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Abstract: Memristors, resistive switching memory devices, play a crucial role in the energy-efficient
implementation of artificial intelligence. This study investigates resistive switching behavior in a
lateral 2D composite structure composed of bilayer graphene and 2D diamond (diamane) nanostruc-
tures formed using electron beam irradiation. The resulting bigraphene/diamane structure exhibits
nonlinear charge carrier transport behavior and a significant increase in resistance. It is shown
that the resistive switching of the nanostructure is well controlled using bias voltage. The impact
of an electrical field on the bonding of diamane-stabilizing functional groups is investigated. By
subjecting the lateral bigraphene/diamane/bigraphene nanostructure to a sufficiently strong electric
field, the migration of hydrogen ions and/or oxygen-related groups located on one or both sides of
the nanostructure can occur. This process leads to the disruption of sp3 carbon bonds, restoring the
high conductivity of bigraphene.

Keywords: graphene; diamane; resistive switching; memristor; electron beam irradiation

1. Introduction

Memristors as resistive switching memory devices play a critical role in the energy-
efficient implementation of artificial intelligence. Memristors possess unique properties
that stem from their ability to operate at atomic scales, allowing, for example, the formation
or rupture of metallic filaments using voltage signals to encode synaptic weights [1,2].
The high endurance and sub-nanoscale switching speeds of memristors contribute to their
low energy consumption, making them suitable for efficient computing. Furthermore, the
memristor’s resistive switching performance is influenced by its previous states, allowing
for adaptive behavior and learning capabilities in neuromorphic systems. This property
enables the development of artificial intelligence systems that can mimic the synaptic
plasticity observed in biological neural networks [3].

Two-dimensional materials represent a novel class of nanostructured materials that
hold great promise as emerging materials for ultra-thin semiconductor devices in the
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future [4]. This family of materials encompasses a wide range of options, including metals
and insulators, offering a rich collection of nanostructured 2D materials that can be utilized
for designing diverse devices [5–7]. In the present era, 2D materials have gained significant
attention due to their unique properties, which arise from their low-dimensional nature
and distinctive physical and chemical characteristics [8].

Graphene-based layer heterostructures, renowned for their remarkable electrical, ther-
mal, and mechanical properties, exhibit immense potential for memristor applications.
Recent studies have showcased the promise of graphene/graphene oxide heterostructures
in resistive memories [9,10]. In vertical configurations, resistive switching has been ob-
served in graphene oxide structures with on/off ratios of approximately 20 [11] and 100 [12]
for Cu-Pt and Al-Al electrodes, respectively. The mechanism behind this switching involves
the migration of metal atoms and/or a redox process. In planar structures on Si/SiO2
substrates, conductive graphene filaments within a graphene oxide matrix mainly govern
the switching behavior. By manipulating the sp2/sp3 domains using oxidation/reduction
processes, the desired graphene/graphene oxide-based memories can be achieved.

Ultra-thin diamond film, also known as diamane [13], emerges as another promising
candidate for memristor applications. Initially regarded as a purely theoretical concept,
diamane has been successfully observed, marking a significant milestone [14–17]. The band
structures of diamane exhibit semiconducting behavior and possess a wide direct band
gap, which renders it highly promising across various scientific fields [13]. The stability
of diamane significantly deviates from that of diamond due to specific thermodynamic
conditions. A pristine surface of bilayer diamane is inherently unstable; however, this
instability can be reversed using the deposition of external atoms on bilayer graphene [13].
As a result, the bilayer graphene layers connect, leading to the formation of robust sp3-
hybridized bonds. This chemically induced phase transition facilitates the controlled
formation of high-resistivity diamane islands within the bilayer graphene structure by
selectively attaching reference atoms. This controlled formation process allows for the
precise engineering of the electrical properties of the composite system.

In recent research [18], the formation of diamondized regions in polymethyl methacry-
late (PMMA)-covered bilayer graphene on the La3Ga5SiO14 surface has been successfully
demonstrated. In the investigation, two layers of graphene were transferred onto a langasite
substrate and subjected to focused electron beam irradiation through a layer of polymethyl
methacrylate. The results of these studies revealed the local diamondization of bilayer
graphene during the irradiation process. The observed results can be explained using the
framework of the theory of a chemically induced phase transition, which is associated with
the formation of sp3 bonds between carbon atoms and hydrogen and oxygen atoms released
from PMMA and langasite, respectively, upon irradiation of the structure with an electron
beam. Theoretical calculations and experimental evaluations of the sp3-hybridized carbons
in the modified bilayer graphene structure on langasite provide evidence for the formation
of diamane in the irradiated regions. These findings contribute to our understanding of the
mechanisms underlying the transformation of bilayer graphene into diamane and pave the
way for further exploration of the properties and potential applications of this novel material.

The focus of this study is on the resistive switching phenomenon in this lateral two-
dimensional composite structure. The first part of this paper delves into an examination of
the current–voltage characteristics of bilayer graphene, revealing differences in behavior
between the initial and electron beam-irradiated structures. The second part of this study
involves the analysis of the structural features of the formed nanomaterial. This analysis
was conducted through the mapping of the intensity ratio between the D and G Raman
bands. The final part of the work is dedicated to the study of the resistive switching effect
in the formed bilayer graphene/diamane/bilayer graphene structure in an external electric
field and the theoretical investigation of the response of the structure to the electric field.
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2. Methods
2.1. Experimental Methods

Graphene monolayers were synthesized using chemical vapor deposition (CVD) on a
copper catalyst foil. The CVD process was carried out in a horizontal quartz tube measuring
2400 mm in length and 152 mm in diameter, which was placed inside a six-zone furnace
with a length of 1500 mm. A 25 µm thick copper foil, specifically a 10 × 30 cm2 foil with a
purity of 99.999% from Alfa Aesar, was loaded into the CVD reactor and evacuated to a
base vacuum pressure of less than 10−4 Torr.

To initiate the growth of graphene layers, the temperature inside the chamber was
raised to 1020 ◦C. A mixture of methane (CH4) and hydrogen (H2), along with argon (Ar)
as the carrier gas, was introduced into the reaction chamber at a pressure of 600 mTorr. The
flow rates of the gases were set at 40 cm3/min for the CH4, 100 cm3/min for the H2, and
2000 cm3/min for the Ar. The growth process was carried out for 30 min, after which the
reaction chamber was cooled down to room temperature at an average rate of 14 ◦C/min,
maintaining the same flow rates of Ar and H2, but without the presence of methane.

To transfer the grown graphene monolayers, a common two-step process was em-
ployed [19] (see Figure S1 in the Supplementary Materials for more detail). First, the
graphene layers on the copper foil were removed from the reverse side using oxygen
plasma with a power of 60 W. Then, the remaining graphene layers were transferred onto
the polished surface of a La3Ga5SiO14 (LGS) substrate. The transfer was facilitated by using
a poly(methyl methacrylate) (PMMA) layer as support. The PMMA layer was spin-coated
onto the graphene-covered copper foil and dried in an oven at 120 ◦C for 10 min. Sub-
sequently, the PMMA/graphene layer was immersed in a solution of distilled water to
facilitate the separation of the graphene layer from the copper foil. The PMMA was then
removed by soaking the sample in acetone or isopropyl alcohol, and the resulting single-layer
graphene (SLG) on the LGS substrate was rinsed with a 30% hydrochloric acid (HCl) solution
at 60 ◦C for 30 min to eliminate any residual Fe3+ ions. This process ensured the preparation
of a high-quality graphene layer with a low defect density on the LGS substrate.

The same procedure was repeated to transfer the upper layer of graphene onto the
previously transferred graphene layer. Before the transfer procedure, the surface of the
lower layer was thoroughly cleaned with solvents and an ultrasonic bath to ensure a tight
fit between the graphene monolayers.

The graphene layers on the substrates were analyzed using Raman scattering with a CRM
200 spectrometer (WiTec, Ulm, Germany). A 100× objective (Olympus, NA 0.9, Rochester,
NY, USA) was used, along with a 532 nm (or 488 nm) laser with a power of 1 mW (or 2.5 mW,
50 mW). A GX polarized filter-AN360 (Olympus) was also employed. Each spectrum was
obtained by taking 10 measurements within a 10 s accumulation time. Multiple analyses,
ranging from 3 to 6, were performed at different locations for each sample.

To prepare the samples for further analysis, a layer of PMMA-950 resist with a thick-
ness of 300 nm was deposited onto the system. These samples were irradiated using an
EVO-50 scanning electron microscope equipped with a Nanomaker electron beam control.
The Raman spectra of nanostructures obtained using irradiation with a focused electron
beam were measured using a Bruker Senterra micro-Raman system. The excitation wave-
length for the Raman measurements was 532 nm, and the laser power at the sample point
was set to 10 mW. Each point on the map was captured for 2 × 20 s. Transport measure-
ments of the nanostructures were conducted using a microprobe station EPS150TRIAX
(Microtron, Eindhoven, The Netherlands) and a Keithley 2636B System SourceMeter® SMU
Instrument (Tektronix, Beaverton, OR, USA).

2.2. Computational Details

The effect of a lateral electric field on the atomic structure of graphene/diamane/graphene
was investigated using density functional theory (DFT) [20,21]. The calculations were per-
formed within the generalized gradient approximation using the Perdew–Burke–Ernzerhof
(PBE) parametrization [22]. The SIESTA code [23] was employed using the double-ζ plus
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polarization (DZP) basis set of numerical atomic orbitals [24]. To account for core electrons,
norm-conserving Troullier–Martins pseudopotentials [25] in their fully nonlocal representa-
tion [26] were used. The real space mesh cutoff was set to 200 Ry. Periodic boundary conditions
were applied along the nanoribbon direction, while a vacuum region of 15 Å was introduced
in the perpendicular direction to the ribbon edge. The Brillouin zone was sampled using a
16 × 1 × 1 Monkhorst–Pack grid [27]. The atomic structure was relaxed until the maximum
interatomic force fell below 0.04 eV/Å. The ribbon edges were passivated with hydrogen atoms.
To simulate the external electric field, a periodic sawtooth-type potential was applied perpen-
dicular to the ribbon edge, taking into account the slab dipole correction to the electrostatic
potential and energies [28].

3. Results and Discussion

Recently, the formation of diamane nanostructures in bilayer graphene on a La3Ga5SiO14
substrate under focused electron beam irradiation was reported [18]. The observed results can
be explained using the framework of the theory of a chemically induced phase transition from
bilayer graphene to diamane [13]. This transition is associated with the release of hydrogen
and oxygen atoms from PMMA and langasite, respectively, due to the “knock-on” effect
caused by electron beam irradiation. A similar outcome was observed in the formation of
diamond nanoclusters within the carbon network. In this case, hydrogen atoms displaced
from the dodecyl groups due to the “knock-on” effect penetrate the layered carbon structure
and subsequently form diamond clusters with sizes reaching up to 10 nm [29]. The modified
structure of bilayer graphene on langasite was theoretically calculated, and the experimental
evaluation of the fraction of sp3-hybridized carbon confirmed the formation of diamane
nanoclusters in the irradiated regions of bilayer graphene.

Figure 1 showcases the current–voltage characteristics of a bilayer graphene, which
was transferred onto a La3Ga5SiO14 substrate with Al/Cr side electrodes, both before (a)
and after (b) the electron beam-induced transition from bilayer graphene to diamane. The
insets in Figure 1 provide optical images of the structure: the unirradiated bilayer graphene
on a La3Ga5SiO14 substrate with two Al/Cr electrodes (a), and the irradiated structure with
an electron beam passing through PMMA along a specific line to locally convert bilayer
graphene to diamane (b). Initially, the bilayer graphene on a La3Ga5SiO14 substrate with
Al/Cr side electrodes exhibits a linear current–voltage characteristic and a resistance of
360 Ohms (Figure 1a). However, upon irradiation with a focused electron beam, a diamane
structure is formed, characterized by nonlinear charge carrier transport behavior and a
significant increase in resistance up to 35 kΩ (Figure 1b).

In Figure 2b, mapping of the intensity ratio between the D and G Raman bands
of a two-layer graphene system is presented. This mapping was performed in a region
of approximately 27 × 24 µm surrounding a vertical stripe, which was obtained using
irradiation with a focused electron beam, as depicted in Figure 2a. Previous studies [18]
have demonstrated significant modifications in the Raman modes within the irradiated
regions of bilayer graphene. Specifically, irradiation with an electron beam results in
a notable increase in the intensity of the D peak, indicating an elevated density of sp3-
hybridized carbon. The Raman mode at approximately 1345 cm−1 corresponds to defects
responsible for the formation of sp3-hybridized regions, a characteristic commonly observed
in graphene oxide (GO). Previous research has shown that electron beam irradiation of GO
effectively reduces it, leading to a decrease in the density of sp3-hybridized carbon and a
relative decrease in the intensity of the D peak without any shift. In the case of a similar
bilayer graphene structure, irradiation with an electron beam resulted in a shift of the D
peak to 1335 cm−1 and an increase in intensity [18]. Additionally, a peak at 1319–1337 cm−1,
indicative of diamond-like hybridization [30], was observed in few-layer graphene, while
the D peak in graphene is typically located at approximately 1350 cm−1 [31]. Consequently,
the concentration of sp3-hybridized carbon increases, and the characteristic peak shifts
toward the Raman mode associated with diamane. The Raman spectra obtained from
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non-irradiated and irradiated areas of bilayer graphene are shown in Figure S2 of the
Supplementary Materials.
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Figure 1. Current–voltage characteristics of a two-layer graphene with Al/Cr side electrodes on a
La3Ga5SiO14 substrate, both prior to the electron beam-induced transition from bilayer graphene
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electron beam using PMMA to convert it to diamane is shown as a vertical dark stripe. The scale bar
in the images corresponds to 1 µm.
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proposed in [32]. For the D peak, CA = 4.2, CS = 0, rA = 3 nm, and rS = 1 nm, and for the D’ peak,
CA = 0.5, CS = 0.33, rA = 2.6 nm, and rS = 1.4 nm [18].

If we assume that defects of the “vacancy” type can be disregarded, the concentration
of sp3 carbon can be estimated using the intensity ratio I(D)/I(G), as depicted in Figure 2b,d.
Our calculations indicate that the fraction of sp3 carbon in the irradiated region amounts to
1012 cm–2 (Figure 2d) [18].

Figure 3 illustrates the current–voltage characteristics of a nanostructure consisting of
bilayer graphene, diamane, and bilayer graphene, with Al/Cr electrodes on a La3Ga5SiO14
substrate (a). Additionally, Figure 3b showcases the changes in resistance during a bias
voltage sweep.
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Figure 3. Current–voltage characteristics of an Al/Cr/bigraphene/diamane/bigraphene/Al/Cr
nanostructure on a La3Ga5SiO14 substrate formed by electron beam irradiation of bigraphene demon-
strating resistive switching (a) and changes in its resistance (b) during a bias voltage sweep.

The voltage sweeps from 0 V to −1 V and then to 1 V and back to 0 V resulting in resis-
tive switching at −0.9 and 0.9 V from a high-resistance state (~20 kOm) to a low-resistance
state (~0.5 kOm) and back, respectively, demonstrating an on/off ratio of ~40, which is com-
parable to previously reported characteristics of memristors and photomemristors based
on 2D materials [9,11,12,34]. It should be noted that direct “writing” diamane memristor
structures with bilayer graphene electrodes by using electron beam irradiation opens new
possibilities for fabricating memristor devices on bilayer graphene built-in integral circuits
using electron beam processing compatible with CMOS technology.

When graphene layers are exposed to the adsorption of atoms or molecular groups,
they can bind together and undergo a chemically induced phase transition, resulting in the
formation of a diamond film. It is important to note that this phase transition occurs when the
adsorbing atoms or molecular groups have a radius comparable to that of a carbon atom. If
the adsorbing species are too large, the steric factor hinders the complete coverage of the film
surface. In this context, oxygen-containing groups of moderate size are particularly suitable
for providing full passivation of the diamane film. These groups can effectively bind to the
surface of the film, ensuring its stability and preventing the formation of defects. Furthermore,
when a sufficiently strong electric field is applied to a lateral bigraphene/diamane/bigraphene
nanostructure, it can induce the migration of hydrogen ions (and/or oxygen-related groups)
that are located on one or both sides of the nanostructure. This migration process can break the
sp3 carbon bonds and subsequently transform the structure into bigraphene. This alteration
in the carbon bonding configuration can have significant implications for the electronic and
structural properties of the nanostructure.

In the previous work [18], in which the formation of diamondized regions in PMMA-
covered bilayer graphene on the La3Ga5SiO14 surface was demonstrated, we designed
a corresponding model of a diamane film arranged on a substrate functionalized with
hydrogen atoms from the outer side. During the relaxation process, the surface oxygen
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atoms of langasite shifted and formed connections with the carbon atoms at the interface,
thereby stabilizing the geometry of the diamane film. The resulting structure exhibited

a hexagonal diamane film with the
(

10
-
10

)
surface, which displayed high stability. This

finding supports the experimental suggestion of the diamondization of bilayer graphene
through the treatment with H and O atoms.

In this study, we specifically examined the response of the 2D diamond structure to an
external electric field. To simplify the model, we removed the La3Ga5SiO14 substrate and
retained only oxygen atoms in the form of peroxide groups on one side, while hydrogen
atoms released from the PMMA coating were present on the other side. This simplified
model consisted of a bilayer graphene/diamond heterostructure that was periodic only
along the x-axis, forming a ribbon-like structure, as depicted in Figure 4a.
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detachment: the initial structure, detachment of the first oxygen molecule, and detachment of the second
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between the initial stage and the stage with detached O2, for the desorption of one and two oxygen
molecules from the diamond surface. The graph shows the variation in the cleavage barrier with
different voltages of an applied electrical field. The inset provides a closer look at the dependence of the
cleavage barrier for the desorption of two oxygen molecules on the applied electrical field.
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The stability of the diamond film is closely related to the strength of the C-O and C-H
bonds. Functional groups on the film surface contribute to its stability, and their desorption
leads to the cleavage of the film. We defined the cleavage barrier of the diamond cluster as
the energy difference between the original structure (E0) and the structure with one (E1) or
two (E2) detached oxygen molecules.

Our findings indicate that a diamond-like nanoribbon with a minimum width of 1 nm
(consisting of four atomic layers arranged perpendicular to the surface) is thermodynami-
cally stable. Narrower ribbons are unstable and delaminate into bilayer graphene. As the
ribbon width increases, the energy barrier for diamond cluster cleavage also increases (from
0.66 eV/O2 to 2.38 eV/O2). However, the response to an electric field remains the same for
ribbons of different widths, allowing us to focus on studying the minimal structure.

The process of the sequential disruption of the diamond cluster using the displacement
and desorption of peroxide groups is illustrated in Figure 4b. The energy barrier for
cleavage is shown to decrease with the increasing magnitude of the applied electric field, as
depicted in Figure 4c. In the absence of an electric field, the cleavage barrier due to oxygen
desorption is relatively high. However, even a small electric field of 0.2 eV/Å reduces
the barrier, and a field of 1.0 eV/Å decreases it by almost half. This significant response
of C-O bonds to the electric field is attributed to their high polarity. On the other hand,
the effect of the field on C-H bonds is negligible. Consequently, the desorption of oxygen
atoms from the surface leads to the complete destruction of the diamane structure and the
restoration of metallic conductivity in the system. Based on these results, we can conclude
that effective control over the conductive properties of the synthesized material can be
achieved by applying a bias voltage.

4. Conclusions

In this study, we investigated the resistive switching behavior of a lateral 2D com-
posite structure consisting of bilayer graphene and diamane (2D diamond). The local
diamondization of bilayer graphene on a La3Ga5SiO14 substrate under focused electron
beam irradiation was observed. Raman spectroscopy analysis revealed an elevated density
of sp3-hybridized carbon in the irradiated regions. The current–voltage characteristics of
the bilayer graphene before and after the electron beam-induced transition demonstrated a
significant increase in resistance upon the formation of the diamane structure.

Furthermore, the resistive switching behavior of a nanostructure consisting of bilayer
graphene, diamane, and bilayer graphene was investigated. A voltage sweep from 0 V to
−1 V and then to 1 V and back to 0 V resulted in a switch from a high-resistance state to
a low-resistance state and back. This resistive switching behavior was attributed to the
migration of oxygen-related groups, leading to the restoration of sp2 carbon bonds in the
bilayer graphene.

In our theoretical investigation, we focused on understanding the influence of an electric
field on the bonding of functional groups to the surface and the overall stability of a diamond
film. To achieve this, we designed a graphene/diamane heterostructure, in which the diamond
layer is stabilized by oxygen atoms in the form of peroxide groups from the langasite substrate
on one side and hydrogen atoms released from the PMMA coating on the other side. This
model represents a diamond nanoribbon embedded within a graphene bilayer. The stability
of the diamond film is closely tied to the strength of the C-O and C-H bonds. The presence
of functional groups on the film surface contributes to its stability, and their desorption can
lead to the cleavage of the film. Our simulations demonstrate that when a sufficiently strong
electric field is applied to a lateral bigraphene/diamane/bigraphene nanostructure, it can
induce the migration of oxygen-related groups. This migration process results in the breaking
of interlayer sp3 carbon bonds and the disruption of the diamane structure. The alteration in
the carbon bonding configuration and the disruption of the diamane structure play a crucial
role in this process, enabling the system to exhibit distinct electrical properties and undergo
reversible transitions between high and low resistance states.
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The results of this study highlight the potential of using bilayer graphene/diamane
structures for resistive switching applications. The electron beam-assisted chemically induced
phase transition of bilayer graphene to diamane provides a new technology for the direct
‘’writing” of memristor devices on bilayer graphene using electron beam lithography. It opens
new possibilities for using large-scale bilayer graphene substrates for 2D layered memristor
fabrication using CMOS-compatible technology. The ability to control the conductive prop-
erties of the formed structure using local phase transitions through bias voltage opens up
possibilities for the development of novel memristor devices with improved performance.
Further research can optimize of the fabrication process to integrate these memristor structures
into CMOS devices for various applications, including the power-efficient implementation of
artificial intelligence and advanced computing systems.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/nano13222978/s1. Figure S1. The transfer of graphene layers on a substrate.
Figure S2. The Raman spectra obtained from non-irradiated and irradiated areas of the bilayer graphene.
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