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Abstract: GaSxSe1−x solid solutions are layered semiconductors with a band gap between 2.0 and
2.6 eV. Their single crystals are formed by planar packings of S/Se-Ga-Ga-S/Se type, with weak
polarization bonds between them, which allows obtaining, by splitting, plan-parallel lamellae with
atomically smooth surfaces. By heat treatment in a normal or water vapor-enriched atmosphere,
their plates are covered with a layer consisting of β–Ga2O3 nanowires/nanoribbons. In this work,
the elemental and chemical composition, surface morphology, as well as optical, photoluminescent,
and photoelectric properties of β–Ga2O3 layer formed on GaSxSe1−x (0 ≤ x ≤ 1) solid solutions
(as substrate) are studied. The correlation is made between the composition (x) of the primary
material, technological preparation conditions of the oxide-semiconducting layer, and the optical,
photoelectric, and photoluminescent properties of β–Ga2O3 (nanosized layers)/GaSxSe1−x structures.
From the analysis of the fundamental absorption edge, photoluminescence, and photoconductivity,
the character of the optical transitions and the optical band gap in the range of 4.5–4.8 eV were
determined, as well as the mechanisms behind blue-green photoluminescence and photoconduc-
tivity in the fundamental absorption band region. The photoluminescence bands in the blue-green
region are characteristic of β–Ga2O3 nanowires/nanolamellae structures. The photoconductivity of
β–Ga2O3 structures on GaSxSe1−x solid solution substrate is determined by their strong fundamental
absorption. As synthesized structures hold promise for potential applications in UV receivers, UV-C
sources, gas sensors, as well as photocatalytic decomposition of water and organic pollutants.

Keywords: chalcogenides; solid solutions; Gallium(III) trioxide; thin films; single crystals; optical
properties; photoluminescence; photosensitivity

1. Introduction

Gallium oxide (Ga2O3) is an ultra-wide band gap emerging semiconductor material,
showing a well-marked polymorphism [1,2]. Currently, there are six confirmed Ga2O3
polymorphs with different crystal structures and crystallization temperatures: α–Ga2O3
with rhomboidal lattice, β–Ga2O3—monoclinic, γ–Ga2O3—cubic defective spinel-type
structure, δ–Ga2O3—cubic, ε–Ga2O3—orthorhombic, and k–Ga2O3 polytype, also with
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orthorhombic lattice [3–6]. In particular, k–polytype was identified in β–Ga2O3 layers
subjected to energetic ion bombardment [6–8].

At temperatures greater than 870 ◦C, the α, γ, δ, and ε phases change to monoclinic
β–Ga2O3, with stable structure and physical properties through the whole temperature
range up to the melting point [7–9].

The β–Ga2O3 is an n-type semiconductor with an ultra-wide energy band gap (4.9 eV),
displaying considerable application prospects in ultraviolet (UV) optoelectronics [10–13]
and high-performance electronic devices [14–16]. Recent studies have demonstrated that
micro- and nanostructured β–Ga2O3 and related nanocomposites are promising materials
for gas sensing applications and photocatalytic degradation of hazardous organic pollu-
tants. In [17], the β–Ga2O3/Al2O3 nanocomposite was synthesized by a hydrothermal
method with further calcination of Al(NO3)3·9H2O and Ga(NO3)3·xH2O compositions.
The tested response of this composite material on exposure to NOx (about 100 ppm concen-
tration) was ~58%. Nanocomposites with nanostructured oxide semiconductors β–Ga2O3,
SnO, or β–Ga2O3/reduced graphene oxide (rGO) exhibit high sensitivity to molecular
gases (O2, H2), along with flammable and toxic chemical compounds, such as H2S, CO2,
NH3, etc. [18,19].

The critical breakdown electric field of semiconductor material is an important phys-
ical parameter, determining the technical and application characteristics of electronic
devices (diodes, transistors, switches, etc.). For gallium oxide, a critical field with the
value f 8 MV/cm was reported in [20]. By doping β–Ga2O3 with Zn, it can be increased
up to 13.2 MV/cm. High values of the breakdown field determine the technical power
parameters of field effect transistors [21,22].

The application area of wide-gap semiconductors is enlarged with the transition
from bulk single crystals to micro- and nanocrystals. Several manufacturing technologies
of β–Ga2O3 nanoformations (nanowires, nanoribbons, nanoparticles) are known. An
extensive review of these methods is presented in the recent paper [23]. Nanostructured
β–Ga2O3 was obtained in [24,25] by heat treatment of GaN powder and plates in nitrogen
(N) flow at temperatures in the range of 850–1100 ◦C. In [24], obtaining, through the same
technological procedures, micrometer-sized GaN grains coated with β–Ga2O3 micro- and
nanoformations was reported.

Group-III monochalcogenides, MX (M = Ga, In, X = S, Se, Te), belonging to the class
of lamellar III-VI semiconductors, are quasi-two-dimensional (2D) materials that exhibit
unusual physical properties (high mobility of electric charge carriers, wide photoresponse
bands, marked anisotropy of electrical, and optical properties, etc.). The GaSe and GaS,
together with their solid solutions (GaSxSe1−x), are typical and outstanding representatives
of this class of materials.

The GaSe plates, kept for a long time in a normal atmosphere, are covered with a
layer composed of gallium oxides [26]. The oxidation process of GaS and GaSe lamel-
lae at high temperatures was studied in several works [27–30]. By conducting a heat
treatment of GaS plates in argon flow at temperatures in the range of 700–900 ◦C, mi-
crosheets of β–Ga2O3 are formed on their surface [29]. Additionally, β–Ga2O3 nanowires
and nanoribbons were obtained by high-temperature (≥900 ◦C) heat treatment of GaSe
plates in argon/airflow [30,31].

Under certain technological conditions, β–Ga2O3/Ga2Se3 and β–Ga2O3/Ga2S3 nanocom-
posites can be obtained, which are prospective materials for expanding the application area
of Beta–Gallium Oxide.

Depending on the arrangement of elementary Se(S)-Ga-Ga-Se(S) planar packings
with respect to each other, four polytypes (α, β, γ, and ε) of GaSe single crystals were
distinguished. The GaSe and GaS single crystals obtained by the Bridgman technique
correspond to the ε and β phases, respectively. The layered compounds GaS and GaSe are
known to form a continuous series of GaSxSe1−x (0 ≤ x ≤ 1) solid solutions. In Refs. [32,33],
appealing to X-ray diffraction (XRD) analysis and Raman spectroscopy, it was demonstrated
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that ε and β phases predominate in 0 ≤ x ≤ 0.01 and 0.5 ≤ x ≤ 1 composition, respectively,
while the γ phase is characteristic for single crystals with the composition 0.05 ≤ x ≤ 0.40.

In this work, the chemical and elemental composition, surface morphology, light
absorption in the region of the fundamental absorption edge, photoluminescence (PL), and
photoconductivity of the layer formed by the heat treatment of single crystalline GaSxSe1−x
solid solutions in a water vapor-rich atmosphere (AVH2O) at a temperature of 900 ◦C
are studied.

2. Materials and Methods

The samples under investigation are micro- and nanocomposite structures based on
β–Ga2O3 on single crystal GaSxSe1−x solid solutions (0 ≤ x ≤ 1) as substrates. Single
crystals with x = 0, 0.17, 0.50, 0.80, 0.95, and 1 compositions were prepared by a modified
Bridgmann-Stockbarger technique. The synthesis of compounds from chemical elements
Ga (5N), Se (5N), and spectrally pure S, taken in stoichiometric amounts, and the prepara-
tion of single crystals were performed in a three-zone (zone I, zone II, and zone III) furnace.
Initially, the furnace axis is tilted at ~30 degrees towards the horizontal, and the foil with
Ga, S, and Se is placed in sectors I and II. The temperature in sector II was increased slowly
at a rate of 100 ◦C/h, up to 1100 ◦C, while in sector I, it is maintained at the melting point
of Se (S). As the amount of condensate at the outer, cold end of the ampoule decreases, the
temperature in sector I increases at a rate of ~50 ◦C/h up to ~1200 ◦C. At this temperature,
for 20 g of substance in the ampoule, the synthesis took about 6 h. Throughout the synthesis,
the ampoule was subjected to mechanical vibrations with a frequency of ~50 Hz.

Thereafter, the melting furnace was moved vertically, its sector III set to ~700 ◦C, and
the melt ampoule proceeded through the temperature gradient between sectors II and III,
with a speed of ~1 mm/h. After the melt solidified, the temperature in the furnace was
decreased at a rate of ~100 ◦C/h down to ambient temperature.

From as-synthesized bulk single crystal ingots, through mechanical splitting perpen-
dicularly to the C6 axis, plane-parallel plates with thicknesses between 20 and 500 µm have
been obtained. They were heat treated in an AVH2O, using a tube furnace with a MoSi2
heating element at temperatures from 850 to 920 ◦C for 1–6 h.

The structure, composition, and surface morphology of the samples under study
were investigated by XRD, Energy Dispersive X-ray Spectroscopy (EDXS), and Raman
spectroscopy, as well as Scanning Electron Microscopy (SEM).

The XRD patterns (CuKα radiation, λ = 1.5406 Å) of the samples were recorded in
the 2θ angular range of 20–90◦ with an angular resolution of 0.02◦, using a PANalytical
Empyrean diffractometer, in Bragg-Brentano (θ–2θ) geometry. Raman spectroscopy mea-
surements were performed at room temperature in the backscatter configuration (180 deg),
with a WITec alpha300 R spectrometer using an Ar+ ion laser (wavelength λ = 480 nm
and power of ~2 mW) as excitation light source. The spectral frequency resolution of
measurements was ~2 cm−1.

The morphology of the samples surface was examined by SEM-EDX, using a Zeiss
Ultra Plus electron microscope (7 kV, 10 µA) equipped with an EDX analysis system [a Si/Li
detector (Noran, Vantage System)]. Diffuse reflectance spectra of the surface of micro- and
nanostructured β–Ga2O3 layer on single crystal substrate (GaS, GaSe, and GaSxSe1−x solid
solutions) have been recorded with a Specord M-40 spectrophotometer with a spectral en-
ergy resolution of 0.5 meV, equipped with accessories for diffuse reflectance measurements
at an angle of 90◦ to the incident beam.

Photoluminescence spectra were recorded with a specialized photometric setup which in-
cluded a high-power MDR-2 monochromator with diffraction gratings (600 and 1200 mm−1),
equipped with a photomultiplier with multi-alkali[(Na2K)Sb + Cs] photocathode with a
quartz window. A 200 W argon vapor lamp (UV-C light source) and a DRS-500 filtered mer-
cury lamp (wavelength λ = 546 nm) were used as excitation sources of photoluminescence
and photoconductivity of the samples under study. The photocurrent in the circuit was
recorded with a V7-30 microvoltmeter-electrometer.
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3. Results and Discussion
3.1. Structural Studies

The crystal structure and phase purity of GaS and GaSe single crystals and related
solid solutions were investigated using X-ray diffractograms, recorded in the 2θ angular
range between 20 and 90◦. Figure 1a shows the XRD diagram of GaS, in which the intense
lines positioned at 2θ angles of 22.985◦, 34.781◦, 46.840◦, and 73.928◦ are emphasized; they
correspond to (004), (006), (008), and (0012) crystal planes, respectively, parallel to the
C6 axis.
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Figure 1. XRD patterns of single crystal GaSxSe1−x solid solutions obtained by Bridgman-Stockbarger
technique: (a) x = 1; (b) x = 0.80; (c) x = 0.50; (d) x = 0.17; (e) x = 0.00; and (f) composite obtained
by 6 h heat treatment of GaS0.8Se0.2 single crystals in AVH2O, at 800 ◦C. Inset of (e): 2θ angular
displacement of the (0012) line, as a function of the composition (x) of GaSxSe1−x solid solutions.

According to (ICDD-JCPDS) PDF 840499 card, these XRD peaks can be identified as
diffraction lines of β–GaS polytype with lattice constants a = 3.592 Å and c = 15.465 Å. In
the XRD diagram of GaSe single crystals obtained by the Bridgman technique, in the 2θ
range from 20 to 90◦, four peaks are clearly emphasized [Figure 1e]. The highest intensity
lines can be ascribed to (002), (004), (008), and (0012) crystal planes parallel to the C6 axis.
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According to PDF card no. 00-037-0931, these peaks correspond to the hexagonal ε–GaSe
phase with crystal lattice constants a = 3.749 Å and c = 15.907 Å.

The ionic radius of selenium (Se6+) is 1.45 times greater than that of sulfur (S6+).
Consequently, selenium substitution by sulfur results in crystal lattice deformation of solid
solutions. This process obviously leads to the change of the arrangement of S/Se-Ga-Ga-
S/Se elementary packings with respect to each other in the unit cell, therefore also to the
polytypism of respective crystal structures. As demonstrated by XRD measurements in [32],
the constant C increases monotonically with the composition (x) of a single crystalline solid
solution in the ranges of 0.0 ≤ x ≤ 0.3 and 0.4 ≤ x ≤ 1.

Figure 1b shows the XRD pattern of GaSxSe1−x solid solution crystals with the com-
position x = 0.80. According to Serizawa and coworkers [33], single crystals with this
composition correspond to the γ–GaSe polytype. The diffraction lines centered at 2θ angles
equal to 22.30◦, 28.09◦, 33.76◦, 45.58◦, 48.78◦, 54.25◦, 57.92◦, and 71.02◦ are in good correla-
tion with the characteristic reflections of γ–GaSe single crystals (PDF card no. 811974). The
small increase in the values of 2θ angles corresponds to the diffraction on atomic planes of
the solid solution for the compositions x = 0.80 and x = 0 (pure GaSe). It is determined by
the contraction of the crystal lattice caused by the replacement of the Se ions with S ions
(the ionic radius of S6+ is ~1.45 times smaller than that of Se6+). Further contraction of the
crystal lattice of GaSxSe1−x compound occurs together with increasing x (Figure 1d,e).

In Figure 1e (inset), the variation of 2θ diffraction angle on the (0012) atomic planes is
schematically presented, from which the increase of 2θ values together with the composition
(x) of the GaSxSe1−x solid solution can be clearly ascertained.

The XRD patterns, in the 2θ range of 20–90◦, of the material obtained by the heat
treatment (at 900 ◦C, for 6 h) of GaSe and GaS single crystals in AVH2O are shown in
Figure 2a–e, respectively.

By comparing these two figures, one can clearly ascertain the good correlation between
XRD peaks which, according to the PDF card 741-776, can be identified as diffraction lines
corresponding to β–Ga2O3 single crystals with the cell parameters: a = 12.23 Å, b = 3.04 Å,
c = 5.80 Å, and β = 103.7◦.

Using Raman spectroscopy analysis, in [27], it was demonstrated that by oxidizing the
GaSe single crystal, a composite of Ga2O3 crystallites and amorphous Se is obtained. At the
oxidation temperature of 800–950 ◦C, the β–Ga2O3 layer on the surface of the GaS/GaSe
single crystals sublimes, forming β–Ga2O3 vapors on the sample surface. In [30], it is shown
that β–Ga2O3 nanoformations (nanowires, nanoribbons, nanotowers, etc.) are formed by
vapor condensation on the surface of the sample.

The contour of X-ray diffraction lines from nanowires/nanoribbons broadens together
with decreasing nanometer crystallite sizes. The average sizes of the crystallites can be
approximated using the Debye-Sherrer formula [33]:

d =
kλ

βcosθhkl
(1)

where k is the Sherrer constant, equal to 0.94, λ is X-ray wavelength (1.54060 Å), θhkl denotes
the Bragg diffraction angle for the family of lattice planes with Miller indices (hkl), and β
represents the angular full width at half maximum (FWHM) intensity of the (hkl) peak. The
average sizes of the β–Ga2O3 crystallites formed on the surface of GaSe and GaS plates
have been estimated using Equation (1), considering the diffraction lines at 2θ = 57.56 and
57.85◦ and were found to be equal to 19 and 20 nm, respectively.

Figure 1e,f show the XRD patterns of GaSxSe1−x solid solution with x = 0.80 before
and after a 6 h heat treatment in AVH2O at 850 ◦C, respectively. Thus, it can be seen that in
the last diagram (Figure 1f) the diffraction peaks characteristic of the primary composite
are dominant, while the presence of β–Ga2O3 is manifested by a trace of the diffraction
line at 2θ = 33.3◦. Lower intensity peaks located at (2θ angles of) 28.4, 33.3, 36.7, 46.8, 58.9,
72.0, and 79.5◦ can be identified (PDF card no. 76-2310) as reflections characteristic of
Ga2Se3 crystallites-monoclinic crystal lattice with the parameters a = 6.60 Å; b = 6.660 Å;
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c = 11.650 Å; and γ = 108.72◦. The lines with maxima at 34.3 and 40.4◦ correspond to Ga
crystallites-trigonal lattice with the parameters a = b = 9.087 Å; c = 17,020 Å; and γ = 120◦

(PDF card no. 01-071-0505). When the heat treatment temperature is increased by 50◦, the
surface of GaS and GaSe lamellae and GaSxSe1−x solid solutions (0 ≤ x ≤ 1) is covered
with a nanostructured layer of gallium oxide.
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Figure 2. XRD diagrams of the composite obtained by heat treatment in AVH2O, at 900 ◦C for 6 h, of
single crystal GaSxSe1−x plates for (a) x = 0.00; (b) x = 0.17; (c) x = 0.50; (d) x = 0.80; (e) x = 1. The
asterisks represent the numbers assigned to the diffraction peaks (omitted for space saving reasons).

Figure 3 shows the cross-sectional SEM micrograph of GaSxSe1−x solid solution layer
with the composition x = 0.85, subjected to a heat treatment in AVH2O at 850 ◦C for 6 h,
from which, together with single crystal plane-parallel lamellae, the β–Ga2O3 oxide layer
formed on the III-VI (0001) surface is clearly emphasized.
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Figure 3. SEM images of the (a) surface of the section parallel to the C6 crystallographic axis of
GaSxSe1−x (x = 0.85) single crystals, heat treated in AVH2O at 850 ◦C for 6 h; (b1) (0001) surface
of GaS lamella, heat treated in AVH2O at 750 ◦C and (b2) 900 ◦C for 6 h; surface of GaSxSe1−x

single crystals, heat treated in AVH2O at 900 ◦C for 6 h, with compositions (c) x = 0.05; (d) x = 0.17;
(e) x = 0.50; (f) x = 0.80; (g) x = 0.00.

Figures 1d and 2b show the XRD diagrams of the primary and oxidized (in AVH2O, at
a temperature of 900 ◦C for 6 h) GaS0.17Se0.83 single crystals, respectively. The diffraction
lines in Figure 1b, according to PDF card no. 01-078-1927, correspond to the GaSe hexagonal
lattice-ε polytype [33]. In the diagram in Figure 2b, together with the XRD lines of the
primary material, intense peaks with maxima positioned at 2θ angles of 15.60, 18.90, 30.00,
31.70, 35.00, 54.40, 59.80, 60.80, and 64.60◦ are shown, which according to PDF card no.
431012, correspond to β–Ga2O3 polytype (monoclinic lattice) with parameters a = 12.23 Å,
b = 3.04 Å, c = 5.80 Å, and β = 103.7◦. At the same time, this diagram shows three diffraction
peaks with maxima located at (2θ angles of) 28.00, 38.30, and 62.64◦, which according to PDF
card no. 76-0975, can be ascribed to Ga2Se3-monoclinic lattice with parameters a = 6.660,
b = 11.650, c = 6.649 Å, and β = 108.84◦.

The average crystallite sizes of Ga2Se3 and Ga2O3 were determined using Formula (1)
from the broadening of diffraction peaks located at 28.33 and 54.40◦, respectively, and were
found to be equal to 10 nm and 17 nm, respectively.

The XRD patterns of GaSxSe1−x single crystals (solid solutions with the composi-
tions x = 0.5 and 0.8), primary and after heat treatment at 900 ◦C for 6 h, are presented in
Figure 1c,b and Figure 2c,d, respectively. The peaks of X-ray diffractograms in Figure 2c,d,
according to PDF card no. 431-1012, can be interpreted as diffraction lines from the sets
of crystal planes of monoclinic β–Ga2O3, with lattice parameters a = 12.23 Å, b = 3.04 Å,
c = 5.80 Å, and β = 103.79◦. The absence of the intense line at 2θ = 22.40◦ (Figure 2d)
indicates complete oxidation of the sample.

3.2. Morphological and Compositional Analysis

The SEM images of the surface of the β–Ga2O3 layer, obtained by a heat treatment in a
normal atmosphere at 850/900 ◦C for 6 h, of single crystalline GaS, GaSe, and GaSxSe1−x
lamellae with the compositions x = 0.05, 0.17, 0.50, and 0.85, are shown in Figure 3b–g.

As can be seen in Figure 3(b1), by a heat treatment at 750 ◦C in AVH2O, a smooth layer
of white material is formed on the (0001) surface of GaS lamella.

In GaS and GaSe single crystals, the valence bonds at the (0001) surface of elemen-
tary S/Se-Ga-Ga-S/Se stratified packings are practically closed. Therefore, the surface
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defects of elementary III-VI packings can constitute, most likely, nucleation germs of the
β–Ga2O3 layer. The defect density on the (0001) surface of GaSe plates is of the order of
1010–1012 cm−2 [26]. On the other hand, the valence bonds on the edge of GaS/GaSe plates
are open, which facilitates the formation of the β–Ga2O3 layer on the edge. Under normal
atmospheric conditions, the oxidation process of GaSe plates is long-lasting [26], and at
temperatures over 750 ◦C, edge oxidation [(1000) surface] is especially favored.

The formation mechanisms of both β–Ga2O3 and related nanoformations through
the heat treatment of gallium chalcogenides in an oxygen-enriched atmosphere have been
studied in Refs. [28,29,34–37]. Formation reactions of gallium oxide (β–Ga2O3) by high-
temperature heat treatment of GaSe lamellae in an Ar/O2 atmosphere can proceed with the
formation of Ga2Se3 compound and/or through direct transformation, as follows [35,37]:

3GaSe +
3
2

3GaSe +
3
4

O2 → Ga2Se3 +
1
2

Ga2O3, (2)

Ga2Se3 +
3
2

O2 → Ga2O3 + 3Se, (3)

GaSe +
3
4

O2 →
1
2

Ga2O3 + Se. (4)

Analogously, β–Ga2O3 compound is formed by the heat treatment of single crystalline
GaS lamellae [29] in AVH2O. In addition, the process of obtaining β–Ga2O3 oxide by
photo-oxidation of GaSe single crystals is influenced by the amount of water vapor in the
atmosphere [37,38]. In mentioned works, the photo-oxidation reaction takes place in two
stages through the reactions:

3GaSe +
3
2

HO2 +
9
4

O2 → Ga(OH)3 + Ga2O3 + 3Se, (5)

2Ga(OH)3 → Ga2O3 + 3H2O. (6)

Figure 3c shows a typical SEM image of the nanoformations formed on the (0001)
ε–GaSe surface of the plates subjected to heat treatment at 900 ◦C for 6 h in AVH2O. The
nanoformations display chaotically oriented needles with micrometric-scale lengths of
(1–5) µm.

As can be seen from the SEM image (Figure 3g), the β–Ga2O3 layer obtained by a 6 h
heat treatment of GaSxSe1−x (x = 0.17) solid solution in AVH2O at 900 ◦C is formed by
nanowires with lengths of 5–7 µm. In addition to β–Ga2O3, the composition of this material
is likely to include an O2 surplus of ~6% (Table 1).

Table 1. Elemental composition of β–Ga2O3 layer on GaSxSe1−x solid solution substrate.

Composition (x) of the Primary
Compound GaSxSe1−x

Heat Treatment
Temperature, ◦C

Heat Treatment
Duration, h

Concentration, at. %
CGa/COCO CGa

1.00 850 6.0 59.33 40.67 2/2.92
1.00 900 0.5 56.08 43.92 2/2.60
0.80 900 6.0 60.78 39.22 2/3.10
0.50 900 6.0 61.01 38.99 2/3.13
0.17 900 6.0 53.15 46.85 2/2.30
0.05 900 6.0 57.40 42.60 2/2.70

By heat treatment (at 900 ◦C, for 6 h in AVH2O) of GaS0.5Se0.5 and GaS0.8Se0.2 solid
solutions (Figure 3e,f), a homogeneous assembly of β–Ga2O3 nanowires is obtained. As can
be seen from this image, the surface of the primary material plate undergoes major deforma-
tions and is covered with nanowire assemblies, the length of which increases together with
the duration of the heat treatment. These materials are probably composed of β–Ga2O3
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nanowires with a surplus of ~1.2% and 0.5% atomic oxygen, respectively. Therefore, it can
be observed that with the increase in the sulfur concentration x of the primary solid solution,
the excess oxygen concentration in the layer of β–Ga2O3 nanoformations increases.

The elemental composition of the layer penetrated by the 20 keV electron beam was
determined from the EDXS spectra. The thickness of the β–Ga2O3 layer (r) penetrated by
the electron beam can be approximated using the Kanaya-Okayama empirical formula [39]:

r =
0.0276

ρ
· A
Zσ

Eγ
0 , (7)

where A is the mass number, Z denotes the atomic number, ρ is the density (0.89 g/cm3),
and E0-the electron energy, in keV; for E0 > 5 keV, the power coefficient is γ = 1.67. For
E0 = 2 keV, ρ = 5.88 g/cm3, A = 69.7, Z = 31, it results in the penetration depth of the
electron beam in EDXS measurements of β–Ga2O3 being ~2.2 µm.

The EDXS spectrum of β–Ga2O3 layer on the GaS substrate is shown in Figure 4, from
which it can be seen that the penetrated layer contains 59.33% oxygen, 40.43% gallium, and
0.23% sulfur. Consequently, the O/Ga atomic ratio in this layer is 3/2, which corresponds
to the stoichiometric compound Ga2O3.
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Figure 4. EDX spectra of β–Ga2O3 layer formed on the (0001) surface of single crystalline plates of
GaSxSe1−x solid solutions with the composition (a) x = 1, heat treated at 850 ◦C for 6 h in AVH2O;
(b) x = 1, heat treated at 900 ◦C for 30 min; (c) x = 0.17, heat treated at 900 ◦C for 6 h in AVH2O.

As the heat treatment temperature in AVH2O increases from 750 to 900 ◦C, a homoge-
neous layer of nanoribbons and nanowires is formed on the surface of the GaS lamellae
(Figure 3(b1)). A field of β–Ga2O3 nanowires with lengths of tens of micrometers is formed
on the surface of GaS plate subjected to the heat treatment at 900 ◦C for 30 min (Figure 3(b2)).
The elemental composition of the nanowires/nanolamellae structures was determined
from the EDXS spectra (Figure 4a,b). If we accept that following the thermal treatment
of GaS plates in AVH2O at temperatures of 850 and 900 ◦C, the compound β–Ga2O3 is
formed, then a surplus of gallium should result in the material obtained at 900 ◦C, which
is emphasized in Table 1. This surplus of gallium, equal to ~2%, in the β–Ga2O3 layer
formed on the surface of the GaS plate at a temperature of 850 ◦C, is increasing to ~10% in
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the nanowire layer formed at 900 ◦C and may be caused by different formation times of
metallic Ga and β–Ga2O3.

Concentrations (in at. %) of oxygen (CO) and gallium (CGa) in the β–Ga2O3 layers
obtained by the heat treatment (0.5 and 6 h at 900 ◦C in AVH2O) of single crystal plates
of GaSxSe1−x solid solutions with the compositions x = 1, x = 0.80, x = 0.50, x = 0.17, and
x = 0.05 are presented in Table 1. As can be seen from this table, with a 30 min heat treatment
of GaS plates at 900 ◦C, a deficit of oxygen can be found in the as-formed β–Ga2O3 layer,
while in the β–Ga2O3 layer formed on the solid solutions with x = 0.80 and x = 0.50, a
surplus of oxygen is attested. The highest oxygen deficit of 11% is found in the β–Ga2O3
layer formed on the surface of γ–GaS0.17Se0.83 polytype.

Raman spectra in the wavenumber range of 60–800 cm−1 of the material obtained by
the heat treatment of GaS single crystals in AVH2O at temperatures of 750 and 900 ◦C are
shown in Figure 5a and b, respectively. The vibrational spectrum in the spectral range of
100–400 cm−1 of the samples obtained at 750 ◦C contains three intense bands with maxima
located at 189, 234, and 360 cm−1, together with five low-intensity bands at 74, 115, 149, 295,
and 389 cm−1. The peaks positioned at 189, 295, and 360 cm−1 are identified in Refs. [40,41]
as vibration modes of the hexagonal GaS lattice. Raman bands peaked at 74, 284, and
389 cm−1 corresponding to the vibration of the wurtzite-type α–Ga2S3 lattice [42]. The
presence of a monoclinic β–Ga2O3 crystal phase in the layer under study is demonstrated
by vibration bands with maxima at 115 and 149 cm−1. As demonstrated in [43,44], these
bands are characteristic of the vibration modes of the monoclinic β–Ga2O3 lattice from the
Raman spectra of β–Ga2O3 thin films and nanowire layers. The vibrational spectra of the
layers composed of β–Ga2O3 nanoformations, formed by the heat treatment of GaS plates
in the air at a temperature of 850 ◦C for 6 h and at 900 ◦C for 30 min, are near-identical
(Figure 5b,c). In these spectra, the bands with maxima located at 114, 146, 171, 200, 327, 349,
416, 478, 630, 656, and 767 cm−1 are clearly emphasized. This structure is also characteristic
of the Raman spectra of layers composed of β–Ga2O3 nanoformations, obtained by thermal
treatment (in AVH2O, at 900 ◦C for 6 h) of GaSxSe1−x solid solutions with the compositions
x = 0.17, 0.50, and 0.80. The Raman frequencies, intensities, and symmetry of the vibration
modes of β–Ga2O3 layer obtained by the heat treatment in AVH2O of single crystal plates
of GaSxSe1−x solid solutions with x = 0.00, 0.17, 0.50, 0.80, and 1, are included in Table 2.

In this table, the symmetry of the vibration modes according to Ref. [5] was also
included. One can conclude that by the heat treatment of GaSxSe1−x (0 ≤ x ≤ 1) solid
solution single crystals in AVH2O at temperatures of 850 and 900 ◦C with a duration from
30 min to 6 h, layers composed of β–Ga2O3 nanowires and nanoribbons are formed on the
lamellae surface.

Table 2. Raman vibration modes of β–Ga2O3 layers on GaSxSe1−x solid solution substrate.

No

Sulfur Concentration x in GaSxSe1−x Solid Solution Substrate

x = 0.0, t = 750 ◦C x = 0.0, t = 900 ◦C x = 0.17, t = 900 ◦C x = 0.5, t = 900 ◦C x = 0.8, t = 900 ◦C x = 1.0, t = 900 ◦C Symm. [5]
~
ν,

cm−1
Int.,
a.u.

~
ν,

cm−1
Int.,
a.u.

~
ν,

cm−1
Int.,
a.u.

~
ν,

cm−1
Int.,
a.u.

~
ν,

cm−1
Int.,
a.u.

~
ν,

cm−1
Int.,
a.u.

1 73.0 10 120.0 15 114.0 22 117.0 20 115.0 31 114.0 22 Bg
2 86.0 78 158.0 42 146.0 31 145.0 36 145.0 28 144.0 31 Bg
3 113.5 95 179.0 67 173.0 40 172.0 179 174.0 42 171.0 40 Ag
4 147.0 15 207.0 227 201.0 100 119.0 860 199.0 85 199.0 100 Ag
5 186.5 93 328.0 43 322.0 33 321.0 44 324.0 27 323.0 33 Ag
6 231.6 63 355.0 89 349.0 49 284.0 375 348.0 52 348.0 49 Ag
7 290.0 23 422.0 85 416.0 50 414.0 428 417.0 58 415.0 50 Ag
8 357.0 100 484.0 42 478.0 35 476.0 72 478.0 36 475.0 35 Ag
9 384.6 19 636.0 41 630.0 36 629.0 347 628.0 30 633.0 36 Ag
10 662.0 79 656.0 47 655.0 347 657.0 48 655.0 47 Ag
11 773.0 109 767.0 58 762.0 467 765.0 56 765.0 58 Ag

∼
ν—wavenumber; t—temperature.
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Figure 5. Raman spectrum, at 293 K, for (a) GaS/Ga2O3 composite, obtained by heat treatment of
single crystalline GaS plates in AVH2O, at 750 ◦C for 6 h; (b) β–Ga2O3 crystallites from the composite
material obtained by heat treatment of single crystalline β–GaS plates in AVH2O, at a temperature of
850 ◦C for 6 h; (c) 900 ◦C, for 30 min; and (d) 900 ◦C, for 6 h.

3.3. Optical and Photoluminescence Properties

The absorption threshold of micro- and nanostructured β–Ga2O3 layers, obtained
by high-temperature heat treatment in AVH2O of single crystalline GaSxSe1−x solid so-
lution lamellae, was studied from diffuse reflectance (Rd) measurements as a function of
wavelength using the Kubelka-Munk function [45]:

F(Rd)
(1− Rd)

2

2Rd
=

α

S
, (8)

where Rd = (I/I0)dif (with I and I0 denoting the intensities of diffuse reflected radiation by
sample surface and BaSO4 powder standard), α is the diffusion coefficient (usually expressed
in cm−1), and S (in cm−1) represents the diffusion coefficient–a wavelength-independent
parameter for particles with average sizes greater than the incident wavelengths.

As clearly revealed by the SEM images of β–Ga2O3 layers, their surface consists
of micrometer-sized grains covered with nanoformations. It is considered that inhomo-
geneities with micrometric sizes behave as diffuse scattering centers of incident light, so
one can admit that F(Rd) ~ α.
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In the case of parabolic energy bands, the band gap (Eg) and the absorption coefficient
(α) of the semiconductor material are related by Equation (9) [46]:

αhν = A(hν− Eg)n, (9)

where A is a characteristic parameter for respective transitions, direct (n = 1/2) or indirect
(n = 2), which is independent of photon energy, hν.

Taking into account Equations (8) and (9), the relation between the function F(Rd) and
the direct band gap energy Egd can be expressed by:

[F(Rd)hν]2 = B(hν− Egd), (10)

with B denoting a new constant, also independent of photon energy.
Figure 6 shows the [F(Rd)hν]2 dependencies on the photon energy, from which the

direct band gap of the β–Ga2O3 layer obtained by the heat treatment of single crystalline
GaSxSe1−x lamellae with x = 1.00, 0.95, 0.50, 0.17, 0.05, and 0.00, in AVH2O at 900 ◦C, was
found to equal 4.82, 4.80, 4.52, 4.64, 4.69, and 4.78 eV, respectively. Therefore, the band
gap of the nanostructured β–Ga2O3 layer depends on the composition of GaSxSe1−x solid
solution and decreases with the increase in the GaSe concentration in GaS. The lowest value,
4.52 eV, is observed in the β–Ga2O3 layer formed on the material at the frontier between
the γ and β polytypes.
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Figure 6. Determining the direct band gap of β–Ga2O3 layer on substrate of GaSxSe1−x solid solution
with compositions x = 1 (1), 0.95 (2), 0.50 (3), 0.17 (4), 0.05 (5), 0.00 (6).

The band gap of nanostructured β–Ga2O3 layers obtained by calcination at tempera-
tures of 870–900 ◦C in an AVH2O, determined from the spectral reflectance analysis, varies
from 4.50 eV to 4.70 eV [47,48]. As demonstrated in Refs. [49,50], the forbidden bandwidth,
Eg, is influenced by the growth technology of β–Ga2O3. The band gap of β–Ga2O3 layers
obtained by Ar/O2 flow transport of Ga vapors is 4.83 eV [51]. The optical band gap of
β–Ga2O3 layers prepared by the PLD technique on a heated support varies from 5.09 eV
to 5.11 eV [52]. In the case of β–Ga2O3 single crystals, Eg is equal to 4.68 eV and is weakly
influenced by the crystallographic direction of the UV radiation flux [53].

In Figure 7, the PL spectra of β–Ga2O3 films prepared by heat treatment (at 900 ◦C for
6 h) in AVH2O of single crystalline GaS (1) and GaSe (6), as well as of GaSxSe1−x (x = 0.17,
0.50, 0.80, and 0.95) solid solution lamellae at the temperature 80 K. Photoluminescence
was excited using a 405 nm wavelength radiation.

Gallium sulfide (GaS) is known as an indirect semiconductor with a band gap of
2.57 eV. Also, the direct band gap in GaSe is 1.90 eV. In addition, the Eg value in GaSxSe1−x
(0 ≤ x ≤ 1) solid solutions lies in the range between 1.90 and 2.57 eV [54]. The PL spectrum
of β–GaS crystals at 80 K is composed of two bands, one in the green spectral region and
the other in the yellow region.
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Figure 7. Photoluminescence of GaSxSe1−x single crystals at 80 K upon excitation with monochro-
matic radiation (λ = 405 nm, P = 15 mW/cm2). (1) x = 1; (2) x = 0.95; (3) x = 0.80; (4) x = 0.50;
(5) x = 0.17; and (6) x = 0.00.

The PL bands with weakly asymmetric contour, located near the fundamental ab-
sorption edge of GaS and GaSe single crystals, peaked at 481 nm (2.578 eV) and 592 nm
(2.094 eV) and are well known in the literature. In Refs. [55,56], they are interpreted as
radiative emission of indirect excitons located in GaS and of direct excitons located in GaSe
crystals (Figure 7, curves 1 and 6), respectively. The energy position of the particularity by
620 nm (2.00 eV) (curve 6) coincides with the energy of indirect excitons in GaSe. The band
with a maximum at 542 nm predominates in the PL spectrum of undoped GaS crystals and
is of an impurity nature. The PL spectra of the crystals with the compositions x = 0.95, 080,
and 0.17 consist of broad, asymmetric bands with maxima positioned at 526 nm (2.36 eV),
572 nm (2.17 eV), and 614 nm (2.02 eV), respectively. These bands, together with the band
with a maximum at 562 nm from the PL spectrum of the GaSxSe1−x crystals with the
composition x = 0.80, are located in the optical transparency region of respective crystals
and are probably of an impurity nature. In Ref. [57], the absorption and PL spectra at room
temperature of 2D GaSxSe1−x solid solutions are studied, from which a good correlation
was attested between the PL peak positions and the indirect band gap determined from the
diffuse reflectance spectra.

Figure 8 shows the PL spectra at 80 K of the β–Ga2O3 layers formed by a 6 h heat
treatment at 900 ◦C in AVH2O of single crystalline GaS (1) and GaSe (6) lamellae, as well as
those of GaSxSe1−x solid solutions with x = 0.17, 0.50, 0.80, and 0.05.
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The PL spectra of the β–Ga2O3 layer on GaSxSe1−x solid solution substrate was
excited with the radiation of an emission band with a maximum at 254 nm and a half-
width of 15 nm selected from the spectrum of a ~400 W Ar-arc lamp using a SiO2 prism
monochromator that was intensity-modulated at 95 Hz. The PL spectra of β–Ga2O3 layers
on GaS and GaSe plates, as well as on GaSxSe1−x (0 < x < 1) solid solution crystals, contain
two bands: a narrow one with the maximum at the UV-violet frontier and another one
with a broad contour, displaying peak intensity in the green-red region. The UV-violet
PL band is present in both β–Ga2O3 thin films and nanostructured layers [54,58,59]. A PL
band with a maximum of 390 nm was also observed in the cathodoluminescence spectrum
of an assembly of nanowires obtained by the CVD technique [60]. In Ref. [59], it was
observed that the structure of the PL spectrum of the nanostructured β–Ga2O3 depends
on the excitation wavelength. If for an excitation wavelength of 254 nm, the PL spectrum
of the assembly of β–Ga2O3 nanoribbons is composed of two poorly outlined bands with
maxima positioned at 375 nm and 414 nm, then upon a 325 nm excitation, in the emission
spectrum, two intense bands with maxima at 455 and 528 nm are emphasized.

In the PL spectrum (at the temperature 80 K) of the nanostructured β–Ga2O3 layer
formed on the surface of GaS lamella (Figure 8, curve 5), two bands with maxima positioned
at 395 nm (3.14 eV) and 549 nm (2.28 eV) are clearly visible. The PL band peaked at the
wavelength of 395 nm is well studied in [60–62]. In mentioned papers, it is assumed that
this band is formed as a result of electron-hole recombination in the pair vacancy (VO–VGa)
defect. In Refs. [63,64], it is admitted that oxygen defects (VO) form donor levels in the
energy range of 0.60–2.16 eV, while gallium vacancies (VGa) form two acceptor levels,
located at ~0.19 eV and 0.62 eV with respect to the valence band top.

The forbidden band gap of the nanostructured β–Ga2O3 layer on the GaS substrate is
equal to 4.82 eV (Figure 6, curve 1). The energy diagram (deep levels) of β–Ga2O3 crystals
was established from Deep-Level Transient Spectroscopy (DLTS) and Deep Level Optical
Spectroscopy (DLOS) analyzed in [63,64]. According to them, the emission band with a
maximum at 395 nm can be interpreted as donor-acceptor (DA) radiative emission in the
vacancy pair (VO, VGa) by recombination of electrons from the donor level with energy of
0.80 eV (relative to the conduction band minimum), with the holes on the acceptor level
with energy Ec = 3.94 eV (with respect to the valence band maximum). Additionally, the
PL band with a maximum of 549 nm can be interpreted as the recombination of electrons
from the deep level with an energy of 1.66 eV and holes from the acceptor level located at
~0.88 eV above the valence band top.

The PL spectrum of the β–Ga2O3 layer on the GaSe substrate is composed of two bands
with maxima located at 390 nm (3.18 eV) and 460 nm (2.70 eV) wavelengths. The violet
emission band in the β–Ga2O3 layers on GaS and GaSe substrates probably has the same
nature and is determined by the presence of oxygen and gallium vacancies. An emission
band with a maximum of 460 nm was observed in the PL spectrum of the nanostructured
β–Ga2O3 layer (nanoribbons and nanowires) obtained by a heat treatment at 950 ◦C of
gallium in water vapor. This band is interpreted in [65] as electron-hole recombination in
the donor-acceptor pair. As seen in Figure 8, curve 2, the band at 460 nm predominates and
can be interpreted, based on the energy level diagram of β–Ga2O3 compound [63,64], as
the radiative transition of electrons from the conduction band on the energy level located
at 2.71 eV below the conduction band minimum. We note that the PL spectrum of the
β–Ga2O3 powders studied in the Refs. [66,67] consists of a broad band with a poorly
outlined maximum at 476 nm (2.60 eV). The structure of the PL spectrum of nanostructured
β–Ga2O3 depends on several (technological) factors (nature of the material, synthesis
method, and temperature, etc.). As demonstrated in [68], the presence of a broad and
poorly emphasized emission maximum at wavelengths of 510–530 nm is characteristic of
the luminescence of β–Ga2O3 nanoparticles.

In the PL spectra, at 80 K, of the β–Ga2O3 layer formed on the substrate of GaSxSe1−x
(x = 0.17) solid solutions, the violet band with peak intensity in the wavelength range of
380–410 nm, characteristic for the PL spectrum of the nanostructured β–Ga2O3, and the
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green band with maximum at 540–560 nm are well marked. At the same time, in the PL
spectrum of the layer formed by the heat treatment in AVH2O at 900 ◦C of GaS0.17Se0.83
crystals with a high selenium concentration, an orange band is clearly emphasized. At
high temperatures, the probability of S evaporation from S and Se solutions is substantially
increased. In [69], it was demonstrated that Se can substitute oxygen atoms in β–Ga2O3
with the formation of diluted Ga2(O1−xSex)3 solutions with x ≤ 0.16, whose indirect band
gap is greatly influenced by Se concentration. Thus, one can admit that the structure of both
violet and green–orange PL bands in the gallium oxide layer formed by high-temperature
heat treatment in air at single crystal lamellae of GaSxSe1−x solid solutions (0.05 ≤ x ≤ 0.95)
is determined by the presence of selenium impurities in β–Ga2O3.

Single crystals of GaS, GaSe, and their solid solutions are formed by elementary S/Se-
Ga-Ga-S/Se stratified packings with interlayer spacings of ~0.3 nm [70], through which
oxygen atoms may easily diffuse. Thus, at high temperatures, the formation process of
β–Ga2O3 takes place in the entire volume of the plate. By 6 h of heat treatment (in AVH2O,
at 900 ◦C) of the 35 µm thick GaS plate, a homogeneous layer of nanostructured β–Ga2O3
was obtained. This sample served as the photogenerating element of electron-hole pairs in
a UV-C photodetector.

The Au and Au/Ti thin films are used as electrode material in β–Ga2O3-based pho-
todetectors [71–74]. In Ref. [75], the current-voltage characteristics are analyzed in photode-
tectors based on thin films of β–Ga2O3 with Au and Al electrodes, from which the linear
dependence in the range of 0 ± 10 V under dark and illumination conditions is clearly seen
for the photodetector with Al electrodes. The linearity of the current-voltage characteristic
in photodetectors with Au electrodes after illumination is observed at voltages greater
than ±2.14 V. The photoresistor studied in this work was obtained by vacuum deposition
(10−6 Torr) of two Al ribbons at a distance of ~2 mm from each other. The structure thus
obtained was subjected to a heat treatment at ~400 ◦C for 2 h in vacuum. Figure 9 shows
the spectral distribution of the photocurrent upon illumination with radiation provided by
a filtered Xe lamp.
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Figure 9. Spectral dependence of the photocurrent in a photoresistor based on the nanostructured
β–Ga2O3 layer. Inset: current-voltage characteristic of the photoresistor.

As can be seen from the last figure, in the spectral range between 280 and 245 nm, the
photocurrent through the photoresistor increases by more than two orders of magnitude,
from ~10−11 to ~10−9 A. The maximum photocurrent is obtained for λ = 250 nm. The
photoresponse of the detector at 250 nm wavelength is 0.9 nA. Figure 9 (Inset) shows the
current-voltage dependencies upon excitation with a 254 nm wavelength radiation, the
power density of which was 1.8, 3.0, and 4.1 µW/cm2. In the voltage range from 5 to 40 V,
the photocurrent was found to increase linearly with the applied voltage.
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4. Conclusions

The lamellar semiconductors in the series of GaSxSe1−x solid solutions exhibit a
bandgap in the range of 1.98–2.58 eV. By using a heat treatment of respective single crystals
in AVH2O at temperatures between 750 and 900 ◦C, homogeneous layers consisting of
β–Ga2O3 nanowires/nanosheets with micrometric lengths are obtained. Depending on the
heat treatment temperature, β–Ga2O3 layers with monoclinic crystal lattice are obtained,
but also nanocomposite layers formed by β–Ga2O3 and Ga2Se3/Ga2S3 crystallites with
submicrometric dimensions. The direct band gap of the β–Ga2O3 layer depends on the
composition (x) of GaSxSe1−x solid solution and was found in the range of 4.52–4.82 eV.
The β–Ga2O3 and β–Ga2O3/Ga2Se3/Ga2S3 nanocomposite layers are photoluminescent
materials in the UV–blue region. Resistive detectors based on nanostructured β–Ga2O3
layers show high sensitivity in the UV-C region (230–270) nm. The photocurrent obtained
by irradiating the surface with a 254 nm beam is higher than the dark current by more than
two orders of magnitude.
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