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Abstract: Zeolites and zeolitic imidazolate frameworks (ZIFs) are crystalline aluminosilicates with
porous structure, which are closely linked with nanomaterials. They are characterized by enhanced
ion exchange capacity, physical–chemical stability, thermal stability and biocompatibility, making
them a promising material for dental applications. This review aimed to provide an overview of the
application of zeolites and ZIFs in dentistry. The common zeolite compounds for dental application
include silver zeolite, zinc zeolite, calcium zeolite and strontium zeolite. The common ZIFs for dental
application include ZIF-8 and ZIF-67. Zeolites and ZIFs have been employed in various areas of
dentistry, such as restorative dentistry, endodontics, prosthodontics, implantology, periodontics,
orthodontics and oral surgery. In restorative dentistry, zeolites and ZIFs are used as antimicrobial
additives in dental adhesives and restorative materials. In endodontics, zeolites are used in root-end
fillings, root canal irritants, root canal sealers and bone matrix scaffolds for peri-apical diseases. In
prosthodontics, zeolites can be incorporated into denture bases, tissue conditioners, soft denture
liners and dental prostheses. In implantology, zeolites and ZIFs are applied in dental implants, bone
graft materials, bone adhesive hydrogels, drug delivery systems and electrospinning. In periodontics,
zeolites can be applied as antibacterial agents for deep periodontal pockets, while ZIFs can be
embedded in guided tissue regeneration membranes and guided bone regeneration membranes. In
orthodontics, zeolites can be applied in orthodontic appliances. Additionally, for oral surgery, zeolites
can be used in oral cancer diagnostic marker membranes, maxillofacial prosthesis silicone elastomer
and tooth extraction medicines, while ZIFs can be incorporated to osteogenic glue or used as a carrier
for antitumour drugs. In summary, zeolites have a broad application in dentistry and are receiving
more attention from clinicians and researchers.

Keywords: zeolite; silver zeolite; zinc zeolite; calcium zeolite; zeolitic imidazolate frameworks;
antimicrobial; dentistry

1. Introduction

Zeolites are microporous aluminosilicate crystalline materials that can be naturally
mined and synthesized. They possess pores and cavities that exchange water, ions and polar
molecules with their surroundings [1]. These pores give zeolites ion exchange properties
and absorption capacity, allowing them to combine with metal ions to exert antibacterial
activities. Zeolites have high chemical stability, thermal stability and biocompatibility [2].
Because of these promising properties, they have been used in a wide range of industrial,
agricultural, food and pharmaceutical applications.

Zeolites’ main elements include oxygen, silicon and aluminium. Their structure
consists of a three-dimensional framework of silicate [SiO4]4− and sluminate. [AlO4]5−

tetrahedra, connected by shared oxygen atoms [3]. Zeolites’ properties are related to
their elemental composition and structure. Pure silica zeolites without aluminium contain
silicon in all tetrahedra and have a neutral and stable framework [4]. In contrast, silica
zeolite with aluminium components has tetrahedral frameworks that are unbalanced in
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charge. Zeolites’ polarity decreases with increasing silicon content. Therefore, high-silica
zeolites tend to be more thermally and chemically stable and have more hydrophobic
surfaces [5], tending to favour low-charge-density (large and monovalent) cations for ion
exchange. Low-silica zeolites, on the other hand, are more likely to exchange with high-
charge-density (small and multivalent) cations due to their high polarity. Zeolites can be
classified based on their silica/aluminium ratio as low-silica zeolites (silica/aluminium
ratio below 2), medium-silica zeolites (silica/aluminium ratio between 2~5) and high-silica
zeolites (silica/aluminium ratio greater than 5) [6].

Zeolites present a three-dimensional molecular sieve skeleton structure. The [SiO4]4−

and [AlO4]5− tetrahedral framework is the primary building unit, and these primary
units can be arranged to form secondary building unit polycyclic structures, where the
zeolite ring usually consists of 4, 5, 6, 8, 10 or 12 tetrahedra [7]. The greater the number of
tetrahedra in a single ring, the larger the zeolite’s pore size. The secondary building units
are arranged in various geometries to form a composite building unit’s molecular sieve
cage structure. The type of skeleton structure of a molecular sieve determines the zeolites’
porosity, pore size and surface area. Structurally, zeolites are classified based on the size
of the smallest pores present in the structure as small-pore zeolites (minimum pore size
between 3~5 Å, SBU consisting of 8–9 tetrahedra), medium-pore zeolites (minimum pore
size between 5~6 Å, SBU consisting of 10 tetrahedra), large-pore zeolites (minimum pore
size between 6~7.5 Å, SBU consisting of 12 tetrahedra) and very-large-pore-size zeolites
(minimum pore size > 7.5 Å, SBU consisting of >12 tetrahedra) [6]. Zeolites with larger
pores and hence higher porosity have a greater ion exchange capacity. Small-pore zeolites
include sodalite (SOD), clinoptilolite (HEU) and zeolite A (LTA); medium-pore zeolites
include ZSM-5 (MFI) and ferrierite (FER); and large pore zeolites include zeolite X, Y (FAU),
mordenite (MOR), zeolite beta (BEA) and EMC-2 (EMT) (Figure 1).
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Zeolitic imidazolate frameworks (ZIFs) are a type of Metal–Organic Framework (MOF),
which have nano-/microporous structures consisting of metal ions and organic units [9].
Compared with other MOFs, ZIFs have higher thermal, chemical, and water stability [10],
and are suitable for biomaterial applications as a carrier for drugs or metal ions. ZIFs
are composed of metal ions (e.g., Fe, Co, Cu, Zn) and organic units that are connected
by imidazolates. The structure is topologically isomorphic to zeolites [11]. Their metal–
imidazolium–metal angle is similar to the 145◦ Si-O-Si angle in zeolites [12].

ZIFs can be classified according to their topological zeolite-like structure into POZ
(ZIF-95), RHO (ZIF-11, ZIF-12, ZIF-71), LTA (ZIF-20, ZIF-21, ZIF-76), SOD (ZIF-8, ZIF-67,
ZIF-90, ZIF-91), GME (ZIF-68, ZIF-69, ZIF-70, ZIF-78, ZIF-80, ZIF-82), MER (ZIF-60), DFT
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(ZIF-3), ANA (ZIF-14), and GIS (ZIF-6, ZIF-74, ZIF-75) [13]. Different synthetic routes and
experimental conditions allow the formation of ZIFs with different structures. These types
of ZIFs combine the properties of MOFs and zeolites [14]. Taking the SOD-structured ZIF
as an example, SOD-ZIF possesses the same structure as SOD-zeolite; however, the pore
sizes of 11.6 Å [15] of SOD-ZIF are much larger than the 2.8 Å of SOD-zeolite [16]. The
large pore size implies that ZIFs possess stronger ion exchange capacity and adsorption
capacity, which make it a very promising material [17].

Due to the distinctive architecture of zeolites and ZIFs, these materials are closely
linked with nanomaterials. The presence of micro- or nano-pores within their structure
enables the encapsulation of nanoparticles, thereby providing a diverse array of functionali-
ties. Zeolite and ZIFs’ physical and chemical properties and structure make them promising
materials for dental applications. The research on the application of zeolites and ZIFs in
dentistry has gradually increased in recent years. Previous reviews on application of zeo-
lites in dentistry focused on the available materials and did not cover metal derivatives of
zeolites. There is also a lack of discussion on the use of ZIFs in dentistry. Therefore, the aim
of this review is to provide an overview of the application of zeolites and ZIFs in dentistry.

2. Literature Search

We performed a systematic search in five common databases, namely PubMed,
Cochrane Library, EMBASE, Scopus and Web of Science. In the search, the keywords
used were ((zeolite) OR (ZIF)) AND ((dentistry) OR (dental material)). This review includes
all publications on the application of zeolites and ZIFs in dentistry. The included studies
were limited to articles published in English on or before 1 October 2023. We removed
duplicate articles. We excluded studies on zeolites in fields other than dentistry, microbial
studies irrelevant to dentistry or oral health, abstracts, conference papers, literature reviews
and systematic reviews. We ultimately included 61 articles in this narrative review. Figure 2
presents the study selection process.
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3. Zeolites for Dental Application

Zeolite compounds for dental applications are mostly combined with metals or metal
derivatives. The zeolite compounds in dental materials are silver zeolite, zinc zeolite,
calcium zeolite and strontium zeolite.

3.1. Silver Zeolite

Silver zeolite has an aluminosilicate framework containing silver. Its antibacterial
properties are mainly derived from the release of silver [18]. The silver can be in various
forms, namely silver ions, charged silver clusters and metallic silver nano ions [19]. The
distribution pattern of silver depends on the zeolite’s structure and the silicon-to-aluminium
ratio. Silver zeolite’s chemical stability contrasts with its cation exchange capacity. The
stronger the cation exchange capacity, the easier it is for silver ions to dissociate from the
zeolite framework for aggregation or exchange with other cations [19]. The amount of
silver ion released is related to the zeolite’s specific surface area and pH value [20]. Silver
zeolite has good biosafety and has been used in food preservation as well as disinfection of
medical devices and materials [21].

3.2. Zinc Zeolite

Zinc zeolites include zinc-cationic zeolites and zinc-oxide zeolites. In general, zinc
zeolites have strong stability because zinc has a stabilizing effect on the metal–zeolite sys-
tem [22]. Zinc zeolites have antibacterial and anti-inflammatory properties and osteogenic
activity. Zinc zeolites’ antibacterial properties come from the release of zinc ions [23].
The generation of reactive oxygen species (ROS), including hydrogen peroxide, hydroxyl
radicals and superoxide ions [24], also contributes to zinc zeolites’ antibacterial properties.

3.3. Calcium Zeolite

Calcium zeolite has a stable particle size and molecular sieve shape and steadily
releases calcium ions. In the oral environment, calcium zeolite can deliver calcium ions
to the tooth surface, rebuild the hydroxyapatite structure of dentin and enamel, and fill
in the gaps where hard tissue demineralization occurs due to bacteria-generated acid,
thus showing remineralization potential [25]. In addition, the combination of calcium
ions and zeolite can enhance the physical adsorption of zeolite [26]. Apart from the
calcium ion zeolite, the zeolite–hydroxyapatite material also releases calcium ions and has
a remineralization potential [27].

3.4. Strontium Zeolite

Strontium zeolite can release Sr2+ ions sustainably. It can promote dentin remineral-
ization. Strontium ions (Sr2+) can replace Ca2+ in the apatite structure in the dental hard
tissue and bone tissue to promote the proliferation and differentiation of human dental
pulp stem cells [28].

4. ZIFs for Dental Application

The most commonly used ZIFs in dentistry are ZIF with SOD structures, including
ZIF-8 and ZIF-67.

4.1. ZIF-8

ZIF-8 consists of zinc ions (Zn2+) and 2-methylimidazole (2-MIM). It has the advan-
tages of a large surface area with a porous structure, low density, high thermal stability,
strong resistance to hydrolysis [29], high biocompatibility [30,31], and stable release of zinc
ions [32]. Zinc ions released from ZIF-8 promotes bone regeneration by up-regulating the
expression of osteogenesis-related genes and osteogenic proteins [33], activates multiple
osteogenesis pathways and activates growth factors [34]. ZIF-8 has pH-responsive prop-
erties. ZIF-8 is stable in water and alkaline solutions but breaks down rapidly in acidic
environments [35].
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4.2. ZIF-67

ZIF-67 consists of cobalt ions (Co2+) and 2-methylimidazole (2-MIM), which also
has the advantages of large surface area, controlled pore size, good biocompatibility,
and biodegradability [36]. ZIF-67 is also pH-responsive. ZIF-67 is stable under neutral
conditions, whereas under acidic conditions, ZIF-67 can rapidly decompose and release
Co2+ [37,38].

5. Dental Applications of Zeolites and ZIFs

Zeolites have been employed in various areas of dentistry, such as restorative dentistry,
endodontics, prosthodontics, implantology, periodontics, orthodontics and oral surgery. In
restorative dentistry, zeolites are used as antimicrobial additives in dental adhesives, tem-
porary filling materials and restorative materials. In endodontics, they are used in root-end
fillings, root canal irritants, root canal sealers and bone matrix scaffolds. In prosthodontics,
zeolites can be incorporated into denture bases, tissue conditioners, soft denture liners and
dental prostheses. In implantology, zeolites are applied in dental implants, bone graft mate-
rials, bone adhesive hydrogels, drug delivery systems and electrospinning. In periodontics,
they can be applied as antibacterial agents for deep periodontal pockets, guided tissue
regeneration membranes and guided bone regeneration membranes. Zeolites are also used
in orthodontic appliances in orthodontics and in oral cancer diagnostic marker membranes,
maxillofacial prosthesis silicone elastomer, osteogenic glue and tooth extraction medicines
for oral surgery (Table 1).

Table 1. Types, properties, functions and applications of zeolites/ZIFs in dentistry.

Dental Application of Zeolites Type of Zeolite/ZIF Properties of Zeolites in Materials Functions of Zeolites in Materials

Restorative Dentistry

Zeolite/ZIF-modified adhesives • Silver–zinc zeolite
• ZIF-8

• Offer antimicrobial properties
• Improve bonding strength and

shear strength

• Prevent secondary caries
• Prolong lifespan of restoration

Zeolite-loaded restorative materials • Silver–zinc zeolite
• Calcium zeolite

• Offer antimicrobial properties
• Improve bonding strength
• Improve corrosion resistance

• Prevent secondary caries
• Promote the remineralization of

demineralized tooth tissue
Endodontics
Zeolite-incorporated root filling • Silver zeolite • Offer antimicrobial properties • Prevent root canal reinfection
Zeolite-incorporated irrigants • Silver zeolite • Offer antimicrobial properties • Prevent root canal reinfection
Zeolite-incorporated sealers • Silver zeolite • Offer antimicrobial properties • Prevent root canal reinfection
Prosthodontics

Zeolite-infiltrated all-ceramic dental
prostheses • Zeolite (sodalite) • Enhance material aesthetics

• Improve bonding strength

• Improve material optical
properties

• Prevent the veneer chipping off
Zeolite-incorporated tissue
conditioners • Silver zeolite • Offer antimicrobial properties • Prevent candida stomatitis

Zeolite-loaded denture bases • Silver–zinc zeolite
• Offer antimicrobial properties
• Improve surface hardness and

smoothness
• Prevent denture stomatitis

Zeolite-incorporated denture liners • Silver–zinc zeolite • Offer antimicrobial properties • Prevent denture stomatitis
Implantology

Zeolite/ZIF-coated implant
• Strontium zeolite
• ZIF-8
• ZIF-67

• Offer antimicrobial properties
• Enhance osteogenic activity

• Prevent infection after implant
surgery

• Promote bone differentiation
and regeneration

• Prevent implant loosening

ZIF-coated bone graft materials • ZIF-8 • Enhance osteogenic activity • Promote bone differentiation
and regeneration

ZIF-modified bone adhesive • ZIF-8

• Offer antimicrobial properties
• Improve wet adhesion and

mechanical strength
• Enhance osteogenic activity

• Prevent infection after implant
surgery

• Prevent the deformation of
bone graft

• Promote bone differentiation
and regeneration
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Table 1. Cont.

Dental Application of Zeolites Type of Zeolite/ZIF Properties of Zeolites in Materials Functions of Zeolites in Materials

ZIF-loaded drug delivery system • ZIF-8 • Enhance osteogenic activity
• Prolong half-life period of drug

• Promote periosteal
vascularization

• Promote bone differentiation
and regeneration

ZIF-modified PCL electrospinning • ZIF-8 • Enhance osteogenic activity
• Promote angiogenesis
• Promote bone differentiation

and regeneration

ZIF-modified post-implantation drug • ZIF-8 • Offer antimicrobial properties • Prevent wound infections after
implant surgery

Periodontics

Zeolite/ZIF-loaded deep periodontal
pocket drugs

• Silver zeolite
• ZIF-8

• Offer antimicrobial properties
• Enhance osteogenic activity

• Prevent and treat periodontitis
• Promote bone differentiation

and regeneration

ZIF-embedded guided tissue
regeneration membranes

• ZIF-8
• Offer antimicrobial properties
• Enhanced barrier action
• Enhance osteogenic activity

• Prevent infection after GTR
• Promote periodontal tissue

regeneration

ZIF-embedded guided bone
regeneration membranes • ZIF-8 • Offer antimicrobial properties

• Enhance osteogenic activity

• Prevent infection after GBR
• Promote bone differentiation

and regeneration

Orthodontics

Zeolite-modified orthodontic bracket • Zinc-oxide zeolite • Offer antimicrobial properties • Reduce plaque attachment
around brackets

Zeolite-based PDT photosensitizer • Zinc-oxide zeolite • Offer antimicrobial properties • Reduce plaque attachment
around brackets

Oral surgery

Zeolite-modified bone matrix scaffold • Zeolite • Enhance osteogenic activity • Promote bone differentiation
and regeneration

Zeolite-loaded oral cancer detection
membrane • Zeolite (ZSM-5) • Not mentioned • Improve detection accuracy

Zeolite acted as the drug after tooth
extraction • Zeolite (clinoptilolite)

• Offer absorption property
• Provide essential minerals

• Promote wound healing
• Promote bone formation

Zeolite-modified maxillofacial silicone
elastomer • Silver–zinc zeolite • Enhance mechanical properties • Prevent material breakage or

degradation

ZIF-incorporated osteogenic glue • ZIF-8
• Enhance mechanical strength

and hard-tissue adhesion
• Enhance osteogenic activity

• Promote bone formation

ZIF-coated antitumour drugs • ZIF-8 • Degrade in acidic environment • Improve drug transportation
and volatilization efficiency

5.1. Restorative Dentistry

Silver zeolite and zinc zeolite have been used to enhance the antimicrobial properties of
adhesives and restorative materials. Calcium zeolite can be relied upon for its antimicrobial
and remineralising properties, which protect the tooth structure by reducing the removal
of deep carious tissue and minimising the risk of pulpal exposure. In addition, restorative
materials modified with zeolites and ZIFs are mechanically stronger than conventional
resin-based materials and are more conducive to bonding system stability.

5.1.1. Zeolite/ZIF-Modified Adhesives

Zeolites have been used to modify dental adhesives. Zeolites containing zinc and
silver can be added with dental adhesive to improve their antibacterial properties, biocom-
patibility and wettability, thereby improving the long-term bonding strength between resin
and dentin [39].

ZIFs have also been used to improve the dental adhesives’ viscoelasticity [40,41],
adhesion strength [41] and thermal stability [42]. The zinc ions in ZIF-8 can inhibit the
hydrolytic degradation of collagen fibres in dentine, which enhances the strength of the
resin–dentin interface and prolongs the service life of adhesives and the bonded dental
fillings [43].

5.1.2. Zeolite-Loaded Restorative Materials

Zeolites have been loaded into restorative materials to improve their antimicrobial and
physical properties. The zeolite-loaded resin-based restorative material presented a lower
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amount of bacterial attachment than unmodified resin [44]. In addition, the wettability of
zeolite-loaded restorative materials was lower, indicating decreased solubility [44]. Cal-
cium zeolites can improve the restorative materials’ remineralising properties by providing
calcium ions sustainably to the dental hard tissue [27,45]. Silver–zinc zeolite was added to
the temporary filling material to inhibit the growth of Streptococcus pyogenes, Streptococ-
cus pneumoniae, Streptococcus salivarius and Streptococcus haematogenic through the
stable release of silver and zinc ions [46].

5.2. Endodontics

In endodontics, silver zeolite with antimicrobial properties can be added in root-
end fillings, root canal irrigants, and root canal sealers. Zeolite compounds and ZIF-
modified materials with antimicrobial and anti-inflammatory properties show potential in
endodontic application. Further studies are needed to investigate the irritating effects of
zeolite compounds and ZIFs on the dental pulp.

5.2.1. Zeolite-Incorporated Materials for Root-End Fillings

Silver zeolite-incorporated mineral trioxide aggregate, a root-end filling material, has
shown antibacterial activity against Enterococcus faecalis [47]. However, the addition of
zeolites decreases the material’s compressive strength and push-out bond strength [48,49].

5.2.2. Zeolite-Incorporated Materials for Root Canal Irrigants

Silver zeolite-incorporated root canal irrigants can inhibit the formation of biofilms of
Enterococcus faecalis, Staphylococcus aureus and Candida albicans [50].

5.2.3. Zeolite-Incorporated Materials for Root Canal Sealers

Silver zeolite-incorporated root canal sealers increased adhesion to dentin [51] and
can provide better filling capacity for complex anatomical root canal structures [52]. It can
also effectively inhibit the adherence of Enterococcus faecalis [53], Streptococcus miller and
Staphylococcus aureus [54,55].

5.3. Prosthodontics

In prosthodontics, silver zeolite and zinc zeolite can be added to dental prostheses,
tissue conditioners, denture bases, and soft denture liners to exert antimicrobial effects, en-
hance the bond strength of restorations, and increase the surface hardness and smoothness
of denture bases. However, the effect of zeolites on the physical properties of the materials
has not been accurately determined, and further research is thus needed.

5.3.1. Zeolite-Infiltrated All-Ceramic Dental Prostheses

The zeolite-infiltrated all-ceramic prosthesis enhanced its aesthetic properties and
adhesive properties [56]. This prosthesis showed better aesthetic performance because
the alumina in the zeolite effectively intercepted the incoming light, weakening the light
transmission [56]. Zeolite-infiltrated all-ceramic laminated veneers enhanced the bonding
strength to the inner core and prevented the veneer from chipping off [57]. Because
zeolite-infiltrated all-ceramic veneers present similar thermal expansion properties with the
porcelain dental core, it reduces stress concentrations due to mismatches in the coefficients
of thermal expansion, thereby increasing the bond strength of the two. In addition, zeolites
do not affect the infiltrated prostheses’ inherent mechanical properties.

5.3.2. Zeolite-Incorporated Tissue Conditioners

Silver-zeolite-incorporated tissue conditioners present an antibacterial effect against
Candida albicans, Staphylococcus aureus and Pseudomonas aeruginosa [58]. The addition
of silver zeolite does not affect the inherent dynamics of viscoelasticity tissue condition-
ers [59].
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5.3.3. Zeolite-Loaded Denture Bases

The acrylic resin denture base loaded with silver–zinc zeolite has a stronger antibacte-
rial effect [60,61], a higher surface hardness and a smoother surface than the conventional
denture base [62]. In addition, zeolites increase the denture base’s opacity, which may
have an aesthetic impact [60]. However, the addition of zeolites reduces the denture base’s
deformation resistance and impact strength [63].

5.3.4. Zeolite-Incorporated Soft Denture Liners

The addition of silver–zinc zeolites to the soft denture liner enhances its antimicrobial
effect and physical strength [64]. Soft denture liners loaded with Ag-Zn zeolite nanoparti-
cles have a long-term antifungal effect than those with fluconazole [65].

5.4. Implantology

In implantology, strontium zeolite, ZIF-8 and ZIF-67 can provide antimicrobial and
osteogenic properties in dental implant-related materials. Current materials used for
bone regeneration and reconstruction have limitations that prevent them from combining
mechanical strength, biocompatibility and osteogenic activity at the same time. ZIFs present
corrosion resistance, good antimicrobial properties, high biocompatibility, and the ability to
induce bone mineralisation and regeneration, making them suitable when used as coatings
on implants and scaffolds. The application of zeolites and ZIFs in implantology brings
more options for clinical treatments.

5.4.1. Zeolite/ZIF-Coated Implants

Titanium dental implants coated with strontium zeolite show enhanced biocompat-
ibility, corrosion resistance, osteogenesis and osseointegration [66]. Zinc zeolite-coated
implants showed enhanced bone cell activity and promoted osteogenesis and bone inte-
gration [67], reducing the risk of implant loosening [68,69]. In addition, zeolites combined
with silver ions, zinc ions or other metal ions have strong antibacterial properties and
great potential when applied in dental and bone implants [70]. ZIF-8- and ZIF-67-coated
dental and orthopaedic titanium implants have strong antimicrobial properties, corrosion
resistance and biocompatibility [71,72].

5.4.2. ZIF-Coated Bone Graft Materials

ZIF-8 can modify biphasic calcium phosphate ceramics (BCP), a bone graft material,
by coating the surface. The ZIF-8-coated BCP altered the ceramics’ surface chemistry and
can effectively promote cell attachment, proliferation, osteogenic differentiation and bone
regeneration [73].

5.4.3. ZIF-Modified Bone Adhesives

The bone adhesive modified with ZIF-8 nanoparticles has strong antibacterial proper-
ties, wet adhesion, crosslinking density and mechanical strength. It performs better than
normal bone adhesives in stabilizing the environment of bone grafts, promoting osteogenic
differentiation and preventing the deformation and collapse of bone grafts under external
forces [74].

5.4.4. ZIF-Loaded Drug Delivery System

The drug delivery system loaded with ZIF-8 nanoparticles more effectively promoted
periosteum vascularization and vascular coupling than drugs not loaded with zeolites in
the treatment of extensive bone defects. The half-life of the drug such as desferriamine
or dimethyloxallyl glycine in the system was prolonged, preventing its rapid clearance in
plasma [75,76].
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5.4.5. ZIF-Modified PCL Electrospinning

The electrospinning of polycaprolactone (PCL) modified with ZIF-8 nanoparticles has
the potential to promote bone regeneration in implant surgery by inducing neovascular-
ization. Moreover, it has the advantages of high porosity, stable physical properties, slow
release of zinc ions and a controlled degradation rate [77].

5.4.6. ZIF-Modified Post-Implantation Drugs

The manganese-doped ZIF-8 can inhibit over-reactive inflammation and prevent
wound infections after implant surgery [78]. It releases manganese ions and zinc ions
simultaneously, presenting both bactericidal and anti-inflammatory functions.

5.5. Periodontics

In periodontics, silver zeolite and ZIF-8-loaded deep periodontal pocket drugs can
reduce the bacterial load and alleviate inflammation. They are promising in both the basic
and surgical treatment stages of periodontal disease. ZIF-embedded guided tissue/bone
regeneration membranes can promote periodontal tissue and alveolar bone regeneration.

5.5.1. Zeolite/ZIF-Loaded Drugs for Deep Periodontal Pockets

The silver-zeolite-loaded drug for deep periodontal pockets inhibited common Gram-
negative bacteria, including Pseudomonas gingivalis, Pseudomonas intermedia and Pseudomonas
actinomyces, and Gram-positive bacteria pathogenic bacteria under anaerobic conditions.
Therefore, it can be used as an antibacterial drug for patients with periodontitis [79].

ZIF-8-loaded deep periodontal pocket drugs have antibacterial and anti-inflammatory
effects [80,81] and osteogenic properties, which can promote alveolar bone regeneration in
patients with periodontal bone loss [82].

5.5.2. ZIF-Embedded Guided Tissue/Bone Regeneration Membranes

A functional guided tissue regeneration (GTR) membrane coated with ZIF-8 nanoparti-
cles has a porous structure and randomly oriented nanofibers, which can effectively prevent
cell migration across the membrane barrier [83]. Zinc ions’ antibacterial action can prevent
bacterial infection after GTR.

A guided bone regeneration (GBR) membrane coated with ZIF-8 nanoparticles has
good antibacterial properties, an asymmetric porous structure and suitable porosity and
pore size, which are conducive to the growth of bone tissue [84]. In addition, the ZIF-8
nanoparticles’ modified GBR membrane is conducive to the primary attachment, growth
and proliferation of dental pulp stem cells [85]. However, the modified film’s mechanical
properties were slightly reduced.

5.6. Orthodontics

In orthodontics, zinc-oxide zeolite is used to modify orthodontic brackets to provide
an antibacterial effect and prevent dental plaque attachment around the brackets.

5.6.1. Zeolite-Modified Orthodontic Brackets

Zeolite can be used to modify the orthodontic bracket in orthodontic treatment, mainly
as an antibacterial agent. The orthodontic bracket modified with zinc-oxide zeolite has a
strong antibacterial effect against Klebsiella pneumoniae and Escherichia coli [86]. However, the
bracket’s bending strength decreases with the increase in zinc-oxide zeolite concentration.

5.6.2. Zeolite-Based aPDT Photosensitizer

Antimicrobial photodynamic therapy (aPDT) is a method for orthodontic bracket
cleaning. This method uses light to activate photosensitizers that produce ROS to kill
bacteria. Zinc-oxide zeolite-based aPDT photosensitizers have a strong bactericidal effect
on the cariogenic microbial biofilm formed on the orthodontic bracket. Additionally, they
promote remineralisation on the demineralised enamel around the bracket [87].
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5.7. Oral Surgery

In oral surgery, zeolite and ZIFs are mainly used for post-extraction treatment, cranial
and maxillofacial bone restoration, and oral oncology. Zeolites can be used to promote
resorption and bone healing in post-extraction sockets. Zeolites and ZIF-8 can be added
to bone glue and maxillofacial silicone elastomers to increase their mechanical strength
and promote bone regeneration. ZIF-8 can be used to transport antitumour drugs. In
addition, currently ZIFs have the potential to be designed as stimulus-responsive drug
delivery systems to stimuli including light, heat, and magnetism [88]. They can also be
used as immune checkpoint inhibitors, immune adjuvants or carriers of cancer vaccines for
the immunotherapy of tumours [89].

5.7.1. Zeolite-Modified Bone Matrix Scaffold

A bone matrix scaffold modified by nano-zeolites has improved osteogenic properties,
compressive strength and surface hardness compared to an unmodified scaffold [90,91]. A
bone matrix scaffold modified by nano-zeolites promotes bone formation by promoting the
adhesion of calcium and phosphate ions and apatite crystallization [92]. Zeolite nanoparti-
cles have strong interaction with plasma proteins [93]. Silicon in zeolites plays an important
role in the formation of hard tissue in the early stage of bone calcification [94]. Some
zeolites can also increase intracellular ALP activity, thereby enhancing the proliferation
and osteogenic reaction of human dental pulp stem cells [90].

5.7.2. Zeolite-Loaded Oral Cancer Detection Membrane

A detection membrane loaded with zeolites can be used for the diagnosis of oral
cancer [95]. The detection membrane analyses the volatile organic compound (VOC)
spectrum of the patient’s saliva and diagnoses the condition based on the potential markers
of oral squamous cell carcinoma displayed on the VOC spectrum. However, the authors of
this study did not explain the role of zeolites in the detection membrane.

5.7.3. Zeolites Act as a Drug after Tooth Extraction

Zeolites (clinoptilolite) can be used as a drug after tooth extraction to promote wound
healing and new bone formation [96]. Due to zeolites’ ion exchange and absorption
properties, they can detoxicate the socket by irreversibly absorbing bacteria, histamine
and other inflammatory proteins and exudates in the socket. They can also attract blood
clots in the socket and promote the formation of granulation tissue, thus easing wound
inflammation and promoting healing. Zeolites also provide calcium and silica, which are
essential minerals for bone formation.

5.7.4. Zeolite-Modified Maxillofacial Silicone Elastomers

The incorporation of silver–zinc zeolite into maxillofacial silicone elastomers enhances
their mechanical properties, allowing the material to better withstand mechanical load-
ing [97].

5.7.5. ZIF-Incorporated Osteogenic Glue

Osteogenic glue is used to repair fractured bone or dislocated teeth. The ZIF-8-
incorporated osteogenic glue and its osteogenic effect was conducive to an increase in bone
thickness at the fracture site and the growth of new bone tissue [98].

5.7.6. ZIF-Coated Antitumour Drugs

Antitumour drugs coated with ZIF-8 nanoparticles have a higher tumour inhibition
rate than uncoated drugs. ZIF-8 can be degraded in the acidic tumour microenvironment,
thereby providing better drug delivery [99].
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6. Conclusions

Zeolites and ZIFs are crystalline aluminosilicates with porous structure, which are
closely linked with nanomaterials. Their structure enhances ion exchange capacity, physical–
chemical stability and biocompatibility, making them promising materials for dental appli-
cations. The common zeolite compounds for dental applications include silver zeolite, zinc
zeolite, calcium zeolite and strontium zeolite, while the common ZIFs for dentistry include
ZIF-8 and ZIF-67. Zeolites and ZIFs have been applied in multiple areas of dentistry and
show great potential in their application in clinical dental practice.
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