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Abstract: Bare zinc oxide (ZnO) and Ba-doped ZnO (BZO) samples were prepared by using a simple
precipitation method. The effects of Barium doping on the structural, morphological, and optoelec-
tronic properties, as well as on the physico-chemical features of the surface were investigated and
correlated with the observed photocatalytic activity under natural solar irradiation. The incorporation
of Ba2+ ions into the ZnO structure increased the surface area by ca. 14 times and enhanced the
hydrophilicity with respect to the bare sample, as demonstrated by infrared spectroscopy and contact
angle measurements. The surface hydrophilicity was correlated with the enhanced defectivity of the
doped sample, as indicated by X-ray diffraction, Raman, and fluorescence spectroscopies. The result-
ing higher affinity with water was, for the first time, invoked as an important factor justifying the
superior photocatalytic performance of BZO compared to the undoped one, in addition to the slightly
higher separation of the photoproduced pairs, an effect that has already been reported in literature.
In particular, observed kinetic constants values of 8·10−3 and 11.3·10−3 min−1 were determined for
the ZnO and BZO samples, respectively, by assuming first order kinetics. Importantly, Ba doping
suppressed photocorrosion and increased the stability of the BZO sample under irradiation, making
it a promising photocatalyst for the abatement of toxic species.

Keywords: Ba-doped ZnO; hydrophilicity; solar photodegradation; 4-nitrophenol; photocorrosion
suppression

1. Introduction

Human societies are finally aware of the need to use new technologies to reduce the
climate crisis and avoid environmental disasters that have been occurring quite often in
recent years. Therefore, the problem of environmental remediation using efficient and
environmentally friendly techniques is a hot topic today [1]. The photocatalytic process con-
ducted under solar irradiation is a promising candidate that satisfies the need for efficiency
and safety. Its economic convenience is mainly based on the possibility of using nano-
materials not only with high performance, but also with good (photo)stability under the
operating conditions [2,3]. Currently, only about 0.014% of solar energy (3.85·1024 J·year−1)
impinging on the Earth, and which is absolutely free, is exploited to meet the demand for
renewable energy sources and for the solution of environmental problems [4]. Therefore,
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the conversion of sunlight has become one of the major goals of scientists. The activation of
semiconducting materials by sunlight results in the formation of electron-hole pairs, which
in turn produce an electric current or trigger useful photocatalyzed chemical reactions
on their surface. In this way it is also possible to carry out up-hill reactions that simulate
those occurring in nature, which store solar energy in simple chemical bonds [5,6]. It is also
possible to remove dangerous compounds through their total photo-mineralization or to
synthesize organic substances with high added value in a green and safe way, starting from
compounds of little economic interest [7,8].

Zinc oxide (ZnO) and titanium dioxide (TiO2) in the form of nanomaterials are maybe
the most investigated and applied photocatalysts traditionally proposed for wastewater re-
mediation, due to their low cost and good optical, electronic, and structural properties [9–14].
However, both semiconductors scarcely absorb sunlight and have a high rate of elec-
tron/hole recombination (e−/h+). ZnO, exclusively, is far less stable than TiO2 due to
photocorrosion phenomena [15–17]. To overcome these drawbacks, it has been variously
modified. Usually, sensitization to sunlight and greater stability have been obtained by
doping ZnO with cationic or anionic elements, combining with other semiconductors or
carbon-based materials, or decorating with noble metal particles [18–20]. Specifically, intro-
ducing alkaline earth metals into ZnO has emerged as a promising approach to develop
new doped photocatalysts with distinctive optoelectronic properties [21,22]. Numerous
studies have highlighted the potential of Mg, Ba, Ca, and Sr doping in enhancing ZnO
photoactivity under both artificial UV light and visible light irradiation [23–27]. However,
investigations under natural sunlight irradiation have been very limited. To the best of our
knowledge, no studies have specifically addressed the effects of the doping on the surface
features of the doped ZnO photocatalysts, and specifically on the induced hydrophilicity.
Understanding the water molecules’ affinity to the photocatalyst’s surface is vital for pho-
todegradation reactions, as it significantly influences the generation of the reactive species
such as hydroxyl radicals (OH•) [28].

Prior research efforts on alkaline earth metal-doped ZnO, especially with barium, have
primarily focused on investigating optoelectronic properties, surface area, and morphology.
In recent studies, Bhamare et al. discovered that Ba-doped ZnO samples exhibit remarkable
efficiency in the photocatalytic mineralization of Linezolid antibiotics when irradiated
under UV light. Various experimental parameters such as pH medium, light intensity, and
photocatalyst quantity were explored, and the superior photocatalytic performance was
primarily attributed to the enhanced separation of e−/h+ pairs [29]. Similarly, in another
study, Jayakrishnan et al. demonstrated the photocatalytic activity of Ba-doped ZnO in the
photodegradation of Rhodamine B under visible light. This performance was attributed
to the narrow band gap and the presence of oxygen vacancies [30]. Behnaz et al. verified
that the photocatalytic efficacy of Ba-doped ZnO in the photodegradation of Rhodamine
B is mainly due to the inhibition of the recombination rate under UV light, while, under
visible light irradiation, indirect photocatalytic mechanisms involving the excited adsorbed
dye molecules had a pivotal role [31]. Qiu et al. [23] stated that the replacement of Zn2+

ions with Mg2+ contributes to e−/h+ separation, resulting in increased photodegradation
of methylene blue under UV light irradiation. Opposite results were found, however, when
Mg2+ ions were inserted into interstitial sites with a doping percentage higher than 4%,
because the higher conduction band (CB) potential reduced the light harvesting ability [23].
Elhalil et al. [24] reported that the photodegradation of caffeine occurred more rapidly using
the 5% Ca–ZnO–Al2O3 system than bare ZnO and ZnO–Al2O3 systems. To explain this
result, the better crystallinity of the photocatalyst was invoked, as well as its greater ability
to absorb UV light with a consequent higher formation of e−/h+ pairs. Modvi et al. [25]
found that the insertion of Ba2+ ions into the ZnO lattice shifted the absorption into the
wavelength range of visible light, reducing the phenomenon of e−/h+ recombination and
improving the photocatalytic efficiency. The introduction of Ca2+ ions can also reduce the
band gap energy (Eg), as described by Irshad et al. [26]. Similarly, Oliveira et al. found that
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the photoactivity of ZnO can be boosted by doping with Ca2+, due to the crystal lattice
changes caused by its presence and the role of this species as electron trap [27].

The above results demonstrate that the alkaline earth metals are promising as far as
the improvement of the optoelectronic features of ZnO-based photocatalysts are concerned.
However, to the best of our knowledge, the impact of this modification on the surface
properties, and in particular on hydrophilicity, has not been adequately considered. In
fact, the photocatalytic reactions take place on the semiconductor surface and the peculiar
interaction between the surface and the substrate is a key parameter to be considered. In this
investigation, some structural, morphological, optical, electronic, and surface features of Ba-
doped ZnO are reported, and particular attention is devoted to the influence of the presence
of barium on the surface properties of ZnO. The characterization results were correlated
with the higher photocatalytic activity under solar irradiation and the higher stability of the
doped material compared with the bare one against photocorrosion of ZnO, which often
discourages the possible applications of this oxide especially in aqueous systems.

2. Results and Discussion

The XRD patterns of the synthesized bare ZnO and BZO photocatalysts are presented
in Figure 1. The diffraction peaks of the ZnO and BZO samples conform to the hexagonal
phase of zincite, as verified by JCPDS data (Card No. 36-1451). No other barium oxide
peaks or barium-containing species were detected, confirming the incorporation of Ba2+

ions into the ZnO lattice. The radius of Ba2+ (1.35 Å) prevents the substitution of the Zn2+

ion, which has a smaller radius (0.74 Å). Consequently, as previously suggested [32], Ba2+

ions can occupy interstitial sites within the ZnO lattice. This hypothesis was verified by
determining the lattice parameters. Indeed, the inset of Figure 1 clearly reveals that the
presence of Ba2+ dopant led to a relative shift in the 2θ values of +0.093◦. As a result, the
parameters (a) and (c) of ZnO increased from 3.2501 and 5.2068 to 3.2519 and 5.2098 Å,
respectively. Therefore, the volume (V) of the unit cell increased from 47.633 to 47.714 Å3,
indicating the inclusion of Ba2+ ions (see Table 1).
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Figure 1. XRD patterns of the undoped ZnO (black) and BZO (blue) photocatalysts and (inset) the
(002) and (101) peaks’ shift.

Table 1 displays the values of the mean crystallite size (D), along with the specific sur-
face area (SSA) and the band gap energy values (Eg) of the samples. After the introduction
of Ba dopant, the mean crystallite size (D) of ZnO decreased from 36.4 to 23.0 nm. This
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reduction in crystallite size due to Ba doping aligns with recent research [30]. The error
values for (a) and (c) are indicated by placing the last digit in brackets.

Table 1. Structural parameters, SSA, and Eg values of the synthesized photocatalysts.

Samples a (Å) c (Å) V (Å3) D (nm) SSABET
(m2·g−1) Eg (eV)

ZnO 3.2501 (1) 5.2068 (2) 47.633 32.6 1.9 3.25

BZO 3.2519 (1) 5.2098 (1) 47.714 22.7 27.3 3.22

Figure 2 shows the SEM micrographs of the photocatalysts. It can be seen that both
bare ZnO and BZO nanoparticles possess a nanowire shape and are quite homogeneous
in size. However, the doped BZO particles are much smaller. The incorporation of Ba2+

ions into the ZnO lattice prevents grain growth, in agreement with XRD results and related
literature [24,33].
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Figure 2. SEM images of bare ZnO (a,a’) and BZO (b,b’) photocatalysts at different magnifications.

The adsorption and desorption isotherms and the pore size distribution of the bare
ZnO and BZO samples are presented in Figure 3. The isotherms of the synthesized samples
are type II, as generally observed in non-porous solids. The H3 type hysteresis is typical of
aggregates with formation of interparticle voids [33]. This is in accordance with the small
nanoparticle size retrieved by XRD and SEM analysis.
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Figure 3. Nitrogen adsorption–desorption isotherms and (inset) pore size distribution of bare ZnO
(black squares) and BZO (blue circles) photocatalysts.

Diffuse reflectance spectra (DRS) of bare ZnO and BZO samples were recorded in
order to explore how Ba doping could affect the optoelectronic properties of the ZnO
photocatalyst (Figure 4). The spectrum of BZO is slightly redshifted with respect to bare
ZnO. The inset reports Tauc plots showing Eg values that are equal to 3.25 and 3.22 eV for
bare ZnO and BZO samples, respectively.
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Figure 4. UV-vis spectra and (inset) Tauc plots of ZnO (black) and BZO (blue) photocatalysts.

It is evident that the insertion of Ba2+ ions only slightly affects the optical properties
of ZnO. The slight decrease in the Eg value has been explained in the relevant literature
by the inclusion of intermediate energy levels below the CB of ZnO which led to better
e−/h+ separation. These levels can be related to the influence of the 4d orbitals of Ba atoms
that narrow the Eg [30]. However, the slight narrowing of Eg observed upon Ba doping in
accordance with the literature [25,30,31] is unlikely to account for the relevant changes in
the photocatalytic activity (see below). For this reason, we further investigated the surface
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properties of the samples, considering that the surface is where the photocatalytic reactions
take place.

To study surface functional groups, FTIR spectra of ZnO and BZO samples were
collected in the wavenumber range 450–4000 cm−1. The spectra were normalized by con-
sidering the vibration of the Zn–O bond at about 500 cm−1, to obtain semi-quantitative in-
formation. As illustrated in Figure 5, the broad bands detected at 3340–3650 and 1640 cm−1

can be attributed to vibrations of the O–H bond of adsorbed water molecules or surface
hydroxyl groups [34]. Notably, the bands are clearly smaller in the case of the ZnO sam-
ple [35–37]. This observation suggests that the incorporation of Ba into the ZnO lattice
increases the affinity of the surface for water molecules, thus endowing it with a pronounced
hydrophilic character.
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The Raman spectra of bare and Ba-doped ZnO samples are provided in Figure 6. The
band at 437 cm−1 is characteristic of the hexagonal zincite structure of ZnO and it is due
to the optical phonon E2 (high) [38]. The A1 longitudinal optical (LO) mode appears at
331 cm−1, the vibrational activity of A1 transverse optical (TO) mode at 378 cm−1, and the
E1 (TO) at 410 cm−1. These findings are in good accordance with relevant literature [37,38].
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BZO sample shows a broad signal at 580 cm−1 which is slightly visible in the spectrum
of bare ZnO. This band is attributed to multiphonon scattering processes and has been
correlated in the literature with defectivity such as oxygen vacancies [28].

The intensity of the peaks of ZnO is higher with respect to the BZO sample. However,
the relative intensity of the peak at 330 cm−1 with respect to the main band at 437 cm−1 is
higher, even if broader, in the BZO sample. Moreover, as previously observed, the peak
at 580 cm−1 appears clearly in the doped sample and is negligible in ZnO. The higher
intensity of the latter bands, associated with longitudinal optical (LO) modes, indicates
that the presence of Ba2+ into the lattice of ZnO introduces novel defectivity. Oxygen
vacancies have often been identified as responsible for enhanced water adsorption [28,39].
Moreover, the adsorption of hydroxyl groups into Zn2+ sites has been demonstrated to
be kinetically favored with respect to oxygen adsorption [40]. Therefore, the defectivity
induced by the presence of barium can be related with the higher hydrophilicity observed
by FTIR spectroscopy.

The higher defectivity of the BZO sample can be further highlighted by comparing its
fluorescence spectrum with the one of bare ZnO. Figure 7 shows the spectra acquired on
different ZnO and BZO suspensions, i.e., 0.5, 1.0, and 2.0 g·L−1, reported in Panels A, B,
and C, respectively. Panels D and E report the deconvoluted components of the ZnO and
BZO spectra, respectively, obtained for 2.0 g·L−1 suspensions.

Figure 7. Normalized emission spectra (λexc = 325 nm) of 0.5 (A), 1.0 (B), and 2.0 g·L−1 (C) water
suspensions of bare ZnO (black lines) and BZO (red lines). (D,E) report the deconvoluted ZnO and
BZO spectra, respectively, for 2.0 g·L−1 suspensions, obtained upon baseline correction.

The emissive behavior of ZnO and BZO samples is similar in the range between
360 and 430 nm, and the recorded intensity in this region only slightly changes upon
increasing the amount of dispersed photocatalyst (A–C). Deconvolution in this region
highlights three main contributions at 376, 394, and 413 nm. The first two bands can be
attributed to band-to-band exciton radiative recombination and band edge emissions [41],
while the violet emission at 413 nm can be ascribed to electron transitions from shallow
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donor levels of neutral interstitial Zn defects (Zni) close to the conduction band [42]. The
luminescence spectra of ZnO and BZO become significantly different between 430 and
600 nm, where the emission of the BZO sample is stronger than the one of ZnO. Notably,
the intensity of the bands in this region decreases with increasing amounts of sample
dispersed in water (A–C), possibly due to scattering, trivial energy transfer, or quenching
phenomena. Deconvolution in this region highlights four bands at 451, 469, 500, and
540 nm. The blue emission at 451 nm has been attributed to electron transitions to shallow
levels of Zn vacancies defects (ZnV) close to the valence band. The redshifted emission at
469 nm can be related to electron transitions from interstitial Zn (Zni) to Zn vacancy (ZnV)
defects levels [42]. Finally, the two green emissions at 500 and 540 are typical fluorescence
bands related to the presence of oxygen vacancies [43] and interstitial oxygen sites [41],
respectively. Notably, these two components show higher relative intensity in the BZO
sample with respect to the ZnO one (D–E), thus confirming the higher defectivity of BZO
induced by the presence of barium, in agreement with XRD and Raman results.

To further confirm the increased hydrophilicity of the BZO sample, contact angle
measurements were performed. Figure 8 shows the static contact angles measured between
the deposited water droplet and the surface of the ZnO and BZO photocatalysts in the dark
(a and b) and after 10 min of exposure to UV light irradiation (c and d).
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Figure 8. Shape of water drop on ZnO and BZO pellets for static contact angle measurements in the
dark (a,b) and immediately after 10 min exposure to UV light irradiation (c,d).

Regarding the BZO photocatalyst, it is evident that the water droplet exhibits a flatter
shape in both dark and UV light conditions when compared to the bare ZnO sample. The
images clearly demonstrate that the contact angles of ZnO are notably higher than those
of BZO photocatalyst under identical conditions, particularly when exposed to UV light.
Consequently, BZO sample exhibits a more pronounced hydrophilic character, which is
consistent with FTIR and Raman analyses.

Similar results were reported for ZnO nanorods which showed higher wettability
due to surface roughness [44]. Mg-doped ZnO, in which, unlike barium, Mg ions were
substitutionally positioned within the ZnO lattice, also exhibited an enhanced hydrophilic
character [45]. The authors accounted for the higher hydrophilicity of Mg-doped ZnO
under dark conditions with the more pronounced roughness of the modified samples.
This explanation, along with the novel defectivity hereby observed, may also hold for the
barium-modified ZnO in the dark, considering the different surface topography shown in
the SEM analyses (see Figure 2).
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It is important to mention that the heightened adsorption of water molecules signif-
icantly amplifies the generation of hydroxyl radicals via oxidation of water induced by
holes (h+) at the valence band (VB), as reported below (Equation (1)) [46,47].

H2O + h+
VB → H+ + HO• (1)

For this reason, there is general consensus on the direct relationship between higher
hydrophilicity and photocatalytic activity [48,49]. To confirm this hypothesis, photocatalytic
degradation of 4-nitrophenol (4-NP) as a model pollutant were performed under solar
radiation. The results are shown in Figure 9.
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). Irradiation started at time 0.

Under solar light irradiation, the BZO sample demonstrated the highest efficiency
compared to both bare ZnO and TiO2 P25. In particular, both ZnO-based samples showed
superior performances compared to P25 under sunlight irradiation, and the doped sample
stood out for the higher performance. Observed kinetic constant values of 8·10−3 and
11.3·10−3 min−1 were determined for the ZnO and BZO samples, respectively, by assuming
first order kinetics. The higher activity of the BZO sample cannot be explained simply
by considering its slightly redshifted absorption spectra and improved e−/h+ separation,
as invoked in previous reports [29–31]. The significantly higher SSA in the BZO sample
suggests a greater number of catalytically active sites. However, as presented in Figure
S1, under dark conditions, the adsorbed quantity of 4-NP showed was similar for both
photocatalysts. In fact, even though the BZO photocatalyst exhibited a SSA about 14 times
larger than ZnO, a similar amount of 4-NP was adsorbed onto bare ZnO (ca. 11%) and BZO
(ca. 15%). The adsorption results indicate that the SSA is not the primary factor influencing
the BZO’s photocatalytic performance. On the other hand, it is important to note that
the BZO sample exhibits a higher degree of defects, which can justify its remarkable
surface hydrophilicity as observed by FTIR analyses and contact angle measurements.
This aspect, often overlooked in previous studies, may have a notable impact on the
photocatalytic activity. In fact, several previous studies reported the mechanism pathway
of 4-NP photodegradation and showed that the degradation was mainly triggered by HO•

radicals (see Equation (2)), which induced poly-hydroxylation of the aromatic ring followed
by its opening and, eventually, total mineralization [50,51].

To verify the effect of Ba doping on the stability of ZnO, reusability tests were per-
formed (Figure 10).
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The progress of commercial and industrial-scale photocatalytic applications of ZnO
remains hindered primarily by the adverse effects of photocorrosion, especially in aqueous
systems. This fact strongly discourages the use of bare ZnO under both UV irradiation and
natural solar irradiation [52]. Zhang et al. [53] observed a dramatic decrease in ZnO activity
after a period of UV irradiation ranging from a few hours to a month. Yu et al. [54] showed
an inactivation of ZnO of about 50% after 60 min of irradiation, while, more recently,
Le et al. [55] demonstrated a ZnO weight loss of 22.3% at pH 3, 4.2% at pH 7, and 2.5%
at pH 11 after five days of UV irradiation. Anodic photocorrosion of ZnO leads to the
evolution of O2 accompanied by the dissolution of Zn2+ ions, according to the following
reactions (Equations (2)–(4)) [16,56]:

O2−
surface + h+

VB → O−surface (2)

O−surface + O2−
surface + 3h+

VB → O2(g) (3)

Zn2+
surface → Zn2+

aq (4)

The three tests reported in Figure 9 consistently exhibited similar performances in suc-
cessive runs, indicating the remarkable stability of barium-doped ZnO. Introducing the Ba
element into ZnO clearly reduces, or even suppresses, photocorrosion phenomena, aligning
with findings from previous studies on the effect of alkaline earth metals dopants [52].
Furthermore, the enhanced surface hydrophilicity may also explain the stability of the BZO
sample. It can be hypothesized that the oxidation of water favoured in the BZO sample
may actually compete with the lattice oxidation of oxygen induced by the photogenerated
holes in the bare ZnO sample.

3. Materials and Methods
3.1. Preparation of the Photocatalysts

ZnO and BZO samples were synthesized through a straightforward precipitation
method in bi-distilled water as solvent. Zinc nitrate (Zn(NO3)2·6H2O, 98%, Sigma-Aldrich,
St. Louis, MI, USA) and barium chloride (BaCl2·2H2O, ≥99%, Fisher Scientific, Hampton,
NH, USA) were used as the initial materials for Zn and Ba elements, respectively, without
undergoing additional treatment. Ammonium hydroxide (NH4OH, 28%, Sigma-Aldrich)
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was used as the precipitating agent, with oxalic acid (C2H4O2, 98%, Sigma-Aldrich) as
an additive. Bare ZnO was synthesized by dissolving 0.05 moles of Zn(NO3)2·6H2O in
500 mL of water under vigorous stirring. Then, 50 mL of C2H4O2 (0.1 M) were added to
the starting solution at 60 ◦C. The pH was increased to 7 by adding a 28% NH4OH solution
dropwise, then the precipitates were filtered and washed several times. To verify the
effectiveness of the washing procedure, the conductivity of the filtrates was measured after
each washing cycle using a professional benchtop meter AD3000 Conductivity-TDS-TEMP.
Subsequently, the wet precipitates were placed in an electric desiccator set at 110 ◦C for
12 h. The Ba-doped ZnO photocatalyst, labeled herein as BZO, was prepared using the
same procedure, but also adding the Ba2+ salt to the starting solutions. The amount of Ba
and Zn precursors used was calculated so as to obtain a Zn/Ba molar ratio equal to 99/1.
The final photocatalysts were obtained through a final calcination in a programmed muffle
furnace for 2 h at 600 ◦C.

3.2. Characterization

A Bruker D8 Advance diffractometer was used to perform X-ray diffraction (XRD)
analysis for the structural studies. The Cu Kα radiation source operated at 40 kV as voltage
and the scanning range of two theta (2θ) was between 10◦ and 60◦. The average size
of the crystallites (D) was obtained using the formula of Debye Scherrer presented in
Equation (5) [57]:

D =
(0.9λ)

(β cos θ)
(5)

where λ = 0.15405 nm is the wavelength of the X-ray, β represents the integral breadth, and
θ corresponds to the Bragg’s diffraction angle. The values of the cell parameters a and c
have been calculated by using the following Equation (6) for hexagonal lattice:

1
d2(hkl)

=
4
3

(
h2 + k2 + hk

)
a2 +

l2

c2 (6)

where h, k, and l are the Miller indices of spacing d(hkl).
The cell volume has been calculated according to Equation (7)

V =

√3a2c
2

. (7)

The diffuse reflectance spectra (DRS) were recorded from 190 to 800 nm by means of a
Perkin Elmer Lambda 950 UV-vis spectrophotometer and barium sulfate (BaSO4, Sigma
Aldrich, p.a.) was used as the reference. The conversion of the reflectance (R∞) to F(R∞)
values was carried out according to the Kubelka–Munk theory. Notably, by assuming the
scattering coefficient as wavelength independent, the F(R∞) is proportional to absorbance.
The samples were assumed to be direct semiconductors. The values of the band gap energy
(Eg) were determined from the plots of [F(R∞)·hν]2 vs. the exciting light energy (hν). Eg
values (eV) of the ZnO and BZO samples were determined using x-axis extrapolation of
the linear parts of the plots.

Scanning electron microscopy (SEM) observations were performed using a Jeol 6700 F
FE-SEM system. A Bruker Alpha II FTIR spectrophotometer was used to record Fourier
transform infrared (FTIR) spectra. A Micromeritics ASAP 2020 apparatus was employed to
measure the specific surface area (SSA) and pore size distribution (PSD) of the powders.
The measurements were carried out by nitrogen adsorption at liquid nitrogen temperature.
The degassing temperature ranged from room temperature up to 200 ◦C for 20 min with
a pressure range of 0–950 mmHg. Prior to measurement, the samples were degassed at
1.3 Pa at 200 ◦C. SSA values were calculated via the BET equation in the P/P0 range of
0.05–0.33. The Barrett Joyner Halenda (BJH) method was applied to calculate the PSD on
isotherm branches.
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The static water/photocatalyst/air contact angles were measured using the sessile
droplet method on the surface of the sample pellets. The analysis was performed using a
Drop Shape Analyzer DSA10Mk2 (Krüss, Germany). The pellet was obtained by pressing
the photocatalyst at 7 kPa. A drop of water (5–6 µL) was deposited on the surface of the
pellet using a syringe needle and pictures were immediately taken using a CCD camera.
To measure the contact angles under UV light, a PLL UVA lamp (8 mW·cm−2) was placed
horizontally 10 cm above the pellets. After 10 min of excitation, the drop of water was
deposited, and the lamp was pushed away just before instantly taking the pictures.

A HORIBA Jobin Yvon Lab RAM Aramis Raman spectrometer was used for Micro-
Raman analysis. This spectrometer was equipped with a diode-pumped solid-state laser
(operating at 785 nm). The signal collection was released on an air-cooled CCD multichan-
nel, with an accuracy of ±1 cm−1 between 200 and 1000 nm.

Fluorescence spectra of ZnO and BZO were acquired by using a Jasco FP-6300 spec-
trofluorimeter (Jasco, Tokyo, Japan). Different amounts of samples (0.5, 1.0, and 2.0 g·L−1)
were dispersed in deionised water in an ultrasonic bath for 15 min and the suspensions
were poured in 1 cm path quartz cell and irradiated with an excitation wavelength equal
to 325 nm. The spectra were recorded in the wavelength range 360–600 nm with a scan
rate of 100 nm/min, using equally wide (10 nm) excitation and emission slits. The de-
convolution of the obtained spectra was performed by using the OriginPro® 2021 suit of
programs. Good fits with seven gaussian function peaks (R2 = 0.999) were obtained for
the fluorescence spectra of both the ZnO and BZO (2.0 g·L−1) suspensions, reported in the
Supporting Information.

3.3. Solar Photocatalytic Experiments

The investigation of the 4–nitrophenol photodegradation (4–NP 98%, Sigma Aldrich)
under natural solar irradiation was carried out utilizing a tubular Pyrex photoreactor
(V = 100 mL). The experiments were carried out as described in our previous study [58].
Briefly, the reactor contained 80 mL of a 4-nitrophenol (4–NP) aqueous solution (20 mg·L−1)
with 80 mg of the tested photocatalyst. The used photocatalyst concentration (1 g L−1)
allowed a safe comparison of the photoactivity of the photocatalysts, as above this value
no further improvement of the degradation rate was observed. The tested samples were
stirred in the dark for 1 h before exposure to natural sunlight, in order to reach adsorp-
tion/desorption equilibrium. The solar tests were performed, simultaneously, using
three photoreactors containing bare ZnO, BZO, and TiO2 P25 (Evonik) during a sunny
August day from 11 AM to 3 PM in the region of Gabes (South Tunisia, 33◦53′024′′ N
10◦06′036′′ E).

Since the three photoreactors were placed simultaneously and were irradiated under
the same conditions, it was possible to develop a safe comparison of the photocatalytic
performance of the ZnO, BZO, and P25 samples. Furthermore, reusability tests were also
carried out for three consecutive days (verifying that the irradiation conditions did not
change significantly), recovering the photocatalyst used in the previous test each time by
centrifugation, washing it with distilled water and drying it at 70 ◦C overnight. At different
time intervals, suspension samples were withdrawn and the solid separated using 0.2 µm
Millipore filters (PTFE). The concentration of 4-NP was determined after measuring its
absorption in the filtered solution using a Perkin Elmer 950 UV-vis spectrophotometer.
The average intensity of sunlight during the photocatalytic runs was measured and was
found to be 8.4 W·m−2 between 315–400 nm (UV range) and 2900 µE·m−2·s−1 between
400–700 nm (visible range, where µE stands for micro-Einstein) [59].

4. Conclusions

Ba-doped ZnO photocatalysts and bare ZnO active under solar irradiation were
synthesized by means of a simple precipitation method. XRD data revealed changes in
lattice parameters and relative shifts of ZnO peaks due to the insertion of interstitial Ba2+

ions. UV-vis analyses showed a slight redshift of the spectra of the BZO sample compared to
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bare ZnO, thus indicating a slight improvement of the optical properties. The FTIR spectra
showed an increased water adsorption capacity of the BZO sample. This was confirmed by
contact angle measurements. Indeed, lower contact angles were measured, both in the dark
and under UV light, from the shape of the water droplet deposited on the surface of the
BZO photocatalyst. Surface hydrophilicity was correlated with the higher defectivity of the
BZO sample, according to Raman and fluorescence spectroscopy results. Therefore, doping
with Ba2+ ions confers a stronger hydrophilic character, which can be invoked, together
with the improved optoelectronic properties often described in the literature, to account for
the boosted solar photocatalytic activity. In fact, the observed kinetic constant values for
the ZnO and BZO samples were 8·10−3 and 11.3·10−3 min−1, respectively, by assuming
first order kinetics. The higher activity and the improved photocorrosion stability of the
modified sample compared to the bare one suggest the use of Ba-doped ZnO as a promising
candidate for the removal of hazardous substances present in diverse forms of polluted
water, but also for its potential use in other types of reactions typical of heterogeneous
photocatalysis, especially taking into account its stability against photocorrosion compared
to bare ZnO.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nano13202742/s1, Figure S1: 4-NP dark adsorption kinetics using
bare ZnO (
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compared to bare ZnO. 

Supplementary Materials: The following supporting information can be downloaded at: 
www.mdpi.com/xxx/s1, Figure S1: 4-NP dark adsorption kinetics using bare ZnO (▶) and BZO (★) 
samples. 
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