimate the number of valence electrons in
c24C and correctly predicted that the total number of valence electrons in u24C and c24C
are the same.

The c24C model is capable of correctly identifying hydrogen bonds for the test c24C
configuration, as shown in Figure 7. The contour plots show electron densities in the x-y
plane that clearly indicate the location of hydroxyl groups and the proton. We used a
narrow data range of 0 to 0.1 e Å−3 to highlight the errors and differences in the predictions
from DFT and DeepCDP. We observe small prediction errors in DeepCDP around the voids
of the material and at the centers of most oxygen atoms. Note that the color bar has a
narrower electron density range compared to previous figures.

Table 2. Comparing R2, MSE values of electron density prediction, and total number of predicted
electrons using two models that were trained with u24C and c24C data, respectively. The units of
MSE are e2 Å−6.

Model R2 (MSE) on u24C
Data

R2 (MSE) on c24C
Data

Total DFT Valence
Electrons (DeepCDP
Valence Electrons) in

u24C

Total DFT Valence
Electrons (DeepCDP
Valence Electrons) in

c24C

u24C 0.993 (6.0× 10−5) 0.989 (6.0× 10−5) 192.0 (192.1) 192.0 (193.2)
c24C 0.992 (5.0× 10−5) 0.994 (6.0× 10−5) 192.0 (191.8) 192.0 (192.2)
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Figure 6. (a) Top (left) and side (right) view of charged graphanol (c24C). Grey indicates carbon
atoms, red indicates oxygen atoms, and white indicates hydrogen atoms. Proton is highlighted as blue
hydrogen atom. (b) Predictions from model trained with u24C data. (Left to right): Contour plot of
DFT electron density integrated along the z axis of a c24C snapshot. Contour plot of DeepCDP electron
density prediction of same configuration integrated along the z axis. Contour plot of prediction error
between DFT and DeepCDP (u24C) integrated along the z axis. (c) Predictions from model trained
with c24C data. (Left to right): Contour plot of DFT electron density integrated along the z axis
of a c24C snapshot. Contour plot of DeepCDP electron density prediction of same configuration
integrated along the z axis. Contour plot of prediction error between DFT and DeepCDP (c24C)
integrated along the z axis. Color bar units are in e Å−3.
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Figure 7. (a) Graphanol c24C structure. The green dotted circle indicates the location of the proton.
(b) Contour plots of electron densities on the x-y plane showing hydrogen bonding in (a) from DFT
(left) and the c24C DeepCDP model (middle). Errors in prediction between DFT and DeepCDP (right).
Note that we used a narrow data range (0–0.1 e Å−3) to highlight differences. Color bar units are in
e Å−3.

3.5.1. Charge Tracking

The ability to accurately predict electron densities for charged systems from DeepCDP
can be utilized to locate the position of a positively or negatively charged moiety, such
as a proton or a hydroxyl group. This information can be used to track proton dynam-
ics. Popular methods such as the Density-Derived Electrostatic and Chemical (DDEC)
approach [45,46] make use of the charge density data for the entire system to calculate net
atomic charges on each atom in the system. These can be used to model charges in classical
simulations. Our approach is, in principle, capable of tracking charge migration without
explicitly mapping electron densities onto classical charges for all atoms.

Here, we assess whether our model can be used to identify if one of the hydrogen
atoms in graphanol carries a positive charge, rather than predicting electron density data
for the entire system. The local nature of the model allows us to predict the electron density
values only at points that are relevant to the estimation of the hydrogen atom charges,
which substantially reduces the computational cost. This is particularly important for
dynamical simulations, which involve electron density predictions for large numbers of
atomic configurations. Given the case of charged graphanol (c24C), we show as proof of
concept that we can locate the position of the proton using only the atomic coordinates as
input to a DeepCDP model. We make the assumption that the position of the excess positive
charge will always correspond to the coordinates of one of the hydrogen atoms. For this
purpose, we collected the coordinates rHi for all the hydrogen atoms. We consider subsets of
points, and we consider sets of points, s(rHi ), where each set contains the position of a given
hydrogen atom rHi and six points that are the closest to rHi . These 6 closest points were
sampled based on differential distances (dx = 0.32 Å, dy = 0.28 Å, and dz = 0.31 Å), which
were obtained from the DFT cube files for c24C. Other values for differential distances
can also be used and are not limited to the ones we mentioned above. If we have a
hydrogen atom a at rHa = (xa, ya, za), then the seven points in set s(rHa) are (xa + dx, ya, za),
(xa − dx, ya, za), (xa, ya + dy, za), (xa, ya − dy, za), (xa, ya, za + dz), and (xa, ya, za − dz). We
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then define a differential charge κ(rHi ) by summing the numerical values of the electron
density at these sampled points,

κ(rHi ) = ∑
i∈s

ρCDP(i), (7)

where ρCDP(i) is the electron density predicted at point i by DeepCDP. We identify the
location of the proton rH+ with the coordinates of the hydrogen atom having the minimum
κ(rHj). An illustration of this procedure for a single snapshot of graphanol c24C is shown
in Figure 8.

Figure 8. Illustration of using DeepCDP to locate the position of a proton (rH+ ) in charged graphanol
(c24C). DeepCDP is used to calculate the electron density for points around each hydrogen atom
attached to an oxygen atom. Seven points are sampled for each hydrogen atom, including the center
of the atom, to compute the differential charge κi for a given hydrogen atom i, computed from
Equation (7). This is depicted as purple circles around each hydrogen atom. The proton (light green
circle) is identified as the atom having the smallest value of κ.

This procedure can be repeated for series of atomic coordinates obtained from dynam-
ical simulations. The system that we considered is c24C graphanol, as shown in Figure 6a,
which contains a single added proton to one side of the material. We generated a series of
21,400 configurations from a deep learning atomistic potential classical MD simulation [21].
For each of these configurations, we obtained rH+ based on κ(rHi ). We observed that
our rH+ before the hopping corresponds exactly to the H atom that undergoes hopping.
An example is provided in Figure 9a–c. Our method first indicates hydrogen atom 1 as
the proton, which is accurate as it is bonded to a charged oxygen atom. We then saw
that hydrogen 1 hops to the oxygen atom to which it was previously hydrogen bonded.
For a brief period, we found that hydrogen atom 2 becomes the proton (Figure 9b), which
then rapidly reverts to hydrogen 1 (Figure 9c) as a result of differences in the O-H bond
lengths. We also saw that hydrogen 1 takes part in another proton hopping event after a
period of 2.5 fs. However, there were cases where our method sometimes labeled the wrong
hydrogen atom as the proton. This occurred immediately after a proton hopping event for
a short duration of 0.25–1 fs (our MD simulation employed a time step of 0.25 fs). Other
instances of such labeling were when minor charge fluctuations induced a temporary hop
between two uncharged hydroxyl groups. For the purpose of proton tracking, these issues
can potentially be filtered out by the imposition of constrains. However, the formulation of
these constraints is beyond the scope of our current work.
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Figure 9. Sample trajectory of using DeepCDP to locate protons during transfer in c24C. (a–c) are
sampled trajectories from a deep learning potential MD simulation. The proton is depicted as a blue
atom. (a) DeepCDP predicts hydrogen atom 1 as the proton. (b) Hydrogen atom 2 is labeled as the
proton after a proton hop. (c) Hydrogen atom 1 is labeled as the proton again as a result of changes in
bond lengths.

3.5.2. Model Transferability

It is important to assess the transferability of DeepCDP, i.e., how well it predicts
electron densities for systems on which it was not trained. For this purpose, we used
our DeepCDP model for charged graphanol to predict the electron densities and the total
number of electrons for a snapshot of five water molecules. Note that this model was
not trained on any water data, but because graphanol contains O-H and H-O-H moieties,
there is a reasonable expectation that the charge density for water might be predicted with
reasonable accuracy by the DeepCDP trained on graphanol. Therefore, we used the SOAP
function for c24C graphanol to predict the electron density of water. The dimensions of p
from the SOAP function were unaltered for the water test case. We used test configurations
from our water example as shown in Figure 5a,b. Our model for graphanol predicted
electron densities of water with an R2 value of 0.993 and an MSE value of 5× 10−5 e2 Å−6.
Images containing a 3-D rendering of electron density isosurfaces from DFT and DeepCDP,
error isosurfaces, and z-axis integrated contour plots for a test case prediction are shown in
Figure 10. These results are promising as they showcase the model’s transferability to new
systems. However, we found that our model yields an average of 40.8 valence electrons for
the water system as compared to the DFT value of 40.2 electrons. The difference between
DeepCDP and DFT may be attributed to two factors. First, to compute a reliable total
number of valence electrons by integrating electron density maps requires a sufficient
number of 3-D grid points. The fact that the integrated number of electrons in DFT is not
exactly 40 indicates that the real-space grid used to represent the electron density, which is
determined by the plane-wave kinetic energy cutoff used in the calculations, is too coarse
to yield reliable electron density distributions. Second, the training of the model may need
to include configurations of the target system to attain sufficient accuracy. Despite the error
in the total number of valence electrons predicted, the main outcome of this exercise is to
show that DeepCDP has some degree of transferability. In principle, it may be possible to
develop a completely transferable DeepCDP by constructing a universal SOAP function
that can account for any element of the periodic table, training the NN with data for a wide
variety of chemical systems.
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Figure 10. Testing model transferability by computing the density of water from a DeepCDP trained
on c24C graphanol data. (a) (Left to right): Three-dimensional electron density isosurface plots from
DFT (grey), DeepCDP (red), and the error (blue). An isosurface value of 0.08 au was used. (b) (Left to
right): Contour plot of DFT electron density corresponding to configuration in (a) integrated along
the z axis. Contour plot of DeepCDP electron density prediction for the same system integrated along
the z axis. Contour plot of prediction error between DFT and DeepCDP integrated along the z axis.
Color bar units are in e Å−3.

4. Conclusions

We have presented a machine learning approach that allows one to predict electron
densities with near-quantum mechanical accuracy for various systems. We have validated
our method by successfully predicting charge densities for a bulk metal, Cu; a covalently
bound semiconductor, bulk Si; an ionic insulator, LiF; an inorganic molecular fluid, H2O;
and an organic-like 2-D material, graphanol. We used a grid-based approach with weighted
SOAP fingerprints to train and predict electron density data. We showed that our models
trained on DFT data can accurately predict electron densities for a wide variety of materials,
including metals, semiconductors, insulators, charged graphanol, and water. The inclusion
of a constraint that maintains the total number of predicted valence electrons allowed our
models to accurately account for the presence of excess charge. We utilized the power of
SOAP and the ability to predict charges to showcase two interesting applications: charge
tracking and transferability. The local nature of these models allows one to make density
predictions for any sub-volume or set of grid points within the system. Our method can
be used in conjunction with deep learning atomistic potentials to predict the dynamics,
energies, forces, electron densities, and charge transport with near-DFT accuracy, orders of
magnitude faster than using DFT. We showed that DeepCDP that is trained on one material
can be used to predict the charge density of a different material having a subset of atoms
belonging to the first material. We demonstrated transferability by using the DeepCDP
model for graphanol to predict the charge density for water molecules with high accuracy.
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This indicates the possibility that one may be able to develop a universal DeepCDP by
constructing weighted SOAP functions for a very large number of atom types.
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