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Abstract: Highly active and cost-efficient electrocatalysts for oxygen reduction reaction (ORR) are
significant for developing renewable energy conversion devices. Herein, a nanocomposite Fe/ZnS-
SNC electrocatalyst with an FeS and ZnS heterojunction on N,S-codoped carbon has been fabricated
via a facile one-step sulfonating of the pre-designed Zn- and Fe-organic frameworks. Benefitting from
the electron transfer from FeS to adjacent ZnS at the heterointerfaces, the optimized Fe/ZnS-SNC900
catalyst exhibits excellent ORR performances, featuring the half-wave potentials of 0.94 V and 0.81 V
in alkaline and acidic media, respectively, which is competitive with the commercial 20 wt.% Pt/C
(0.87 and 0.76 V). The flexible Zn-air battery equipping Fe/ZnS-SNC900 affords a higher open-circuit
voltage (1.45 V) and power density of 30.2 mW cm−2. Fuel cells assembled with Fe/ZnS-SNC900
as cathodic catalysts deliver a higher power output of 388.3 and 242.8 mW cm−2 in H2-O2 and -air
conditions. This work proposes advanced heterostructured ORR electrocatalysts that effectively
promote renewable energy conversions.

Keywords: N,S codoped; ZnS/FeS; heterostructure; electron transfer; oxygen reduction reaction

1. Introduction

Oxygen reduction reaction (ORR) is an important electrochemical reaction process in clean
and renewable energy conversion and storage technologies, e.g., fuel cells and metal–air batteries,
whose output power densities are even determined by the ORR performance [1,2]. Platinum
(Pt)-based catalysts are active toward ORR; unfortunately, however, they are considerably
hindered in industrial applications because of their scarcity and high price [3]. Therefore, it is
essential to develop low-cost and efficient non-precious ORR catalysts that overcome sluggish
reaction kinetics and high overpotentials.

Metal-free doped carbons have attracted significant attention as efficient electrocat-
alysts for the adsorption of reactive intermediates during ORR, which can effectively
regulate the electron and/or spin redistribution of the carbon matrix, thereby facilitating
the ORR process [4–6]. It is well confirmed that S-doping is beneficial for the production of
electron-withdrawing/donating groups, such as SOx-C or/and C-S-C species on the carbon
plane [7], thereby modulating the electronic state of adjacent carbon atoms [8]. Moreover,
the introduction of extra active units into heteroatoms-doped carbon substrates, including
metal oxides, phosphides, sulfides, etc., is favorable for the further improvement of cat-
alytic performance owing to co-catalysis [9–12]. Nowadays, the most widely investigated
ORR electrocatalysts are mainly focused on Fe and Co metallic compounds [13,14]. In
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contrast, Zn-based materials have been very attractive for ORR due to their inexpensive
and environmentally friendly properties.

Zeolitic imidazolate framework-8 (ZIF-8) has been widely employed as a precursor to
fabricate the heteroatoms-doped porous carbons for high-efficiency electrocatalysts, such
as Zn/N-codoped carbons [15–17]. Owing to their hierarchically porous morphology and
modifiable elemental composition, ZIF-8 derivatives are proving to be promising alterna-
tives to Pt-based ORR catalysts [18]. In particular, the Zn in the ZIF-8 can reconstructed with
S atoms and connect with pyridinic-N to form a fast transport pathway for the adsorbed
O-containing intermediates during ORR [19]. Moreover, the catalytic activity can be further
improved by designing heterogeneous catalysts to tune the interface electrons [20–22].
These catalysts feature strong electronic coupling effects between different components,
which is favorable for accelerating the electron transfer of interfaces [23]. For example, the
Fe/Fe3C and FeS composite nanostructures have been proven to be highly efficient ORR
electrocatalysts. Among them, FeS can accelerate the adsorptions of reaction substrates,
but it delivers the sluggish kinetics of ORR. Fe/Fe3C could promote a 4e--transferred ORR
process but it has insufficient adsorption toward oxygen species. Yet only the heterostruc-
tures of Fe/Fe3C and FeS coupling could achieve a good catalytic effect of co-catalysis [24].
Therefore, the rational construction of heterostructured nanomaterials with hierarchical
pores as advanced catalysts should be an effective strategy to improve ORR performance.

Herein, a nanocomposite Fe/ZnS-SNC catalyst with an FeS and ZnS heterojunction
on N,S-codoped carbon has been fabricated via a facile one-step sulfonation treatment of
the pre-designed Zn-/Fe-organic frameworks. The heterointerface between ZnS and FeS
phases affords the formation of synergistic catalytic active centers, enabling the efficient
charge transfer from FeS to ZnS sites at the interfaces to enhance the ORR performance
of as-prepared catalysts. As a result, the resultant Fe/ZnS-SNC900 catalyst displays out-
standing ORR activities with a half-wave potential of 0.94 V in alkaline and 0.81 V in acidic
electrolytes, which are superior to the state-of-the-art Pt/C and most of the analogous
catalysts. Attractively, the assembled flexible zinc–air battery using Fe/ZnS-SNC900 as air
cathode exhibits higher open-circuit potential (1.45 V) and power density (30.2 mW cm−2),
and the maximum power output of the Fe/ZnS-SNC900-equipped H2-O2 fuel cell reaches
388.3 mW cm−2. The research findings will facilitate the application of heterostructural
metallic sulfides as advanced ORR catalysts in practical energy conversion systems.

2. Materials and Methods
2.1. Chemicals

Iron(III) chloride hexahydrate (FeCl3·6H2O, 99.0%), methanol (CH3OH, AR), and
cetyltrimethylammonium bromide (C19H42BrN, 99%) were purchased from Sigma-Aldrich
Chemical Reagent Co., Ltd. Zinc nitrate hexahydrate (Zn(NO3)2·6H2O, 99.0%), 2-methylimi
dazole (C4H6N2, 98.0%), and 2-aminobenzene-1,4-dicarboxylic acid (NH2-BDC, 98.0%)
were obtained from Adamas Reagent Co. Ltd. Nafion D-520 dispersion (5 wt.%) was
purchased from Dupont China holding. Commercial 20 wt.% and 40 wt.% Pt/C was
purchased from Shanghai Hesen Electric Co., LTD. All chemicals were used without
further purification.

2.2. Material Synthesis

Synthesis of Fe-NH2-BDC: First, 150 mg of FeCl3·6H2O and 50 mg of NH2-BDC were
ultrasonically dispersed in 30 mL of deionized water, followed by stirring for 2 h. Then, the
solution was poured into a Teflon-lined hydrothermal autoclave reactor and kept at 120 ◦C
for 18 h. Finally, the resulting suspension was collected via centrifugation and washed
with deionized water and methanol several times. The obtained solid powders (denoted as
Fe-NH2-BDC) were dried at 60 ◦C under vacuum for 10 h.

Synthesis of ZIF-8: First, 1.2 g of Zn(NO3)2·6H2O was dissolved in 60 mL of deionized
water, and then 5 mL of 0.01 M cetyltrimethylammonium bromide (CTAB) aqueous solution
was injected and sonicated for 30 min. Then, the above solution was added to 100 mL of
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deionized water containing 16.0 g of 2-methylimidazole. The mixture solution was then
ultrasonically treated for 10 min, followed by vigorous stirring at 1500 rpm for 3 h. The
obtained precipitate was centrifuged and washed with deionized water and methanol
several times and then freeze-dried overnight to obtain ZIF-8.

Synthesis of Fe-NH2-BDC@ZIF-8: The nanocomposite was synthesized using similar
methods. First, 10 mg of Fe-NH2-BDC and 1.2 g of Zn(NO3)2·6H2O were dissolved in
80 mL of deionized water, and then 5 mL of 0.01 M CTAB aqueous solution was injected
and sonicated for 30 min. Then, the above solution was added to 100 mL of deionized
water containing 16.0 g of 2-methylimidazole. The mixture solution was then ultrasonically
treated for 10 min, followed by vigorous stirring at 1500 rpm for 3 h. The resulting solid
product (denoted as Fe-NH2-BDC@ZIF-8) was obtained by freeze-drying overnight. As a
comparison, Fe-NH2-BDC-1@ZIF-8 was prepared through the same procedure apart from
the input of Fe-NH2-BDC, which was increased to 50 mg.

Synthesis of Fe/ZnS-SNC: The obtained Fe-NH2-BDC@ZIF-8 was sulfurated in a tube
furnace with two separate parts of 10 cm (S at the upstream) and then heated to 900 ◦C at
5 ◦C min−1 in Ar atmosphere. After the furnace was naturally cooled down, the sample
was then obtained and named Fe/ZnS-SNC. For comparison, the Fe-NH2-BDC-1@ZIF-8,
Fe-NH2-BDC, and ZIF-8 were also pyrolyzed via a similar process and named Zn/FeS-
SNC, FeS-SNC, and ZnS-SNC, respectively. As a control, NC was also prepared by directly
annealing ZIF-8 using the same procedure without S power. Zn/FeS-SNCX was also
obtained via a similar preparation procedure except for the heat treatment temperature (X:
800, 900, 1000 ◦C).

2.3. Characterizations

X-ray diffraction (PXRD) patterns were collected from a Bruker D8 Advance diffrac-
tometer equipped with a Cu-Kα radiation source (40 kV, 40 mA). The surface morphology
and elemental composition of samples were analyzed using a field-emission scanning
electron microscopy (FE-SEM, Magellan 400) with an acceleration voltage of 5–30 kV.
Transmission electron microscopy (TEM) images were performed on a field-emission trans-
mission electron microscope (FETEM, JEM-F2100F) with a field-emission transmission
electron microscope (200 kV). The X-ray photoelectron spectroscopy (XPS) was carried
out using the Thermo Fisher Scientific ECSAlab250 XPS spectrometer with an Al-KαX-ray
source (Thermo, Waltham, MA, USA). Raman spectra were examined on a Microscopic
Confocal Raman Spectrometer (GX-PT-1500) with a 532 nm laser source.

2.4. Zinc–Air Batteries (ZABs)

The flexible Zn-air battery was assembled using a zinc foil as an anode, hydrophobic
carbon paper coated with catalyst as an air cathode, and the gel polymer consisting of
polyvinyl alcohol and KOH as a solid-state electrolyte. The zinc foil and catalyst-coated
carbon cloth were placed on both sides of the gel film. The catalyst loading in the flexible
Zn-air battery was 1.0 mg cm−2. For comparison, the battery using Pt/C (20 wt.%) as an
air cathode was also equipped and evaluated under the same conditions. The polarization
curve of zinc–air batteries was obtained on the CH 760E electrochemical workstation. All
tests were carried out under ambient conditions.

2.5. Proton Exchange Membrane Fuel Cells (PEMFCs)

The performance of PEMFC was measured in the membrane electrode assembly (MEA)
testing system (Model 850e, Scribner Associates, Southern Pines, NC, USA). The catalyst
(15 mg) was ultrasonically dispersed in isopropanol (800 µL). Then, 80 µL of Nafion solution
(5 wt.%) was added, and ultrasound continued for 30 min. The homogeneous catalyst ink
was sprayed to one side of the membrane (Nafion-212, Dupont, Wilmington, DE, USA) as
cathode, and the other side was modified with Pt/C (JM, 40 wt.%) ink as anode. The Pt
loading was 0.1 mg cm−2 at the anode, and the loading of the as-prepared catalyst was
confirmed to be 0.6 mg cm−2. The active area of the membrane electrode assembly (MEA)
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was 4 cm2. The fuel cell tests were carried out under H2-O2/air conditions with a gas
flow rate of 200 sccm for H2 and 300 sccm for O2/air, and the back pressure was 200 KPa
(relative humidity: 100%, cell temperature: 80 ◦C).

The electrochemical test methods and parameters are detailed in the Supplementary Materials.

3. Results
3.1. Synthesis and Characterization

As illustrated in Figure 1, the Fe/ZnS-SNC catalysts were fabricated through facile co-
ordination self-assembly and subsequent sulfonation process via vapor deposition. Firstly,
Fe-NH2-BDC was synthesized through a facile hydrothermal method; Fe(III) ions were
coordinated with the carboxylate groups. After that, Fe-NH2-BDC and ZIF-8 composites
were self-assembled via co-precipitation of Fe3+/Zn2+ and 2-methylimidazole (2-MIM).
Finally, the FeS and ZnS nanoparticles were embedded into the N,S-codoped carbon via
the sulfonation conversion of pre-designed Fe-NH2-BDC@ZIF-8 composites. The synthesis
strategy is conducive to the formation of co-catalytic sites among polymetallic compounds.
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Figure 1. Schematic diagram for the preparation of Fe/ZnS-SNC.

The morphologies of the NC, ZnS-SNC and Fe/ZnS-SNC are shown as SEM images
in Figure 2a–c. Figure 2a exhibits the cubic morphology of NC, which is similar to that of
ZIF-8 (Figure S1), indicating the structure of ZIF-8 has not been broken during pyrolytic
process. After the sulfuration treatment (Figure 2b), the small ZnS nanoparticles are directly
attached to the surface of NC. Fe/ZnS-SNC in Figure 2c shows a similar cubic morphology
to ZnS-SNC, except for more nanoparticles observed on the surface, which is attributed to
the coexistence of ZnS and FeS species. The SEM image of Zn/FeS-SNC (Figure S2) shows
obvious metal agglomeration, suggesting that the introduction of excessive Fe species is
not conducive to the formation of small metal sulfides. An energy-dispersive spectrometer
(EDS) was used to analyze the elemental composition of the prepared Fe/ZnS-SNC sample
in area 1 of Figure 2d. The EDS analysis confirms the existence of the carbon, oxygen,
sulfur, iron, and zinc elements in the synthesized Fe/ZnS-SNC (Figure 2e). In addition, the
EDS data also indicate the relative proportion of the different elements (inset in Figure 2e).
Transmission electron microscopy (TEM) was carried out to analyze the microstructure
of Fe/ZnS-SNC. As shown in Figure 2f, the nanoparticles marked with a red circle are
clearly observed on the surface of the cubical structure, which is in accordance with the
SEM image (Figure 2c). Furthermore, the high-resolution TEM (HR-TEM) shows the lattice
spacing of nanoparticles at 0.31 and 0.33 nm, corresponding to the FeS (111) and ZnS (100)
lattice planes [25], respectively (Figure 2g). These results indicate that the FeS and ZnS
phases were constructed on N,S-codoped carbon during the high-temperature sulfuration,
proving the formation of an FeS/ZnS heterojunction in Fe/ZnS-SNC. The EDS mapping
(Figure 2h) of Fe/ZnS-SNC further verified the uniform distribution of C, O, S, Zn, and Fe
elements on the catalyst surface.
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Figure 2. SEM images of NC (a), ZnS-SNC (b) and Fe/ZnS-SNC (c). SEM image of Fe/ZnS-SNC (d)
with the corresponding SEM-EDS spectra (e) of area 1. TEM (f) and HR-TEM (g) images of Fe/ZnS-
SNC. The element mapping of carbon, oxygen, sulfur, zinc, and iron in Fe/ZnS-SNC (h).

The XRD pattern of prepared samples in Figure 3a exhibits a broad diffraction peak
at about 2θ = 24◦, which matches with the (002) plane of the graphite carbon and reveals
a high graphitic degree [26]. The remaining peaks are assigned to ZnS (PDF#23-1123)
and FeS (PDF#36-1450) phases, indicating the formation of ZnS and FeS composites after
high-temperature sulfonation [27]. It is worth noting that with the increase in the Fe feed
ratio, the proportion of the FeS phase increased significantly. In addition, the XRD patterns
of the Fe/ZnS-SNC with different sulfuration temperatures are depicted in Figure 3b.
The results show that the concentration of FeS decreased with the increase in sulfonation
temperature. The Raman spectra in Figure 3c show two peaks at 1336 cm−1 and 1584 cm−1,
corresponding to the D and G bands, which represent the amorphous and graphite carbon,
respectively [28]. The intensity ratio of D to G band (ID/IG) is calculated to evaluate
the disorder degree in sp2-hybrid carbon materials. The higher ID/IG ratios imply the
formation of more defects in the carbons, which is favorable for boosting the electrocatalytic
performance of ORR. The intensity ratios of the D and G bands (ID/IG) were calculated as
0.99, 1.01, 1.03, and 1.06 for NC, Fe/ZnS-SNC800, Fe/ZnS-SNC900, and Fe/ZnS-SNC1000,
indicating that more defects were produced with the formation of FeS/ZnS species and
increased sulfuration temperature, which is the response for the elevated ORR activity in as-
synthesized samples. The elemental composition and chemical state of the Fe/ZnS-SNC900
were analyzed using XPS measurements [29]. The XPS spectrum (Figure S3) reveals the
existence of C, O, N, Zn, and Fe elements over the Fe/ZnS-SNC900 sample. The high-
resolution S 2p spectrum (Figure 3d) of Fe/ZnS-SNC900 could be fitted into four peaks
assigning for the metal sulfides (161.6 eV), thiophene sulfur (162.7 and 165.3 eV), and C-
SOx-C (167.5 eV) [30], revealing the doping of S element via the sulfuration process and the
formation of metal sulfides. The N 1s spectrum (Figure 3e) can be divided into four peaks at
403.2 eV (oxidized N), 401.1 eV (graphitic N), 400.0 eV (pyrrolic N), and 398.3 eV (pyridinic
N), respectively [31]. The pyridinic N configurations have been proven to facilitate oxygen
adsorption by providing more Lewis base sites in the neighboring carbon atoms, resultantly
improving the higher intrinsic activity for the ORR. The peaks located at 1022.1 eV and
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1044.5 eV can be observed in the Zn 2p3/2 and Zn 2p1/2 spectra, which is assigned to
the Zn2+ (Figure 3f), confirming the presence of ZnS in Fe/ZnS-SNC900 [32]. The Fe 2p
spectrum of Fe/ZnS-NC900 shows four peaks at 726.9 eV, 723.8 eV, 716.5 eV, and 710.9 eV
(Figure 3g), corresponding to the Fe3+ 2p1/2, Fe2+ 2p1/2, Fe3+ 2p3/2, and Fe2+ 2p3/2 in
FeS [33]. In addition, two new peaks of Fe0 are depicted at 721.6 and 707.2 eV in FeS-
SNC900 [34], which is due to the introduction of excessive Fe species. As revealed in
Figure 3f,g, the binding energy of Fe2+ 2p3/2 and Fe2+ 2p1/2 in Fe/ZnS-SNC900 is higher
than that in FeS-SNC900, which means more charge is removed from Fe sites. Inversely,
the binding energy of Zn2+ 2p3/2 and Zn2+ 2p1/2 in Fe/ZnS-SNC900 is lower than that in
ZnS-SNC900, confirming the electron transfer from FeS to adjacent ZnS components in
Fe/ZnS-SNC900 [35,36]. The interaction at heterointerfaces would lead to the optimized
adsorption energy of reactants, thereby greatly improving ORR activity.
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Figure 3. XRD patterns of different samples (a) and Fe/ZnS-SNCX (X: heat treatment temperature) (b).
Raman spectra of NC and Fe/ZnS-SNCX (c). High resolution of S 2p (d) and N 1s XPS spectra (e)
of Fe/ZnS-SNC900. The comparison diagrams of Zn 2p XPS spectra (f) in Fe/ZnS-SNC900 and
ZnS-SNC900 and Fe 2p XPS spectra (g) in Fe/ZnS-SNC900 and FeS-SNC900.

3.2. Electrocatalytic ORR Performance

The electrocatalytic performance of the prepared catalysts toward ORR was first
evaluated in 0.1 M KOH electrolytes. For comparison, the performance of Pt/C was
measured in the same condition. As shown in Figure S4, a well-defined reduction peak at
0.93 V vs. RHE can be observed through the CV curve of Fe/ZnS-SNC900 in O2-saturated
electrolytes, manifesting its effective ORR catalytic activity. Subsequently, the linear sweep
voltammetry (LSV) curves (Figure 4a) exhibit superior ORR activity on Fe/ZnS-SNC,
featuring the highest half-wave potential (E1/2 = 0.94 V) and diffusion-limited current
density (JL = 5.83 mA cm−2) among all as-synthesized catalysts. In this case, Fe/ZnS-
SNC900 displays the optimal catalytic performance of ORR under the different sulfuration
temperatures (Figure 4b). Moreover, it is seen that in Figure 4c, Fe/ZnS-SNC900 shows the
lowest Tafel slope of 38.4 mV dec−1, which is much lower than those of Fe/ZnS-SNC800
(121.8 mV dec−1), Fe/ZnS-SNC1000 (53.3 mV dec−1), and Pt/C (57.5 mV dec−1), indicating
the faster reaction kinetics on Fe/ZnS-SNC900 [37,38]. These results were also confirmed by
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the higher kinetic current density of 20.1 mA cm−2@0.90 V on Fe/ZnS-SNC900 compared
to those of Fe/ZnS-SNC800 (1.27 mA cm−2), Fe/ZnS-SNC1000 (10.07 mA cm−2), and Pt/C
catalysts (2.85 mA cm−2) (Figure 4d). The ORR polarization curves measured using a
rotating disk electrode (RDE) at 400–2025 rpm are shown in Figure 4e, confirming the
first-order ORR kinetics on Fe/ZnS-SNC900 [39]. The electron transferred number (n)
obtained from the fitted Koutecky–Levitch (K-L) plots was 3.9–4.1 at the potentials of
0.1–0.6 V (Figure S5), demonstrating a 4e− reaction pathway from O2 to H2O [40]. Next,
the electrochemically active surface areas (ECSAs) of different catalysts were determined
from the double-layer capacitance (Cdl) recorded on the non-Faraday region (Figure S6).
As depicted in Figure S7, the Cdl of Fe/ZnS@SNC900 is 24.43 mF cm−2, which is higher
than those of Fe/ZnS@SNC800 (3.05 mF cm−2), Fe/ZnS@SNC1000 (19.18 mF cm−2), and
Pt/C (10.13 mF cm−2), indicating the significantly improved ECSA of Fe/ZnS@SNC900
(610.75 cm2) compared with Fe/ZnS@SNC800 (76.25 cm2), Fe/ZnS@SNC1000 (479.5 cm2),
and Pt/C (253.25 cm2) catalysts due to the strong synergistic effects between the FeS and
ZnS species. The i-t curves in Figure 4f show that Fe/ZnS-SNC900 exhibits better operating
stability, retaining a relative current density of 95% after 10,000 s, which is better than that
of Pt/C (91%). The comparisons of analogous non-noble metal catalysts are summarized in
Table S1, further confirming the superb ORR performance of Fe/ZnS-SNC900 compared to
others reported under alkaline conditions.
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Figure 4. ORR performance in 0.1 M KOH electrolyte. Polarization curves of different samples (a) and
Fe/ZnS-SNCX (b). Tafel slopes (c) and histograms of E1/2 and Jk at 0.9 V vs. RHE (d). LSV curves of
Fe/ZnS-SNC900 at different rotation rates (e). I−t chronoamperometry responses of Fe/ZnS-SNC900
and Pt/C (f).

The ORR performance of different catalysts was also investigated in 0.5 M H2SO4
solution. The CV curve of Fe/ZnS-SNC in Figure S8 shows a significant cathodic peak
at 0.81 V vs. RHE, which belongs to the reduction of O2. The LSV curves in Figure 5a
indicate that Fe/ZnS-SNC possesses outstanding ORR activity with an E1/2 of 0.81 V,
which is higher than those of NC (E1/2 = 0.60 V), FeS-SNC (E1/2 = 0.67 V), ZnS-SNC (E1/2
= 0.77 V), Zn/FeS-SNC (E1/2 = 0.73 V), and benchmark Pt/C catalysts (E1/2 = 0.76 V).
Moreover, the Fe/ZnS-SNC900 shows an optimal ORR activity among the compared
catalysts with different sulfuration temperatures (Figure 5b). The ORR kinetics of the
prepared catalysts was evaluated using Tafel slope and Jk values. As observed in Figure 5c,
the Tafel slope decreases sequentially in the following order: Pt/C (63.9 mV dec−1) >
Fe/ZnS-SNC1000 (52.1 mV dec−1) > Fe/ZnS-SNC800 (52.3 mV dec−1) > Fe/ZnS-SNC900
(39.3 mV dec−1), which is consistent with the LSV results and validates the faster ORR
kinetics on Fe/ZnS-SNC900. Furthermore, the Fe/ZnS-SNC900 presents a kinetic current
density (Jk) of 21.8 mA cm−2, which is superior to that of the Pt/C (Figure 5d, 5.48 mA cm−2)
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at 0.75 V vs. RHE. Additionally, the LSV curves of Fe/ZnS-SNC900 at different speeds
(400–2500 rpm) are depicted in Figure 5e. The electron transferred numbers (n) calculated
from the fitted K-L plots are determined to be 3.9–4.1 at the potential of 0.1–0.5 V (Figure S9),
revealing a near-4e- ORR pathway for O2 reduction to H2O in acidic conditions [41]. The
stability of Fe/ZnS-SNC900 and Pt/C were tested via chronoamperometry in different
acidic electrolytes (Figure 5f). It can be shown that the Fe/ZnS-SNC900 delivers a current
retention of 81% after 20,000 s operation in 0.5 M H2SO4 solution, which was considerably
better than that of Pt/C (55%) after 10,000 s. The excellent ORR activity and durability of
Fe/ZnS-SNC900 in acid conditions demonstrate its potential application prospects.
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Figure 5. ORR performance in 0.5 M H2SO4 electrolytes. Polarization curves of different samples (a)
and Fe/ZnS-SNCX (b). Tafel slopes (c) and histograms of E1/2 and Jk at 0.75 V vs. RHE (d). LSV
curves of Fe/ZnS-SNC900 at different rotation rates (e). I−t chronoamperometry responses of
Fe/ZnS-SNC900 and Pt/C (f).

3.3. Zn-Air Batteries and PEMFC

In order to demonstrate the practical application, flexible Zn-air batteries (ZABs)
were assembled to evaluate the feasibility of carbon cloth-loaded Fe/ZnS-SNC900 as
an air electrode (Figure 6a). The open-circuit voltage of ZAB equipped with Fe/ZnS-
SNC900 electrodes is found to be 1.45 V (Figure 6b), which is in accordance with the actual
measurement value of the voltmeter. The peak power density of Fe/ZnS-SNC900-based
flexible ZAB could reach 30.2 mW cm−2 (Figure 6c), which is comparable to the previously
reported analogous catalysts (Table S2). Two tandem ZABs employing Fe/ZnS-SNC900
as air cathodes can power the red light-emitting diodes (Figure S10), manifesting their
great applicability in driving electronic devices. A membrane electrode assembly (MEA)
with an active area of 4 cm2 was fabricated to evaluate its performance in H2-O2/air fuel
cells. The polarization curves of Fe/ZnS-SNC900 deliver a peak power density of 388.3 and
242.8 mW cm−2 at the H2-O2/air condition, respectively, under the backpressure of 2.0 bar
(Figure 6d). The cells assembled with Fe/ZnS-SNC900 cathode were further subjected to
accelerated durability tests (ADT) at 0.6–0.9 V. The peak power density of Fe/ZnS-SNC900
declined by about 3.1% after 20,000 cycles, indicating its good stability in practical device
applications (Figure 6e). The photograph of a practical membrane electrode with Pt/C
(20 wt.%) and Fe/ZnS-SNC900 as anode and cathode catalysts is illustrated in Figure 6f.
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4. Conclusions

In this work, we proposed a facile method to fabricate an Fe-NH2-BDC@ZIF-8 nanocom-
posite that could be further converted into FeS and ZnS heterojunctions embedded in a
N,S-codoped porous carbon electrocatalyst (Fe/ZnS-SNC) via sulfonating strategy. The
as-prepared Fe/ZnS-SNC900 exhibits higher catalytic activities for ORR in both alkaline
and acidic conditions, which is comparable to the commercial Pt/C and even higher than
that of the analogous non-precious metal catalysts ever reported. Moreover, the Zn-air bat-
tery and PEMFC using Fe/ZnS-SNC as cathodes demonstrate good discharge performance,
showing great application prospects in energy conversion devices. XPS analysis further
confirms the electron transfer at the FeS/ZnS heterointerfaces and the resulting boost in
ORR catalytic activity from modulating the adsorption energy of intermediates on sulfide
sites. This work offers a new avenue for the design of highly efficient heterostructured
electrocatalysts for sustainable energy conversion and storage systems.
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