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Abstract: Magnetite nanoparticles (Fe3O4 NPs) are among the most investigated nanomaterials,
being recognized for their biocompatibility, versatility, and strong magnetic properties. Given that
their applicability depends on their dimensions, crystal morphology, and surface chemistry, Fe3O4

NPs must be synthesized in a controlled, simple, and reproducible manner. Since conventional
methods often lack tight control over reaction parameters and produce materials with unreliable
characteristics, increased scientific interest has been directed to microfluidic techniques. In this
context, the present paper describes the development of an innovative 3D microfluidic platform
suitable for synthesizing uniform Fe3O4 NPs with fine-tuned properties. On-chip co-precipitation
was performed, followed by microwave-assisted silanization. The obtained nanoparticles were char-
acterized from the compositional and microstructural perspectives by X-ray diffraction (XRD) and
transmission electron microscopy (TEM). Moreover, supplementary physicochemical investigations,
such as Fourier Transform Infrared Spectroscopy (FT-IR), Kaiser Test, Ultraviolet-Visible (UV-Vis)
Spectrophotometry, Dynamic Light Scattering (DLS), and Thermogravimetry and Differential Scan-
ning Calorimetry (TG-DSC) analyses, demonstrated the successful surface modification. Considering
the positive results, the presented synthesis and functionalization method represents a fast, reliable,
and effective alternative for producing tailored magnetic nanoparticles.

Keywords: iron oxide synthesis; magnetite nanoparticles; microfluidic synthesis; 3D microfluidic
platform; microwave-assisted functionalization

1. Introduction

Nanotechnology is gaining increasing popularity for advancing various sides of sci-
ence as it allows matter manipulation on a scale where materials display different features
than micro-/macro-scale counterparts. The unique, appealing physicochemical proper-
ties (correlated to nanomaterials’ specific sizes and morphologies, chemical composition,
charge, crystalline structure, and solubility) render nanodimensional materials suitable for
numerous and broad applications [1–6].

Nanomaterials 2023, 13, 2795. https://doi.org/10.3390/nano13202795 https://www.mdpi.com/journal/nanomaterials

https://doi.org/10.3390/nano13202795
https://doi.org/10.3390/nano13202795
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0001-8968-504X
https://orcid.org/0000-0003-1437-6570
https://orcid.org/0000-0002-8145-1094
https://orcid.org/0000-0002-2267-6453
https://orcid.org/0000-0002-9075-9429
https://orcid.org/0000-0001-9873-3912
https://orcid.org/0000-0002-5027-1138
https://orcid.org/0000-0003-3036-094X
https://doi.org/10.3390/nano13202795
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano13202795?type=check_update&version=1


Nanomaterials 2023, 13, 2795 2 of 18

Among all investigated nanomaterials, magnetic nanoparticles (NPs) have received
the most interest, given their attractive characteristics. These materials are especially recog-
nized for their biocompatibility, chemical stability, low price, and size-dependent magnetic
activity [7,8]. From the class of magnetic nanoparticles, magnetite (Fe3O4) has been par-
ticularly remarked, as it shows the strongest magnetism compared to other transition
metal oxides [9] while also benefiting from availability, versatility, and eco-friendliness [10].
Fe3O4 NPs possess superparamagnetism, high saturation field, and high magnetic suscep-
tibility, with their distinctive features being attributed to the transfer of ions from Fe2+ to
Fe3+ [1,11]. These valuable magnetic properties rendered Fe3O4 NPs suitable for a plethora
of utilizations, including bio-sensing and diagnosis [12–14], contrast agents [13–18], cancer
treatment [13,14,18–24], hyperthermia therapy [13–15,20,21,25], controlled and targeted
drug delivery [13,18,19,22,26–30], catalysis [31–33], batteries [34–36], magnetic inks [37–39],
data storage [40–42], and water decontamination [43–47].

Despite being relatively stable at room temperature, Fe3O4 NPs tend to oxidize, quickly
transforming into maghemite [9]. Moreover, pristine magnetite NPs also exhibit an ag-
glomeration tendency. To avoid these undesired effects, particles are usually functionalized
or surface-coated by various compounds, such as polymers, metals, or organic and/or
inorganic stabilizing agents [10]. Magnetic NPs with dimensions below 100 nm display
favorable surface reactivity, enabling easy ligand attachment and small settling velocities
that correlate with high suspension stability. In addition, the iron atoms from the surface
of the particles that are not bound to oxygen atoms coordinate with water molecules that
dissociate and lead to the production of Fe-OH groups. These preformed hydroxyls exhibit
an amphoteric character, being able to further react as either bases or acids [9].

As the behavior of Fe3O4 NPs is deeply related to their dimensions, crystal morphol-
ogy, and surface chemistry, the synthesis process requires simplicity, reproducibility, and
repeatability [10,48,49]. The most used and most efficient synthesis method is the chemical
co-precipitation of iron salts with a base [9,50,51]. Despite being a simple and low-cost
method for producing hydrophilic particles, co-precipitation offers limited control over
size, size distribution, crystallinity, and magnetic properties during synthesis and generates
batch-to-batch variations [50–52]. Alternative methods such as micro-emulsion technique
and thermal decomposition of organometallic precursors have been noted to provide better
tuning of the particles’ morphology, size, and monodispersion. Nonetheless, they generally
employ expensive toxic chemicals, high pressure and temperature, and long synthesis
times [50,52].

Thus, when Fe3O4 NPs with specified characteristics and tailored properties must
be obtained, conventional synthesis methods do not provide tight control over experi-
mental variables, generating particles with a broad size distribution, large inter-batch
variability, irregular structures, and unreliable properties [53–56]. Additionally, classic
syntheses may affect the environment, representing pollutant sources and high-energy con-
sumers. Moreover, traditional processes necessitate large spaces and expensive equipment,
high operating costs, complex stepwise procedures, insufficient control over mixing, poor
reproducibility, long reaction times, and safety concerns [51,57,58].

To overcome the challenges of conventional syntheses, microfluidic technology has
emerged as a promising solution. By fluid manipulation in microscale channels and
chambers, microfluidic devices are excellent synthesis platforms for NPs with controlled
properties and functions [2,59–61]. Enabling a remarkable control over chemical sub-
stances’ spatial and temporal distribution, microfluidic platforms yield nanomaterials with
precise dimensions, narrow size distribution, uniform shape, and engineered surface com-
position [54,59,61,62]. Moreover, microfluidic synthesis methods outperform large-scale
systems, demonstrating high process reproducibility, defined mixing, fast heat and mass
transfer, rapid chemical reactions, ease of automation, and high throughput [7,50,60–63].
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Given their appealing features, microfluidic devices started being involved in numer-
ous syntheses, providing a rapid, low-cost, controllable, sustainable, and reliable method
for fabricating a wide range of nanomaterials, including magnetite [61,63]. However, dur-
ing Fe3O4 NPs synthesis, microreactor channels can get clogged due to the high reactivity
of iron precursor and the large surface-to-volume ratio of the products [50]. Other issues
contributing to particle precipitation and fouling microscale channels within typical plat-
forms include inadequate mixing over short channel lengths and wide ranges of Reynolds
numbers [51,64]. The most simple manner to improve mixing efficiency and avoid channel
clogging is to conveniently alter channel geometry [61]. In particular, moving from com-
mon planner geometrical patterns to 3D micromixers holds great promise for expanding
the potential of microfluidic techniques. Adding a third dimension in fluid manipulation
increases fluid contact times, surface disruption, and channel length reduction, all contribut-
ing to enhancing mixing efficiency. However, 3D micromixers are a developing technology
that has not reached industrial translation yet, mainly due to their more difficult fabrication
and delicate parameter optimization [61,64].

In this context, this study has focused on developing an innovative 3D microfluidic
platform suitable for Fe3O4 NPs synthesis. Specifically, a novel microfluidic device was
designed, fabricated, and tested for magnetite production. To avoid undesired surface
oxidation and particle agglomeration, the microfluidic-obtained NPs were further func-
tionalized with (3-aminopropyl) triethoxysilane (APTES) through a microwave-assisted
method. In addition, Fe3O4 NPs were thoroughly evaluated by a series of physicochemi-
cal characterization methods: X-ray diffraction (XRD), Transmission Electron Microscopy
(TEM), Selected Area Electron Diffraction (SAED), Fourier Transform Infrared Spectroscopy
(FT-IR), Kaiser Test, Ultraviolet-Visible (UV-Vis) Spectrophotometry, Dynamic Light Scat-
tering (DLS), and Thermogravimetry and Differential Scanning Calorimetry (TG-DSC).

2. Materials and Methods
2.1. Materials

Ferric chloride (FeCl3), iron sulfate heptahydrate (FeSO4·7H2O), (3-aminopropyl)
triethoxysilane (APTES), potassium cyanide (KCN), and phenol were purchased from
Sigma Aldrich Merck (Darmstadt, Germany); sodium hydroxide (NaOH) was purchased
from Lach-Ner (Tovarni, Czech Republic); ethanol and acetic acid were purchased from
Emsure Merck Millipore (Darmstadt, Germany); pyridine and ninhydrin were purchased
from Merck (Darmstadt, Germany). All the reagents utilized in this study were of analytical
purity and used as received. Ultrapure water was used for all experiments.

2.2. Microfluidic Platform Fabrication

The 3D microfluidic synthesis platform design was created using RDWorksV8 software
dedicated to laser cutting machine equipment. The micromixer comprises 8 layers of the
same dimensions (i.e., width-length = 140 mm-70 mm), with the patterns indicated in
Figure 1. The model was fabricated with the aid of the 1610 Pro laser cutting machine
(RUBIQ CNC, Bacău, Romania) on 2 mm-thick PMMA sheets. The layers were aligned
and tightened together by 4 screws (4 mm in diameter), and the margins were sealed with
a commercial bicomponent epoxy adhesive (“Epoxy Universal”, Bison International B.V.,
Goes, The Netherlands).
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Figure 1. Microfluidic platform configuration. (a) Proportional 2D schematic representation of the
platform layers. (b) 3D schematic representation of the platform layers.

2.3. Nanoparticle Preparation

The precursor solution was prepared by dissolving FeCl3 and FeSO4·7H2O in a 1
to 6 weight ratio in 300 mL of ultrapure water, while the precipitating agent solution
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consisted of 300 mL of 1.25 M NaOH aqueous solution. Iron oxide nanoparticles were
obtained through the co-precipitation of the iron ions at the contact point with the alkaline
solution. Reagent solutions were simultaneously introduced in the experimental setup
using a classical osmosis pump with a 90 mL/s flow rate. In more detail, the iron precursor
solution and the precipitating solution were circulated through the channels represented
with green in Figure 1, while the central red channel acted as a vertical mixing chamber.
Thus, multipoint 3D mixing was achieved within the microfluidic platform, subsequently
increasing fluid contact times and improving mixing efficiency.

The obtained Fe3O4 NPs were separated using a neodymium magnet. Then, they were
washed with ultrapure water, dispersed by ultrasonication, and centrifuged for 40 min
at 8000 rpm. These processes were repeated three times. After that, the processes were
repeated three more times using ethanol (with a trace amount of acetic acid).

The purified NPs were dispersed in ethanol, APTES solution (i.e., 10 mL APTES
in 50 mL ethanol) was added under continuous stirring, and the resulting mixture was
heated using microwave irradiation for 30 min (performed in a MW4717 (Stuttgart, Ger-
many), rated microwave power output 600 W, microwave frequency 2450 MHz). The final
nanostructured products were further subjected to several series of washing with ethanol,
ultrasonication, and centrifugation to eliminate potential traces of unreacted compounds.

2.4. Characterization Methods
2.4.1. X-ray Diffraction (XRD)

An X-ray diffraction analysis of nanomaterial powders was accomplished with the aid
of a Panalytical Empyrean diffractometer (PANalytical, Almelo, The Netherlands) equipped
with a CuKα radiation source (λ = 1.056 Å) at 40 mA and 45 kV. Samples were scanned at
room temperature, with determinations in the Bragg diffraction angle range between 10◦

and 80◦.

2.4.2. Transmission Electron Microscopy (TEM) and Selected Area Electron
Diffraction (SAED)

The sample was dispersed in ethanol through a 15-min ultrasonic treatment. Then,
a small amount of it was placed on a carbon-copper grid and dried at room temperature.
For TEM micrographs recording, a high-resolution 80–200 Titan Themis transmission
electron microscope from ThermoFisher Scientific (Hillsboro, OR, USA) was operated in
the transmission mode at a 200 kV voltage, with point and line resolutions of 2 Å and 1 Å,
respectively. Additional crystallographic data was acquired using the equipment’s SAED
accessory (ThermoFisher Scientific, Hillsboro, OR, USA).

2.4.3. Fourier Transform Infrared Spectroscopy (FT-IR)

The synthesized nanoparticles were characterized using a Nicolet iS50FT-IR (Ther-
moFisher Scientific, Waltham, MA, USA) spectrometer. The measurements were performed
at room temperature in the range of 4000–400 cm−1, using the resolution of 8 cm−1. All
spectra were registered in attenuated total reflectance (ATR) mode using a diamond crystal.
OmnicPicta software (version 8.2, Thermo Fischer Scientific, Madison, WI, USA) was used
to co-add and process the 96 scans acquired for each sample.

2.4.4. Kaiser Test and Ultraviolet-Visible (UV-Vis) Spectrophotometry

For the Kaiser detection, fresh test solutions were prepared and added to a small
amount of sample placed in a test tube, as described in reference [65]. The test tube was
further put in a sand bath and kept at a temperature of 105–110 ◦C for 5 min.

The resulting solutions were further analyzed using an Evolution 300 UV-Vis spec-
trophotometer (ThermoFisher Scientific, Madison, WI, USA). The absorbance values were
measured in standard quartz cuvettes between 400 and 800 nm with a bandwidth of 2.0 nm
and a scan speed of 240 nm/min. The acquired data were processed using the VISIONpro
dedicated software (version 2.0).
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2.4.5. Dynamic Light Scattering (DLS)

The synthesized nanoparticles were dispersed in water, sonicated for 5 min, placed in
dedicated cuvettes (DTS0012), and subjected to DLS analysis using a Nano ZS Zetasizer
(Malvern Instruments, Malvern, UK). Measurements were performed at a spreading angle
of 90◦ and a temperature of 25 ◦C; the reported values for average hydrodynamic diameter,
polydispersity index, and Zeta potential are the average of five measurements.

2.4.6. Thermogravimetry and Differential Scanning Calorimetry (TG-DSC)

For the realization of the thermal analysis, an STA 449C Jupiter device from Netzsch
(NETZSCH-Gerätebau GmbH, Selb, Germany) was employed. A small amount of sample
was placed in an open alumina crucible and heated from room temperature up to 900 ◦C, at
a heating rate of 10 ◦C min−1, under a 50 mL min−1 dried airflow. As a reference, an empty
alumina crucible was used. In addition, the evolved gases were studied by a thermostat
gas-cell-equipped FTIR Tensor 27 from Bruker (Bruker Co., Ettlingen, Germany).

3. Results

The X-ray diffractogram of pristine Fe3O4 NPs is presented in Figure 2. The identified
diffraction peaks correspond to the (220), (311), (400), (422), (511), and (440) diffraction
planes of the crystallographic system. According to JCPDS 01-084-2782, these are distinctive
for crystalline magnetite with a spinel cubic structure.
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Figure 2. X-ray diffractogram of pristine Fe3O4 NPs.

Further, TEM images evidenced the formation of ultra-small particles (with 6.24 ± 0.15 nm
average particle size) with monomodal size distribution (Figure 3e), exclusive spherical
morphology (Figure 3b), and reduced aggregation (Figure 3a). This is due to the presence of
the outer dispersant layer on the NPs’ surface, which was observed in the HR-TEM micro-
graph (Figure 3c). Moreover, SAED analysis of the pristine Fe3O4 NPs (Figure 3d) recorded
6 concentric rings formed at (220), (311), (400), (422), (511), and (440), agreeing with previ-
ously obtained XRD data and confirming the crystalline nature of the prepared material.

To confirm the successful silanization of the magnetite NPs, FT-IR analysis was per-
formed (Figure 4). The FT-IR spectra of pristine Fe3O4 and Fe3O4@APTES NPs both
exhibited a wide absorption band around 3400 cm−1, attributed to O–H stretching vibra-
tion, and a small peak around 1640 cm−1, correlated with O–H deformed vibration, which
demonstrated the presence of OH groups on the surface of obtained NPs. The absorp-
tion bands specific to Fe–O stretching vibrations were also identified in both spectra at
548 cm−1 for bare magnetite and 571 cm−1 for the functionalized sample. The shift to a
higher wavenumber noticed in the Fe3O4@APTES can be explained by the formation of
Fe–O–Si bonds, reflecting the replacement of Fe–O–H groups on the particle surface with
Fe–O–Si(O–)2–(CH2)3–NH2. As –Si(O–) has a greater electronegativity than H, the forces of
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Fe–O bonds are enhanced, and the absorbance bands are shifted to higher wavenumber
values [66]. The presence of the propyl group from APTES is also proven by the bands at
2976 cm−1 and 2927 cm−1 attributed to C–H stretching. Additionally, the 1541 cm−1 peak
corresponds to the N–H bending vibration.
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Moreover, FAR-IR spectra (Figure 5) prove a shift of the 536 cm−1 peak to 557 cm−1,
demonstrating a modification of surface interaction forces from Fe–O–H to Fe–O–Si cor-
related with a force constant modification of the Fe–O bond. There is also a considerable
absorption difference between non-functionalized magnetite and APTES-functionalized
one, related to the significant mitigation of the Fe–O stretching absorption (557 cm−1

shifted peak).
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Fe3O4@APTES NPs.

The Kaiser test allowed for the qualitative determination of the amino groups’ presence
in the surface-modified iron oxide nanoparticles. The colorimetric assay was performed
on the functionalization agent (i.e., APTES), pristine Fe3O4 NPs, and Fe3O4@APTES NPs,
leading to the appearance of a violet shade, no color change, and dark brown shade,
respectively (Figure 6).
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Despite the noticeable difference in color between the pristine Fe3O4 NPs and the
functionalized ones, the expected blue-violet shade is covered by the color intensity of the
dispersed NPs. For better validation of the presence of APTES within the surface-modified
sample, UV-Vis analysis was performed on the solutions resulting from the Kaiser test
(Figure 7). Thus, it was observed that the absorbance maximum of Fe3O4@APTES NPs
is in the same wavelength range as for the organosilane sample. This demonstrates the
formation of the Ruhemann complex [67], which does not appear in the pristine magnetite
sample, thus confirming the successful functionalization of the Fe3O4 NPs.
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DLS analysis allowed the comparison of the fabricated materials in terms of size and
colloidal stability (Figure 8). Pristine Fe3O4 NPs displayed an average hydrodynamic
diameter of 29.21 nm, with a polydispersity index of 0.103, indicating good size homo-
geneity. After functionalization with APTES, the NPs’ hydrodynamic diameter increased
by 3 times while maintaining good uniformity (0.210 polydispersity index). Moreover, an
increase in the Zeta potential was also observed, changing from 39.0 mV (pristine Fe3O4
NPs) to 52.7 mV (Fe3O4@APTES NPs), demonstrating the improved colloidal stability
following silanization.

Besides, the increase in size caused by shell addition onto the magnetic cores is visible
in TEM micrographs (Figure 9), which also depict the dimensional and morphological
uniformity of the functionalized nanomaterials.

The thermogravimetric analysis of the pristine Fe3O4 NPs shows that the sample
loses 0.83% of its initial mass up to 115 ◦C. The process is accompanied by an endother-
mic effect on the DSC curve, with a minimum at 72.4 ◦C, indicating the most probable
cause of the elimination of residual water molecules from the nanoparticles’ surface. The
FTIR 3D diagram and 2D projection confirm that the evolved gases contain water vapors
(Figure 10). Between 115–185 ◦C, the sample is gaining mass; as Fe(II) is oxidized to Fe(III),
the transformation of Fe3O4 to γ-Fe2O3 is accompanied by an exothermic effect on the
DSC curve, with the maximum at 133 ◦C [68]. After 185 ◦C, the sample is slowly losing
mass, with the FTIR spectra of evolved gases indicating the presence of water and carbon
dioxide at 263 ◦C, while the DSC curve presents a weak exothermic peak at 254.7 ◦C. This
indicates the oxidation of some organic impurities from the surface of nanoparticles. At
517.5 ◦C, the DSC curve exhibits an exothermic effect with no mass loss, which indicates a
phase transition. This is typical for the transformation of maghemite to hematite [69]. The
residual reddish-brown mass represents 98.29%.
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The Fe3O4@APTES-MW NPs sample loses 2.28% of its mass up to 185 ◦C in an
endothermic process, with the identified products in the evolved gases being water and
carbon dioxide (Figure 11). The mass loss is larger than the simple magnetite sample,
indicating that more water molecules remain trapped inside the APTES shell. After 185 ◦C,
the sample suffers the main degradation step, losing 7.60% of its mass. The process is
accompanied by a complex, three-peak exothermic effect on the DSC curve (at 199, 283.1,
and 327.4 ◦C). This indicates that the oxidation of the APTES shell occurs in discrete steps,
with the main degradation products being H2O and CO2, while the iron oxide is encased in a
silica shell. The slow mass loss recorded between 350–700 ◦C is due to silica densification by
condensation of Si–OH moieties [70]. The absence of the exothermic effect at ~500–600 ◦C,
generally attributed to maghemite’s transformation to hematite, demonstrates that the
iron oxide core is protected from thermal oxidation by silica shell [71]. The residual mass
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represents 90.12%. Based on thermal analysis results, the load of APTES on Fe3O4 NPs was
estimated at ~8.8%.
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4. Discussion

The newly developed 3D microfluidic platform has allowed for the successful synthe-
sis of ultrasmall magnetic materials in a controlled manner and within a short reaction time
(less than 1 min). Performing the co-precipitation on-chip allowed enhanced control over
reaction parameters, with the vertical mixing chamber enabling efficient mixing. Compared
with existent microfluidic devices for magnetite synthesis [10], this study provides an inno-
vative method for magnetite nanoparticle production, suggesting a 3D mixing approach at
high flow rates. In comparison to laminar flow 2D devices, the proposed device is able to
increase the nanoparticle generation by several orders of magnitude. Instead of creating a
reaction area at the horizontal intersection of 2 reagent channels, this platform allows mul-
tipoint 3D mixing of reagents, subsequently improving mixing efficiency and significantly
decreasing reaction time. Another advantage of this technique is the dispersibility yield;
using the 3D device, we obtained almost quantitative dispersibility (this is not the case
for classical approaches). To our knowledge, this is the first time such a 3D multilayered
microreactor has been designed, fabricated, and used for magnetite synthesis.
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Moreover, microfluidic 3D mixing is an emerging technology, and only a few designs
have been reported in the literature [61]. The other three-dimensional configurations avail-
able in the literature comprise a 3D co-flow microfluidic device for synthesizing polymer
particles [72], a 3D modular microfluidic platform for core-shell droplet generation [73],
and a star-shaped 3D structure with multiple inlets for producing smaller droplets than
conventional microfluidic devices [74].

Based on thorough characterization (i.e., XRD, TEM, and SAED analyses), it was es-
tablished that the obtained nanoparticles consisted of crystalline magnetite with spherical
morphology. This shape is the most found among microfluidic synthesis methods, with numer-
ous studies reporting on-chip fabricated Fe3O4-based nanospheres [50,62,75–77]. Nonetheless,
through the well-controlled variation of operational parameters (e.g., reagents flow, resi-
dence time, temperature, channel geometry), other morphologies can be obtained, such as
octahedral-shaped nanocrystals [78], hexagonal plates [78], and tadpole-like particles [79].

Magnetic nanoparticles employed in biomedical applications normally have sizes
below 20 nm, a suitable dimension for enabling their superparamagnetic behavior [1]. Our
study has led to obtaining Fe3O4 NPs of diameters below 6.5 nm, a dimension that agrees
with the requirements for further applications in biomedicine. Moreover, the proposed
synthesis device enabled the fabrication of much smaller magnetite particles than our
research group obtained with planar microreactors (i.e., 20 to 50 nm) [77]. Other scientists
have also reported similar sizes when utilizing typical microfluidic devices, as Bemetz and
colleagues obtained NPs of 25 nm [50]. However, Kašpar et al. [62] managed to obtain
particles of 4–7 nm utilizing 2D platforms, with these favorable dimensions being attributed
to the reduced microchannel diameters (i.e., 20–60 µm). Differently, Suryawanshi et al. [80]
have used a continuous flow spiral microreactor that allowed the formation of Fe3O4 NPs
with a mean particle size of less than 10 nm.

Silanes represent commonly used bifunctional modifiers for metal oxide NPs function-
alization [81]. We used APTES as a coupling agent to prevent Fe3O4 NPs agglomeration
through steric repulsion. Moreover, its terminal amine group enables further bioconjuga-
tion or can act as a linker in synthesizing composite/hybrid structures made of Fe3O4 NPs
and other inorganic materials. Furthermore, the presence of the amino group on the surface
of magnetite nanoparticles allows their further modification with other functional groups,
including peptides, antibodies, oligonucleotides, or polymers, toward creating vehicles for
targeted drug delivery [82]. Considering these advantageous properties of Fe3O4@APTES
NPs, several studies have reported their fabrication [83–86], as depicted in Table 1.

Table 1. Studies on the fabrication of Fe3O4—APTES NPs.

Reagents Synthesis Method APTES Functionalization Method Ref.

FeCl2 and FeCl3
hexahydrate salts

Aqueous ammonia
solution

Modified Massart
co-precipitation method

The reaction was carried out for 24 h at
a constant temperature of 50 ◦C [83]

FeCl2 and FeCl3 anhydrous
salts dissolved in
0.1 HCl solution

1.5 M NH3 solution

Modified co-precipitation method
(precursor and precipitant solution

were stirred for 2 h at 40 ◦C)

Fe3O4 NPs dispersion in ethanol was
bubbled with argon gas for 30 min,

APTES was added under mechanical
stirring, and the mixture was left to
react for 24 h at room temperature

[84]

Fe(NO3)3 and FeSO4
heptahydrate

NaOH solution

Co-precipitation method (alkaline
solution was heated to 85 ◦C under
argon atmosphere, iron precursor

solution was added dropwise while
stirring vigorously, and the mixture

was left to react for 1 h)

APTES was added to Fe3O4 NPs
dispersion in ethanol/water (volume

ratio, 1:1) solution and the mixture was
stirred under argon atmosphere for

24 h at 40 ◦C

[85]
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Table 1. Cont.

Reagents Synthesis Method APTES Functionalization Method Ref.

FeCl3 hexahydrate salt and
FeSO4 heptahydrate

NaOH solution

Modified co-precipitation method
(iron precursor solution was stirred

at 60 ◦C for 3 h under nitrogen
atmosphere and alkaline solution

was added dropwise)

APTES was added to Fe3O4 NPs
suspension under nitrogen atmosphere,
and the mixture was left to react under

stirring for 24 h at 40 ◦C

[86]

FeCl3 anhydrous salt and FeSO4
heptahydrate

NaOH solution

Microfluidic-assisted
co-precipitation (less than 1 min)

Microwave-assisted reaction carried
out for 30 min This study

Compared to literature studies, the proposed fabrication method for Fe3O4@APTES
NPs drastically reduced preparation time, required simpler and fewer steps, and did not
employ an argon/nitrogen atmosphere. The described functionalization technique resulted
in the successful covering of magnetite NPs with an organosilane shell, as demonstrated
by FT-IR, Kaiser, UV-Vis, and TG-DSC characterizations. Thus, the obtained materials
can be employed in further applications, including composite synthesis, nanostructured
catalytic materials, targeted drug delivery vehicles, wastewater treatment, and nanophase
synthesis [82–88].

5. Conclusions

Conventional magnetite synthesis methods often lead to the formation of particles with
variable features, whereas the utilization of typical microreactor systems is limited by their
clogging tendency. Therefore, this study offers an improved alternative to existing Fe3O4
NPs fabrication methods, proposing a 3D microfluidic platform able to generate uniform
magnetic NPs. Thorough physicochemical investigations (i.e., XRD, TEM, and SAED)
revealed that the obtained Fe3O4 NPs were crystalline, with ultrasmall sizes (below 6.5 nm)
and exclusive spherical morphology. To prevent agglomeration, the pristine particles were
further surface-modified by microwave-assisted functionalization with an organosilane
(i.e., APTES). The successful grafting of the coupling agent was confirmed by a series
of characterization methods, including FT-IR, Kaiser, UV-Vis, DLS, TEM, and TG-DSC
analyses. The proposed method for the fabrication of Fe3O4@APTES NPs required less
time, fewer steps, and simpler operations than the previously reported techniques in the
literature. Thus, it can be concluded that the developed device provides a reliable synthesis
platform for the formation of fine-tuned magnetic materials in a fast and effective manner.
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