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Abstract: Since the discovery of the low-temperature, long-range ferromagnetic order in monolayers
Cr2Ge2Te6 and CrI3, many efforts have been made to achieve a room temperature (RT) ferromagnet.
The outstanding deformation ability of two-dimensional (2D) materials provides an exciting way to
mediate their intrinsic ferromagnetism (FM) with strain engineering. Here, we summarize the recent
progress of strain engineering of intrinsic FM in 2D van der Waals materials. First, we introduce how
to explain the strain-mediated intrinsic FM on Cr-based and Fe-based 2D van der Waals materials
through ab initio Density functional theory (DFT), and how to calculate magnetic anisotropy energy
(MAE) and Curie temperature (TC) from the interlayer exchange coupling J. Subsequently, we focus
on numerous attempts to apply strain to 2D materials in experiments, including wrinkle-induced
strain, flexible substrate bending or stretching, lattice mismatch, electrostatic force and field-cooling.
Last, we emphasize that this field is still in early stages, and there are many challenges that need to
be overcome. More importantly, strengthening the guideline of strain-mediated FM in 2D van der
Waals materials will promote the development of spintronics and straintronics.

Keywords: strain engineering; ferromagnetism; transition metal trihalides; transition metal chalcogenides;
transition metal phosphorous chalcogenides; wrinkle; flexible substrates; lattice mismatch; spintronics;
straintronics

1. Introduction

According to the Mermin–Wanger–Hohenberg theory [1,2], thermal fluctuations can
destroy the long-range magnetic order of 2D systems at finite temperatures. However,
the anisotropy of the system suppresses thermal disturbances by opening the gap in
the spin-wave spectrum [3–6]. Furthermore, spin orbit coupling (SOC) can stabilize the
long-range magnetic order in 2D systems by contributing to magnetic anisotropy. After
the discovery of the low-temperature, long-range ferromagnetic order in monolayers
Cr2Ge2Te6 and CrI3 [7,8], many efforts have been made to achieve a room temperature (RT)
ferromagnet. Indeed, strain engineering [9–25] is a very important strategy for mediating
material properties, including optoelectronic [9,10,13–15,21], electrocatalytic [11,16,22–24],
and magnetic properties [15,19,21,24–28]. Since Novoselov et al. [29] obtained a stable
monolayer graphene in the laboratory in 2004, further research gradually revealed that
2D materials, such as MoS2, could withstand up to 20% strain [30–33]. However, it was
very difficult to directly apply strain to 2D materials in experiments, which made strain-
controlled performance largely remain in theoretical study. This was because by changing
lattice parameters, strain could be easily applied to the lattice of 2D materials. Specifically,
the study on strain-mediated magnetism in 2D materials, especially in 2D van der Waals
materials with intrinsic long-range FM order, was focused on theoretical calculation. More
interestingly, the Bi2Te3|Fe3GeTe2 heterostructure related to strain [34,35] was designed to
increase the Curie temperature (TC) due to the proximity effect [36–40].
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Very recently, some significant progress was also made in the field of experimental
research [27,28,41–48]. In Figure 1, we summarize the recent progress of strain engineering
of intrinsic ferromagnetism (FM) in 2D van der Waals materials. First, we introduce
how to explain the strain-mediated intrinsic FM on Cr-based and Fe-based 2D van der
Waals materials with long-range FM order through ab initio Density functional theory
(DFT), and how to calculate magnetic anisotropy energy (MAE) and Curie temperature
from the interlayer exchange coupling J. Subsequently, we focus on numerous attempts
to apply strain to 2D materials in experiments, including wrinkle-induced strain, flexible
substrate bending or stretching, lattice mismatch, electrostatic force and field-cooling. Last,
we emphasize that this field is still in early stages, and there are many challenges that
must be overcome. More importantly, strengthening the guideline of strain-mediated
FM in 2D van der Waals materials will promote the development of spintronics [6,49–57]
and straintronics [12,19]. As shown in Figure 1, we summarize three different kinds of
2D materials with intrinsic long-range FM order, including transition metal trihalides
(CrCl3, CrBr3 and CrI3) [5,58–72], transition metals chalcogenides (Cr2Ge2Te6, FenGeTe2
and CrTe2) [42–46,73–87], and transition metal phosphorous chalcogenides (AgVP2Se6,
CrPS4) [88–91].
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(LSDA) [92], the generalized gradient approach (GGA) [61,93,94], and DFT + U [95,96], 
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over, the interlayer exchange coupling J was closely related to magnetic anisotropy, and 
it would also be used to calculate TC [86,97–100]. The mean field theory [97,101] would 
roughly estimate TC but, often, TC overestimated it. Although the random phase approxi-
mation (RPA) could more accurately estimate TC of three-dimensional (3D) materials, it 
may fail in 2D systems with large anisotropy. Notably, classic Monte Carlo (MC) [6,97] 
simulations can also describe the critical temperature. 
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2.1.1. CrCl3 

Unlike bulk materials, 2D materials can sustain larger strains [33,102]. Similarly, sin-
gle-layer transition metal trihalides (MX3, I, Cl and Br) can also withstand a strain of about 
10% [58]. As a typical example, Yan et al. [59] studied the biaxial strain dependence mag-
netic anisotropy energy (MAE) of the 2D monolayer CrCl3 (Figure 2a–d). When the com-
pressive strain reached 2.5%, a phase transition from antiferromagnetism (AFM) to FM 
occurred (Figure 2e). In addition, when tensile strain was 2.4%, the maximum Curie tem-
perature (TC) reached 39 K. The MAE in the unstrained monolayer was positive, indicating 
the spins of Cr atoms were off-plane (Figure 2f).  

Figure 1. The three different kinds of 2D van der Waals materials with intrinsic long-range FM order.

2. Theoretical Calculations

In order to understand the essence of 2D ferromagnetism, ab initio Density functional
theory, including linear density approach (LDA) [59], local spin density approximation
(LSDA) [92], the generalized gradient approach (GGA) [61,93,94], and DFT + U [95,96], was
often used to calculate the electronic structure of the system as a starting point. Moreover,
the interlayer exchange coupling J was closely related to magnetic anisotropy, and it would
also be used to calculate TC [86,97–100]. The mean field theory [97,101] would roughly
estimate TC but, often, TC overestimated it. Although the random phase approximation
(RPA) could more accurately estimate TC of three-dimensional (3D) materials, it may fail in
2D systems with large anisotropy. Notably, classic Monte Carlo (MC) [6,97] simulations
can also describe the critical temperature.

2.1. Cr-Based 2D van der Waals Materials
2.1.1. CrCl3

Unlike bulk materials, 2D materials can sustain larger strains [33,102]. Similarly,
single-layer transition metal trihalides (MX3, I, Cl and Br) can also withstand a strain of
about 10% [58]. As a typical example, Yan et al. [59] studied the biaxial strain dependence
magnetic anisotropy energy (MAE) of the 2D monolayer CrCl3 (Figure 2a–d). When
the compressive strain reached 2.5%, a phase transition from antiferromagnetism (AFM)
to FM occurred (Figure 2e). In addition, when tensile strain was 2.4%, the maximum
Curie temperature (TC) reached 39 K. The MAE in the unstrained monolayer was positive,
indicating the spins of Cr atoms were off-plane (Figure 2f).
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Figure 2. (a) Top and (b) side view of atomic structure of monolayer CrX3 (X = Cl, Br, I). (c) Bonding 
between chromium and iodine atoms. The unit cell of CrX3, which includes two Cr and six X atoms, 
has been indicated in (a). The bond length between Cr and an X atom, the bond angle θ1 between 
Cr and two X atoms in the same plane, and the axial angle θ2 are also shown in (c). (d) The two 
magnetic orders, namely AFM and FM. Energy difference between the FM and AFM phases for (e) 
CrCl3. The AFM phase region is highlighted in red. The calculated TC is also shown for each case. 
Change in MAE with respect to strain in (f) CrCl3. (Reproduced with permission from [59]. Copy-
right 2016, American Physical Society). (g) Crystal structure of monolayer CrCl3. Dashed lines de-
note the unit cell with basic vectors 𝛿 = 𝑎 0,1 , 𝛿 = 𝑎 √3 2,⁄  −1 2⁄ , 𝛿 = 𝑎 − √3 2⁄ , −1 2⁄ , 
with strain-dependent lattice constanta 𝑎 . (h,i) Magnetic nearest-neighbor superexchange J and 
anisotropy K of Hamiltonian (1), respectively, computed via Density Functional Theory (DFT) as a 
function of monolayer strain ε. (j) Finite−temperature phase diagram of the monolayer CrCl3 versus 
strain ε. Strain drives the monolayer into three different finite−temperature magnetic phases: BKT 
quasi-LRO phase, AFM Ising, and FM Ising. (Reproduced with permission from [63]. Copyright 
2021, American Physical Society). (k,l) Arrangement of Cr atoms in the lattice of the CrCl3 bilayer 
in the low temperature phase. The green arrow indicates the direction of lateral shift between the 
top and bottom layers. (m) Schematic plot of three different spin configurations of bilayer CrCl3. (n) 
The energy difference between the FM and AFM phases. (Reproduced with permission from [64]. 
Copyright 2023, Springer Nature). 

Figure 2. (a) Top and (b) side view of atomic structure of monolayer CrX3 (X = Cl, Br, I). (c) Bonding
between chromium and iodine atoms. The unit cell of CrX3, which includes two Cr and six X atoms,
has been indicated in (a). The bond length between Cr and an X atom, the bond angle θ1 between
Cr and two X atoms in the same plane, and the axial angle θ2 are also shown in (c). (d) The two
magnetic orders, namely AFM and FM. Energy difference between the FM and AFM phases for
(e) CrCl3. The AFM phase region is highlighted in red. The calculated TC is also shown for each
case. Change in MAE with respect to strain in (f) CrCl3. (Reproduced with permission from [59].
Copyright 2016, American Physical Society). (g) Crystal structure of monolayer CrCl3. Dashed lines

denote the unit cell with basic vectors δ1 = aε(0, 1), δ2 = aε

(√
3/2, −1/2

)
, δ3 = aε

(
−
√

3/2,−1/2
)

,
with strain-dependent lattice constanta aε. (h,i) Magnetic nearest-neighbor superexchange J and
anisotropy K of Hamiltonian (1), respectively, computed via Density Functional Theory (DFT) as a
function of monolayer strain ε. (j) Finite−temperature phase diagram of the monolayer CrCl3 versus
strain ε. Strain drives the monolayer into three different finite−temperature magnetic phases: BKT
quasi-LRO phase, AFM Ising, and FM Ising. (Reproduced with permission from [63]. Copyright
2021, American Physical Society). (k,l) Arrangement of Cr atoms in the lattice of the CrCl3 bilayer
in the low temperature phase. The green arrow indicates the direction of lateral shift between the
top and bottom layers. (m) Schematic plot of three different spin configurations of bilayer CrCl3.
(n) The energy difference between the FM and AFM phases. (Reproduced with permission from [64].
Copyright 2023, Springer Nature).
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After applying the strain to the lattice, Cl atoms adjusted their position to minimize the
lattice distortion energy at this strain (Figure 2g). After generating a specific structure, the
energy difference between the ferromagnetic and antiferromagnetic states was calculated.
Mapping this energy difference to the Hamiltonian (1), Dupont et al. [63] obtained the
nearest-neighbor exchange coupling J and magnetic anisotropy K, as shown in Figure 2h,i.

Ĥ = Jε ∑
〈→r ,
→
r
′
〉

→̂
S→

r
·
→̂
S→

r
′ + Kε∑

→
r

(→̂
S z
→
r

)2

(1)

Note that: the spin value of S was 3/2 in the above equation.
As the strain evolved from compression to tension, the system sequentially exhibited

the BKT (Berezinskii–Kosterlitz–Thouless) quasi-long-range order (LRO) phase, AFM Ising
and FM Ising by QMC (Quantum Monte Carlo) simulations. Although theoretical and
experimental studies have been conducted on monolayer and bulk CrCl3 materials, research
on their multilayer structures, including bilayers and trilayers systems, was very limited.
Ebrahimian et al. [64] found that biaxial strains could also achieve a phase transition from
AFM to FM (Figure 2k–n). In addition, the magnetic anisotropy could be mediated by
the strain.

2.1.2. CrBr3

More interestingly, the Curie temperature of monolayer CrBr3 could be increased
to 314 K by doping [103], which was between CrCl3 (323 K) and CrI3 (293 K). Although
both hole doping and electron doping could enhance ferromagnetic coupling, the effect
of hole doping was better at the same doping concentration. After applying biaxial strain
to a unit cell, its magnetic moment remained unchanged, which indicated that the biaxial
strain could not effectively enhance the ferromagnetic coupling of monolayer CrX3. In
addition, Webster et al. [59] found that applying a tensile strain of 2.1% could increase the
TC to 44 K, which was about 5 K higher than when no strain was applied. However, at a
compressive strain of −4.1%, a FM to AFM phase transition, similar to CrCl3 [59,63,64] and
CrI3 [59,70–72], also occurred.

2.1.3. CrI3

Unlike monolayer CrCl3, the electronic bandgap of monolayer CrI3 remained al-
most unchanged after applying biaxial tensile strain; after applying biaxial compressive
strain, the electronic bandgap decreased significantly and MAE increased significantly.
When compressive strain reached 5%, MAE increased by 47% [59]. Continuing to in-
crease the strain (−5.7%) resulted in a phase transition from FM to AFM. Similar to CrCl3,
Wu et al. [69] also found that the CrI3 monolayer underwent a complex phase transition
from magnetic metals, half-metal, half-semiconductor to magnetic semiconductor as the
strain evolved from compression (−15%) to tension (10%).

As a typical example, Vishkayi et al. [71] investigated the effects of biaxial and uniaxial
strain on the magnetism of monolayer CrI3 (Figure 3a–e). A similar phase transition from
FM to AFM [59] was also observed when a compressive strain greater than 7% was applied
(Figure 3d). As the strain increased, the electronic bandgap showed an opposite trend when
applying compressive or tensile strain (Figure 3d). Interestingly, uniaxial strain enhanced
the nearest neighbor, Dzialoshinskii–Moriya (DM) interaction, by breaking the inversion
symmetry, and its effect was stronger than biaxial strain.
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represent Cr(I) atoms. (b) Schematic picture of the symmetric exchange couplings between Cr at-
oms, where J1 denotes the coupling between nearest-neighbor atoms and J2 denotes the coupling 
between next-nearest-neighbor atoms. (c) The same as (b) for the DM vectors. (d) The total energy 
difference between the FM and AFM configurations, Δ𝐸, and (e) the variation in the band gap as a 
function of strain for monolayer CrI3 in the FM and AFM configurations. (Reproduced with permis-
sion from [71]. Copyright 2020, American Physical Society). 
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CrSe2 and (c) CrTe2 bulks; real part of electron susceptibility 𝜒  with 𝑞 = 0 for (d) CrSe2 and (e) 
CrTe2 bulks. Relative total energies of three different magnetic configurations [FM, AFM1 (collin-
ear), and AFM2 (non-collinear)] as a function of biaxial strain for (f) CrSe2 and (g) CrTe2 monolayers. 

Figure 3. (a) Top and side views of monolayer CrI3. The bonding angles between the atoms in the
monolayer are denoted by θ, α, and β. A 2× 2× 1 supercell of the monolayer. The blue (pink) spheres
represent Cr(I) atoms. (b) Schematic picture of the symmetric exchange couplings between Cr atoms,
where J1 denotes the coupling between nearest-neighbor atoms and J2 denotes the coupling between
next-nearest-neighbor atoms. (c) The same as (b) for the DM vectors. (d) The total energy difference
between the FM and AFM configurations, ∆E, and (e) the variation in the band gap as a function of
strain for monolayer CrI3 in the FM and AFM configurations. (Reproduced with permission from [71].
Copyright 2020, American Physical Society).

The phase transition from FM to AFM under compressive strain (−3% or −5%) had
also been discovered in the CrI3 bilayer [70], similar to other previously reported sys-
tems [59,71]. In addition, Safi et al. [72] found that the phase transition occurred at −6%
compressive strain. More importantly, they also discovered a second phase transition point
from FM to AFM, which occurred near −2.5% compressive strain.

2.1.4. CrTe2

Guo et al. [104]. found that applying uniaxial or biaxial tensile strain to monolayer
CrTe2 in the T phase did not cause a phase transition from direct to indirect bandgap.
Under biaxial strain, the CrTe2 monolayer [105] underwent phase transformation at −1%
compressive strain in Figure 4a–k.
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Figure 4. (a) Crystal structure of CrSe2/CrTe2 bulk; Fermi surface without spin polarization for
(b) CrSe2 and (c) CrTe2 bulks; real part of electron susceptibility χ′ with qz = 0 for (d) CrSe2

and (e) CrTe2 bulks. Relative total energies of three different magnetic configurations [FM, AFM1
(collinear), and AFM2 (non-collinear)] as a function of biaxial strain for (f) CrSe2 and (g) CrTe2

monolayers. Strain dependence of (h) the energy difference ∆E (=EAFM − EFM) between AFM and
FM states in one unit cell, (i) the TC in FM states, (j) magnetic moments on Cr and Se/Te atoms in FM
states, and (k) the number of density of states (DOS) at the Fermi energy NEF in the nonmagnetic
(NM) states for CrSe2/CrTe2 monolayers. (Reproduced with permission from [105]. Copyright 2015,
American Physical Society). (l) strain and (m) band filling of 1 L, 2 L, and bulk 1T-CrTe2. Difference
in SOC matrix elements ∆ <pi|pj> (per atom) of the Te-5p orbitals. (n) ∆ <pi|pj> of 1 L, 2 L, and bulk
1T-CrTe2 versus strain. At each strain, the values for δθD are also shown. Positive and negative values
of the strain correspond to tensile and compressive strain, respectively. For the bilayer, values for Te
atoms at the van der Waals gap (Tev) and Te atoms at the free surface Tes are shown. (Reproduced
with permission from [106]. Copyright 2022, American Physical Society). (o) Computed STM images
for monolayer CrTe2 in the normal state and the charge density wave (CDW) phase. (Reproduced
with permission from [107]. Copyright 2020, American Chemical Society).

Interestingly, the CrTe2 monolayer with strain-free was a FM state. After the tensile
strain was applied, its TC could rise to 1022.8 K [106], and the magnetic moment of Cr
atom increased linearly, which may be caused by the increase of the density of states at
Fermi energy NEF. Magnetic anisotropy exhibited a different sensitivity to uniaxial and
biaxial strain, as shown in Figure 4l. A monolayer was more sensitive to tensile strain,
while a bilayer was more sensitive to compressive strain, and bulk was insensitive to the
applied strain. Furthermore, band filling [108] of the monolayer also underwent a transition
from out-of-plane to in-plane, while the bilayer and bulk did not undergo this transition
(Figure 4m). More interestingly, the strain had the greatest impact on the dihedral angle
θD, followed by the effect of Cr-Te-Cr bond length (Figure 4n). Notably, the charge density
wave (CDW) phase [107] promoted greater stability of the long-range FM order.

2.1.5. Cr2Ge2Te6

As early as 2014, Li et al. [73] predicted that Cr2X2Te6 (X = Si, Ge), a layered crystal
with intrinsic FM, could be obtained experimentally by exfoliation. Furthermore, the TC
of Cr2Ge2Te6 (Cr2Si2Te6) was increased by 51.7(56) K under an isotropic tensile strain.
Similarly, Dong et al. [75] also found that Cr2Ge2Se6 and Cr2Ge2Te6 were a stable FM
semiconductor, as shown in Figure 5a–e.
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Figure 5. (a) top view in the a-b plane and (b) side view in the a-c plane of crystal structure of
Cr2Ge2Se6. The 2D Brillouin zone is shown in (c). (d) M-T. The experimental results for are taken
from Ref. [7]. The calculated results are obtained by DFT calculations and Monte Carlo simulations.
(e) TC-U. (Reproduced with permission from [75]. Copyright 2019, American Physical Society).
(f) top and side view of crystal structure of CrPbTe3. M-T curves for (g) pristine CrPbTe3,
(h) 4% tensile strain structure, (i) 4% compressive strain structure and (j) variation of TC with
strain. (Reproduced with permission from [78]. Copyright 2020, IOP Publishing).

Through Monte Carlo simulation, it was found that the TC of Cr2Ge2Se6 (144 K) was
five times that of Cr2Ge2Te6 (30 K) (Figure 5d). Interestingly, when compressive strain was
applied, the TC decreased, and even at 2% strain, the phase became AFM. After applying
tensile strain, the TC would be increased, even up to 500 K. Notably, the TC of Cr2Ge2Se6
with 5% strain was always higher than RT (Figure 5e). To our knowledge, 2D Cr2Ge2Se6
has not yet been prepared experimentally.

As a member of Cr-based materials, 2D CrPbTe3 (CPT) has a stable monolayer structure
and a higher TC, as shown in Figure 5f. Similar to Cr2Ge2Se6, its TC (110 K) gradually
increased from compressive strain (61 K) to tensile strain (150 K) (Figure 5g–j). In addition,
strain can also induce spin reorientation from the in-plane to the out-of-plane.

2.1.6. CrPS4

AgVP2Se6, as a typical quaternary FM semiconductor, was synthesized by heating
the elements in evacuated silica tubes as early as 1988 [88]. Ouvrard et al. found that
its polycrystalline powder showed low-temperature FM, high-temperature PM and TC of
about 29 K. Recently, single crystal AgVP2Se6 samples [90] exhibited better stability than
MX3 materials. As another typical example, single crystal CrPS4 [91] was obtained by the
chemical vapor transport method and mechanical exfoliation. Interestingly, odd layers
were ferromagnetic at lower temperatures, while even layers were antiferromagnetic, as
shown in Figure 6. To the best our knowledge, there were currently no reports on regulating
the magnetic properties of AgVP2Se6 and CrPS4 through strain engineering.
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rect solid-state reaction (SSR) [81]. Zhuang et al. [82] found that applying biaxial strain on 
single-layer metallic Fe3GeTe2 could enhance the MAE and total magnetic moment (Figure 
7a–d). When 2% tensile strain was applied, its MAE increased by 50%; After the applied 
strain changed from compression to tension, the total magnetic moment also increased 
with the increase of strain. Through DFT calculations, Hu et al. [85] discovered that mon-
olayer FGT was a metallic type ferromagnet, with its magnetic moment mainly localized 
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Figure 6. Layer dependent magnetic properties of thin CrPS4. (a) Optical image. Scale bar is 5 µm.
(b) Raman spectra. (c) Temperature dependence of MOKE signal under µ0H = 0.25 T measured on
1 L to 5 L flakes shown in (a). (d) Raman peak intensity of the F peak for each flake normalized by
that from the 5 L as a function of the layer number. (e) Critical temperature, TC (black dashed bar),
and critical exponent, β (blue symbol), extracted from the fitting lines shown in (c). (Reproduced
with permission from [68]. Copyright 2021, American Chemical Society).

2.2. Fe-Based 2D van der Waals Materials

The bulk Fe3GeTe2 (FGT) with the hexagonal platelets was first synthesized by a direct
solid-state reaction (SSR) [81]. Zhuang et al. [82] found that applying biaxial strain on single-
layer metallic Fe3GeTe2 could enhance the MAE and total magnetic moment (Figure 7a–d).
When 2% tensile strain was applied, its MAE increased by 50%; After the applied strain
changed from compression to tension, the total magnetic moment also increased with the
increase of strain. Through DFT calculations, Hu et al. [85] discovered that monolayer FGT
was a metallic type ferromagnet, with its magnetic moment mainly localized on Fe atoms
and its metallicity mainly derived from the Fe d orbitals in Figure 7e–g.

After applying the biaxial strain shown in Figure 7h, there was a significant change in
the spin-density distributions of the FGT monolayer. The magnetism of this system mainly
came from Fe atoms (Figure 7i), especially Fe3 atoms at the inequivalent site (Figure 7f),
with little contribution from Ge and Te atoms (Figure 7j). Due to the Poisson effect, when
stretched in the in-plane direction, it contracted in the out of plane direction. Therefore,
as the bond lengths of Fe1-Te and Fe3-Te were reduced in the plane, the bond lengths of
Fe3-Te in the vertical direction were increased (Figure 7k). Biaxial strain caused a change in
bond length, thereby promoting charge transfer within the monolayer (Figure 7l). When
the biaxial strain increased from −5% to 5%, the spin splitting of the Fe1 3d orbital near the
Fermi level became larger, as shown in Figure 7m; after the strain was applied, the spin
polarization of Fe3 atoms would increase in Figure 7n, which would cause the magnetic
moment to increase. In conclusion, biaxial strain-mediated FM in the FGT monolayer was
closely related to the charge transfer between Fe1 and Te atoms.

Previous studies have mainly focused on biaxial strain-mediated FM in the FGT
monolayers [82,85], without studying the modulation mechanism of uniaxial strain on
FM. As a typical example, Zhu et el. [86] investigated the uniaxial (εa and εc) and isotropic
(εiso.) strain modulation of the exchange coupling constant Jij and TC in FGT. As shown in
Figure 8, three different magnetic configurations (FM, AFM1, and AFM2) were considered.
The total energy of AFM2 was much higher than those of FM and AFM1.
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Figure 7. (a) Top and (b) side views of the atomic structure of monolayer Fe3GeTe2. The unit cell is
enclosed by the dotted lines. Inequivalent Fe sites are numbered by I and II, respectively. Variation of
(c) MAE and (d) total magnetic moment per Fe atom of single-layer Fe3GeTe2 under biaxial strain.
(Reproduced with permission from [82]. Copyright 2016, American Physical Society). (e) Top and
(f) side views of the structural models of the FGT monolayer. The purple, green, and yellow balls
stand for Fe, Ge, and Te atoms, respectively. Fe sites are numbered by Fe1, Fe2, and Fe3, respectively,
where Fe1 and Fe2 atoms are located at 2 equivsites, while Fe3 atom has the inequivalent site.
(g) Spin-polarized band structures of the FGT monolayer. The Fermi level is set at zero, denoted by
the olive dashed line. (h) Spin-density distribution of the FGT monolayer with −5, 0, and 5% strain.
The isovalues are 0.02 e/Å3. Strain dependence of magnetic moment (i) per Fe1 and Fe3 atoms and
(j) per Ge and Te atoms in the FGT monolayer. Strain dependence of (k) the distance and the bonding
length (Fe1–Fe2 distance, dFe1-Fe2; Fe3–Te bond length, dFe3-Te; Fe1−Te bond length, dFe1-Te; Fe3–Ge
bond length, dFe3-Ge). (l) Electron transfer of Fe, Ge, and Te atoms in the FGT monolayer. PDOS
(partial density of states) of (m) Fe1 atom and (n) Fe3 atom in the FGT monolayer. The enhanced
spin splitting of the a and b states in PDOS. (Reproduced with permission from [85]. Copyright 2020,
American Chemical Society).
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Figure 8. Schematic of the crystal structure of FGT from (a) top and (b) side view, and (c) the
spin structure of FM, AFM1, and AFM2 configurations. (d,e) Total energy of FM, AFM1, and
AFM2 configurations of FGT as a function of lattice distortion (d) along the a-axis and (e) the c-axis.
(f) Total energy difference (∆E = EFM − EAFM) under c-axis and a-axis strain. The background
indicates the FM- or AFM-stable region. (g) The schematic picture of Fe–Fe exchange interactions
in FGT, where only the Fe atoms are displayed. (h–j) Total isotropic exchange coupling parameters
of J1,1, J1,2, J1,3, J1,6 in functions of three different kinds of distortion: (h) along the a-axis, (i) along
the c-axis and (j) isotropically. (k–m) Corresponding variation of TC under above strains. The insets
show the Ji, j that play a main role in the variation of TC. (Reproduced with permission from [86].
Copyright 2018, Elsevier).

The system exhibited a phase transition from AFM to FM, similar to the modulation
result of biaxial strain [59]. Interestingly, when the strain (εa) along the a-axis was applied,
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the phase transition occurred at a tensile of ~4% or compressive of ~2%; when the strain (εc)
along the c-axis strain was applied, it occurred at a compressive of ~8–10%. Furthermore,
the strain-mediated variation of Jij

total is shown in Figure 8g–i. TC could be estimated by
the following equation [86,98,99]:

TC =
2

3KB
Jmax (2)

Note that Jmax is the maximal eigenvalue of the matrix consisting of the exchange
coupling between different atoms [86,109]. After applying the uniaxial strain, the TC could
be raised to room temperature (Figure 8k–m). When isotropic strain is applied, the TC
exhibited complex nonlinear changes and failed to reach room temperature (Figure 8m).
Their results demonstrated that applying uniaxial strain was an effective way to elevate
the TC.

Regarding another interesting compound, Fe5GeTe2 [110,111], recent experiments
have found that it has a higher TC. However, little is known about the electronic and
magnetic properties of its monolayer. Joe et al. [83] found that the magnetism of bulk and
monolayer metallic Fe5GeTe2 originated from Fe d orbital. Moreover, biaxial strain could
also enhance the Fe magnetic moment from 1.65 µB to 2.66 µB.

3. Introducing Strain in 2D van der Waals Materials
3.1. Wrinkle-Induced Strain

The previously discovered strain-mediated FM phenomena were all in 2D materials
without intrinsic long-range magnetic order [27,28,41]. Very recently, Seidel et al. [42] found
a clear dependence of TC on the strain state and the thickness of Cr2Ge2T6 (CGT). The
layered CGT lattice with intrinsic magnetism was shown in Figure 9a. A stripe domain
structure was observed with MFM (Figure 9b). After buckling, the wrinkled area had a
higher TC than the flat area on (Figure 9c). DFT calculations indicated that the strain could
elevate the TC in monolayer and bilayer Cr2Ge2T6 (Figure 9d–g). In addition, the strain
of three different wrinkles in Figure 9h was confirmed by COMSOL simulations. To the
best of our knowledge, this was the first time that the strain distribution in CGT wrinkles
was mapped with the COMSOL simulation. Furthermore, the magnetic signals could be
observed at the wrinkled regions at RT through MFM.

3.2. Bending or Pre-Stretching Flexible Substrates

Similar to pre-stretched flexible substrates, including Gel-Film [30], polydimethylsil-
oxane (PDMS) [30,112–117], polyethyleneterephthalate (PET) [118], polyimide
(PI) [47,119,120], and polyvinyl alcohol (PVA) [121,122], strain can also be introduced into
2D materials by bending flexible substrates. As a typical example, Yan et al. [121] designed
a novel polymer-buried strategy to apply tensile strain on Fe3GeTe2 (FGT) nanoflakes
(Figure 10a). Firstly, PVA was spin-coated onto pre-stretched mechanical exfoliated FTG
nanosheets. Then, the PET sheet was attached to the surface of the PVA film and peeled off
with tweezers. The complex film (FGT/PVA/PET) was placed into a non-magnetic plastic
tube and then the tensile strain was applied on the FGT nanosheets through a three-point
fixing device. As the applied strain gradually increased, the sample transitioned from its
original PM state to FM states, as shown in Figure 10b,c. When the strain reached 4.7%,
the hysteresis loop evolved from soft magnet to hard magnet; however, when the strain
reached 7.0%, the hysteresis loop displayed an opposite evolution trend. Moreover, the
Ms and Hc were very close to those found for the case of tensile strain. Unlike zero-strain
samples, the sample with a 3.4% tensile strain always exhibited centrosymmetry and no
exchange bias (Figure 10d,e). The hidden AFM state and interface–exchange interaction
could be revealed by controlling the strain. The frequency shift was inverted after relaxing
the strain, indicating the transition from FM state to PM state (Figure 10f,g). As the strain
increased, the TC was elevated above RT in Figure 10h,i. In short, strain engineering is an
efficient way to increase TC compared to other methods (Figure 10j).
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Figure 9. Curved nanostructures in vdW Cr2Ge2T6: (a) CGT crystal lattice showing the vdW layered
structure and interlayer distance. (b) Typical magnetic stripe domain structure at 4 K seen in MFM
measurements. (c) Schematic showing wrinkles in layered CGT and magnetically coated tip for
MFM measurements. DFT predicted trend of magnetism and transition temperature with strain
percentage. (d) Intralayer Cr the nearest-neighbor (J1), the second-nearest−neighbor (J2), and the
third-nearest-neighbor (J3) exchange couplings. (e) Interlayer Cr the nearest−neighbor (J1′ ) and the
second-nearest-neighbor (J2′ ) exchange couplings in bilayer Cr2Ge2T6. The calculated MAE per Cr
atom and TC as functions of strain for (f) monolayer and (g) bilayer Cr2Ge2T6. (h) Temperature-
dependent MFM examination of curved wrinkles with increasing strain: Left, Topography of three
different strained wrinkles. Right, MFM image series depicting enhanced magnetic signal at the
wrinkles depending on specific strain state up to RT. Magnetic signals in wrinkles exhibiting strain
of 1.3% disappear above 100 K, while wrinkles with 2.3% strain exhibit clear MFM phase signals
up to RT. Diagonal periodic lines in the figures are a result of instrument noise and are not part of
the magnetic signal (1.3% strain at 110 K and 2.3% strain at 120 K). (Reproduced with permission
from [42]. Copyright 2022, American Chemical Society).
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Figure 10. (a) Schematic illustration of the transfer and bending process of FGT nanoflakes on flexible
PVA/PET substrates. (b) M–H curves at under different strain values. (c) Extracted MS and HC as a
function of tensile strain. (d) ZFC and FC curves before and after the training procedure. (e) M–H
curves and anomalous exchange-bias effect. Insets are the corresponding schematic illustrations.
(f) AFM and MFM images of a single nanoflake in the bending and recovery states. All scale bars are
1 mm. (g) Extracted height and Df along the white dashed lines marked in (f). (h) M-T and critical
fittings under different strains. (i) Strain-tuned TC phase diagram. The blue square symbols are the
results of this current work and others are collected from the literature. (j) Comparison of optimal
TC values using different methods based on the FGT system. From top to bottom: Fe5 [111] and
Co [123] represent pure and Co-doped Fe5GeTe2, respectively; Fe4 refers to Fe4GeTe2 [124]; Au [125],
FePS3 [37] and Bi2Te3 [34] denote the corresponding heterojunctions with Fe3GeTe2. Gating means
the electrostatically gated Fe3GeTe2 [126], FIB [127] and Ga [128] are focused ion beam-treated and
Ga ion-implanted Fe3GeTe2, respectively. (Reproduced with permission from [121]. Copyright 2021,
The Royal Society of Chemistry).

As another typical example, Miao et al. [47] found that when 0.32% uniaxial tensile
strain was applied to the FGT nano sheet, its Hc increased by more than 150%. In order to
apply strain, they directly exfoliated the FGT nanosheets onto the PI film. By controlling
the distance of the needle tip pushed at the center of the substrate, the PI film was bent
to apply different uniaxial tensile strains to the FGT sample. The difference of magnetic
anisotropy energy was attributed to the strain-mediated FM. More importantly, they real-
ized a magnetization reversal with the limited strain. Similarly, Xu et al. [48] also observed a
reversible phase transition from AFM to FM in a CrSBr nanoflake at cryogenic temperature.
Their strain equipment consisted of three piezoelectric actuators glued to a titanium flexure
element. By cleaving a silicon substrate to form a micrometer-scale gap, the sample was
suspended at the gaps. Furthermore, a piezo voltage was used to continuously apply strain
reversibly to the CrSBr flake.
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3.3. Lattice Mismatch

High-quality, single-crystalline Fe4GeTe2 thin films [43] were grown on sapphire
substrate by molecular beam epitaxy (MBE). As shown in Figure 11a, the thin films exhibited
a rhombohedral structure. During the MBE epitaxy preparation, due to a lattice mismatch
of about 20% between the Fe4GeTe2 sample and the sapphire substrate, the lattice rotated
30◦ to form a perfect single crystal.
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Figure 11. Crystal structure of the Fe4GeTe2 and its thickness-dependent magnetism. (a) Schematics
of the crystal structure of Fe4GeTe2 stacked in ABC configuration (left), and its rhombohedral
structure unit (right). (b) Temperature dependence of the magnetization for 16 nm Fe4GeTe2. (c) XRD
scan of the Fe4GeTe2 film. (d) A typical HRTEM image of Fe4GeTe2 films; the color squares show the
high-pass filtered images of the vdW structure. Up Inset: The EDX result verifies the 4:1:2 Fe: Ge:
Te stoichiometric composition with the uniform element distribution map (right). I M–H curves of
4 nm Fe4GeTe2 at 300 K. (e) Room-temperature magnetic hysteresis loops. (f) In-plane Mr–T curve.
(g) Detailed magnetic field-dependent magnetization of 4 nm Fe4GeTe2 at various temperatures for
H//ab. Inset: zoom-in hysteresis loop at 300 K. (h) Mr-T curves. (i) Tc for Fe4GeTe2 thin films with
different thicknesses. (j) Effective magnetic an isotropy energy Keff and curie temperature Tc for our
samples and previous vdW ferromagnets [77,124,129–131]. (Reproduced with permission from [43].
Copyright 2023, Springer Nature).

However, there was a tensile strain of about 2% inside the Fe4GeTe2 film. The in-plane
M-T curve of the 16 nm FGT film in Figure 11b indicated that its TC was close to RT. The
results of XRD (Figure 11c) and HRTEM (Figure 11d) indicated that the FGT film had a
perfect single crystal, and the atomic ratio of the Fe:Ge:Te element was about 4:1:2. At 300 K,
a 4 nm film exhibited robust in-plane magnetic anisotropy, as shown in Figure 11e. By fitting
the Mr-T curve in Figure 11f, the TC could be deduced as high as 530 K. Furthermore, in
Figure 11, it was confirmed through M-H loops that the few layered FGT sample exhibited
high-temperature FM. In addition, the thickness dependence of TC showed that when the
thickness was thinner, its TC was higher, as shown in Figure 11h,i. Notably, MBE-prepared
FGT had the higher TC and maintains a relatively high-magnetic anisotropy (Figure 11j).



Nanomaterials 2023, 13, 2378 15 of 23

Through DFT calculations, it was found that a 2% tensile strain was not the reason for the
enhanced TC.

3.4. Electrostatic Force

Considering the abnormally large mechanical response of Cr2Ge2Te6 (CGT) thin films
caused by strong magnetostriction at TC, it was expected that this reverse effect could
achieve strain-controlled TC. As shown in Figure 12a–c, the electrostatic strain-tuning TC
was realized in a suspended Cr2Ge2Te6/WSe2 heterostructure [44]. After applying a gate
voltage Vg, there was electrostatic force (Fel) in Figure 12c between the heterostructure and
the bottom silicon substrate, resulting in strain in Cr2Ge2Te6 thin films. The strain of the
CGT layer can be estimated using the following formula:

∆ε = εel
(
Vg
)
+ εb

(
Vg
)

≈
[

2
3

(
ε0r

8g0
2n(T0)

)2
]

V4
g +

[
ε0r∆z(1−v)
4g0

2n(T0)

]
V2

g ,
(3)
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ture and the bottom Si substrate. Interestingly, when the electrostatic force induced a 
strain of 0.026%, the TC of the suspended Cr2Ge2Te6 /WSe2 heterostructure was increased 
by about 2.6 K, as shown in Figure 12d–g. 

3.5. Field-Cooling 
Due to the fact that the lattice parameters of CGT materials at 5 K are greater than 

those at 270 K, it would cause in-plane expansion during cooling [133,134]. Phatak et al. 
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netic domain structure by cryogenic Lorentz transmission electron microscopy (LTEM), 
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Figure 12. Strain-mediated TC in a suspended CGT/WSe2 heterostructure. (a) The schematic
cross-section of the suspended CGT/WSe2 heterostructure membrane. (b) The optical image of the
heterostructure. Scale bar: 12 µm. (c) The schematics of the electrostatic strain-tuning principle.
(d) Measured resonance frequencies f0 of the heterostructure membrane as a function of temperature
for different gate voltages Vg. (e) Filled blue circles—the measured resonance frequency as a function
of Vg at 60 K. (f) The temperature derivative of f02 as a function of temperature. (g) Solid magenta
line—the estimate of electrostatically induced strain ∆ε as a function of Vg. The shaded magenta
region shows the uncertainty in ∆ε. The inset shows as a function of added voltage-induced strain ∆ε
in addition to calculations from Li and Yang [73] (solid green line) and from Dong et al. [132] (solid
orange line). The vertical error bars in TC were estimated from determining the peak position in (e)
within 2% accuracy in the measured maximum. (Reproduced with permission from [44]. Copyright
2022, American Chemical Society).

Note that ∆ε is the total strain in the CGT layer; εel is the electrostatic pulling strain;
εb is bending strain; ε0 is the dielectric constant of vacuum; Vg is the gate voltage; r is the
membrane radius; v is the Poisson’s ratio; n(T0) is total tension in suspended heterostruc-
tures at T0 = 60 K; and g0 is the separation between the heterostructure and the bottom Si
substrate. Interestingly, when the electrostatic force induced a strain of 0.026%, the TC of
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the suspended Cr2Ge2Te6 /WSe2 heterostructure was increased by about 2.6 K, as shown
in Figure 12d–g.

3.5. Field-Cooling

Due to the fact that the lattice parameters of CGT materials at 5 K are greater than
those at 270 K, it would cause in-plane expansion during cooling [133,134]. Phatak et al. [45]
found that field-cooling could cause the material expansion in CGT flakes, leading to in-
plane strain. Furthermore, they directly observed strain-induced evolution of the magnetic
domain structure by cryogenic Lorentz transmission electron microscopy (LTEM), which
was closely related to the magnetoelastic coupling between strain and magnetization. This
work revealed how to directly measure magnetic domain structures at the nanoscale.

4. Conclusions and Outlook

In this review, we have summarized the recent progress of strain-mediated intrinsic
FM in 2D van der Waals materials with long-range order. First, we introduce how to
explain the strain-mediated intrinsic FM on Cr-based and Fe-based 2D van der Waals
materials with long-range FM order through ab initio Density functional theory (DFT), and
how to calculate magnetic anisotropy energy (MAE) and TC from the interlayer exchange
coupling. Subsequently, we focus on numerous attempts to apply strain to 2D materials
in experiments, including wrinkle-induced strain, flexible substrate bending or stretching,
lattice mismatch, electrostatic force and field-cooling. However, research in this field is still
in its early stages and there are many challenges that must be overcome.

By selecting substrates with different thermal expansion coefficients, including x-
quartz [135–138], sapphire [27,28,139], and SiO2 [114]), uniaxial [135–138] or biaxial
strain [27,28,114,139,140] could be introduced into 2D materials. The introduction of biaxial
strain in this way was limited to the study of 2D materials without intrinsic long-range
magnetic order, such as MoS2 [28] and ReS2 [27]. So far, this strategy has not been applied
to the research on 2D intrinsic van der Waals materials. Very few equipment [47,48,121]
could apply strain to 2D materials, but less could be coupled with magnetic testing equip-
ment [41,141]. Especially, it is very challenging that one could accurately determine the
strain while measuring the magnetic properties and TC in different regions.

Recently, some emerging magnetic imaging technologies, such as magneto-optical
Kerr effect (MOKE) [7,8,40,142–144], magnetic circular dichroism (MCD) [62,126,145–149],
photoemission electron microscopy (PPEM) [150], scanning transmission X-ray microscopy
(STXM) [151], Lorentz transmission electron microscopy (LTEM) [150–152], spin-polarized
scanning tunneling microscopy (SP-TEM) [66,153], MFM [41,154], scanning
SQUID [155–159], and scanning nitrogen-vacancy center microscopy (SNVM) [160–164],
have been used to study 2D FM materials. However, these studies have not yet been com-
bined with strain and, currently, it is almost impossible to directly analyze the relationship
between strain and FM in 2D intrinsic materials. More importantly, strengthening the guide-
line of strain-mediated FM will promote the development of spintronics and straintronics.
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Abbreviations

2D two-dimensional
3D three-dimensional
AFM antiferromagnetism
BKT Berezinskii-Kosterlitz-Thouless
CDW charge density wave
CGT Cr2Ge2Te6
CPT CrPbTe3
DFT density functional theory
DM Dzialoshinskii-Moriya
DOS density of states
FGT Fe3GeTe2
FM ferromagnetism
GGA the generalized gradient approach
HRTEM high resolution transmission electron microscopy
LDA linear density approach
LRO long-range order
LSDA local spin density approximation
LTEM lorentz transmission electron microscopy
MAE magnetic anisotropy energy
MBE molecular beam epitaxy
MC Monte Carlo
MCD magnetic circular dichroism
MFM magnetic force microscopy
MOKE magneto-optical Kerr effect
NM nonmagnetism
PAD polymer assisted deposition
PDMS polydimethylsiloxane
PEEM photoemission electron microscopy
PET polyethyleneterephthalate
PI polyimide
PRA the random phase approximation
PVA polyvinyl alcohol
QMC Quantum Monte Carlo
RT room temperature
SEM scanning electron microscopy
SNVM scanning nitrogen-vacancy center microscopy
SP-TEM spin-polarized scanning tunneling microscopy
SQUID superconducting quantum interference device magnetometry
SOC spin-orbit coupling
SSR solid-state reaction
STM scanning tunneling microscopy
STXM scanning transmission X-ray microscopy
XRD X-ray diffraction
Fel electrostatic force
TC curie temperature
J the exchange coupling constant
K magnetic anisotropy
∆E total energy difference
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