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Abstract: The present work demonstrates the optimization of the ligand structure in the series
of bis(phosphine oxide) and β-ketophosphine oxide representatives for efficient coordination of
Tb3+ and Eu3+ ions with the formation of the complexes exhibiting high Tb3+- and Eu3+-centered
luminescence. The analysis of the stoichiometry and structure of the lanthanide complexes obtained
using the XRD method reveals the great impact of the bridging group nature between two phosphine
oxide moieties on the coordination mode of the ligands with Tb3+ and Eu3+ ions. The bridging
imido-group facilitates the deprotonation of the imido- bis(phosphine oxide) ligand followed by
the formation of tris-complexes. The spectral and PXRD analysis of the separated colloids indicates
that the high stability of the tris-complexes provides their safe conversion into polystyrenesulfonate-
stabilized colloids using the solvent exchange method. The red Eu3+-centered luminescence of
the tris-complex exhibits the same specificity in the solutions and the colloids. The pronounced
luminescent response on the antibiotic ceftriaxone allows for sensing the latter in aqueous solutions
with an LOD value equal to 0.974 µM.

Keywords: luminescent sensor; lanthanide-centered luminescence; bis(phosphine oxide);
cephalosporins; Judd-Ofelt

1. Introduction

Luminescent lanthanide complexes have long been attracting researchers due to their
excellent optical properties. They are widely used as building blocks for luminescent nano-
materials for application in biomedical analysis, medical diagnosis, and cell imaging [1–3].
Long luminescence lifetimes, sharp characteristic emission bands, and large Stoke’s shifts
allow the removal of biological background autofluorescence, which is of great importance
when biomedical experiments are conducted.

However, due to the difficulties with direct sensitization of Ln(III), luminescence
organic ligands (Ls) are usually used to excite lanthanides indirectly mainly with ligands’
triplet level [4–7]. Within the complex of Ln(III)–L, the efficiency of ligand-to-metal energy
transfer governs the resulting brightness and, hence, luminescence performance in various
applications. It is worth noting that β-diketones demonstrated outstanding chelating
properties towards all lanthanide series forming stable six-membered chelate rings [8–10].
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The structural variability of beta-diketones gave rise to a number of Ln(III) complexes
with record optical properties due to the precise tuning of triplet energy level with a
simple change of substituents [11–13]. Moreover, a great number of such complexes were
successfully converted into aqueous colloids using the solvent exchange technique [8,14].
However, 1,3-diketonates are quite selective in sensitizing specific lanthanide ions. In this
regard, the design of new ligands that can excite different metals of the lanthanide series
and nanomaterials exhibiting both diverse lanthanide-centered luminescence in the visible
region of the spectrum, e.g., green or red, and good colloid properties simultaneously is a
top challenge in current chemistry.

Phosphine oxides attracted great attention as promising extractants for 4(5)f-metal
ions [15–20]. The chemistry of 1,3-bis-phosphine oxides is rapidly developing, which is
mainly because bis(phosphine oxides) are efficient ligands allowing diverse complexation
with lanthanide and calcium ions [21–26]. The great impact of the structure of the group
linking two phosphine oxides on the complexation mode is worth noting. In particular, the
chelation of lanthanide ions by imido-bis(phosphine oxides) is followed by a deprotona-
tion [27–29], while bis(phosphine oxides) bridged via methylene group tend to form stable
complexes with lanthanide ions without deprotonation [30,31]. A similar chelating ability
towards lanthanide ions was previously demonstrated for carbamoylphosphine oxide
derivatives [32–34]. Having a valence of five, the phosphorus atom brings an additional
option for introducing P-substituent compared to dicarbonyles. This makes carbamoylphos-
phine oxides (CMPOs) and bis(phosphine oxides) beneficial in terms of structural variations
and possible functional add-ons. Aryl-substituted phosphorus-containing ligands have
recently been documented to grant substantial antenna-effect sensitizing luminescence
of Rare Earth Elements (REEs), which are in demand in luminescence-related applica-
tions [35,36]. However, to the best of our knowledge, the applicability of such complexes in
the development of nanosensors is very poorly documented in the literature, if at all.

The wide applicability of lanthanide complexes in the fluorescent sensing of residual
amounts of drugs, including antibiotics, in water or biological fluids is well known [37–43].
In this regard, the synthesis of new lanthanide complexes, where ligand-to-metal energy
transfer is enough for sensitizing lanthanide-centered luminescence, and where ligand-
metal coordination bonds are tight enough for the safe conversion of the complexes into
water-dispersible nanomaterial with high lanthanide-centered luminescence, is a challeng-
ing scientific task.

Thus, the present work represents the already known [29,30] (Figure 1a,b) and newly
synthesized (Figure 1c,d) ligands for Tb3+ and Eu3+ ions. An additional methoxyphenyl
fragment was purposely introduced at the alpha-position to promote further build-ups, to
control the lanthanide coordination center symmetry for additional boosting lanthanide-
centered luminescence, and for additional hydrophobic shielding of the inner-sphere of
the lanthanide ions minimizing solvent-induced nonradiative relaxation. The synthesis
of the complexes and their structural and spectral characterization in the solid state and
solutions are described in detail in this work. The efficiency of converting the as-synthesized
complexes into the aqueous PSS-stabilized colloids is correlated with the structures of the
complexes and the ligands. The diverse physico-chemical techniques applied for the
characterization of the ligands, complexes, and nanoparticles on molecular, supramolecular,
and nano-levels are focused on the ability of the ligands to sensitize the lanthanide-centered
luminescence in both organic solutions and in the aqueous colloids. The applicability of the
developed aqueous colloids as nanosensors will be demonstrated using their luminescent
reply on ceftriaxone, which is the third generation of the cephalosporin antibiotic widely
applied in treating such socially relevant bacterial infections as meningitis, pneumonia,
and many others [44–47].
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Figure 1. Ligands synthesized for this study: N-(diphenylphosphoryl)-P,P-
diphenylphosphinicamide (a), 2-(diphenylphosphoryl)-1-phenylethan-1-one (b), ((4-
methoxyphenyl)methylene)bis(diphenylphosphine oxide) (c), N-(diphenylphosphoryl)-
N-(4-methoxyphenyl)-P,P-diphenylphosphinic amide (d). Synthetic routes employed in this work
to synthesize new ligands c and d with p-methoxyphenyl substituent at α-position.

2. Experimental Section

Materials. All reagents were used as purchased from Sigma-Aldrich or Acros Chemi-
cals without further purification. Solvents were purified using standard procedures before
use. All reactions were run under an argon atmosphere unless in aqueous media. Ceftriax-
one disodium salt from RUE Belmedpreparaty was used as purchased.

Syntheses. Ligand a was obtained using a procedure suggested by Magennis et al. [28],
and ligand b was synthesized using a method described by Maass et al. [48]. Detailed syn-
thetic procedures as well as their lanthanide complexes syntheses, [Ln(a)3] and [Ln(b)2(NO3)3],
are given in SI. Synthetic protocols and characterization using 1H NMR, IR spectra, 31P
NMR, and ESI-MS for ligands c and d are described in detail in ESI.

Nanoparticle synthesis. For each system, 0.5 mL of a solution of the corresponding
complex (C = 3 mM) in acetonitrile was added dropwise with a syringe plunger into
2.5 mL of PSS (sodium polystyrene sulfonate) aqueous solution (1 g/L) containing NaCl
(C = 0.5 M) while vigorously stirring (2200 rpm). The formation of fine white colloids
was observed. To separate the colloid nanoparticles from acetonitrile, the mixtures were
centrifuged, and the supernatant was removed and replaced with H2O (V = 3 mL). These
operations were repeated twice. After each replacement of the solvent, the solutions were
ultrasonicated for 10 min.

Methods. Mass spectra were recorded with an AmaZon X «Bruker» mass spectrometer.
IR spectra were recorded with a Bruker Tensor-27 instrument for the samples in KBr pellets.
NMR experiments were carried out with 400 MHz [400 MHz (1H), 162 MHz (31P)] or
600 MHz [600 MHz (1H), 243 MHz (31P),] spectrometers equipped with a pulsed gradient
unit capable of producing magnetic field pulse gradients in the z-direction of 53.5 G cm–1.
All spectra were acquired in a 5 mm gradient inverse broadband probe head. Chemical
shifts (d) are expressed in parts per million, relative to the residual 1H signal of CDCl3, and
the signals are designated as follows: s, singlet; d, doublet; t, triplet; m, multiplet. Coupling
constants (J) are in hertz (Hz). Excitation and emission spectra and luminescence decay
curves were registered with Fluorolog-QM (Horiba). The transmission electron microscopy
(TEM) was performed using a Hitachi HT7700 (tungsten filament, HV = 100 kV). Samples
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were deposited on a 300-mesh copper grid with continuous carbon-formvar support film.
XRD of crystals was performed with Bruker D8 QUEST. Detailed descriptions can be found
in Electronic Supplementary Information (ESI). Powder X-ray diffraction (PXRD) measure-
ments were performed with a Bruker D8 Advance diffractometer equipped with a Vario
attachment and Vantec linear PSD, using Cu radiation (40 kV, 40 mA) monochromated with
the curved Johansson monochromator (λ Cu Kα1 1.5406 Å). Electron absorption spectra
were registered with Analytic Jena SPECORD 50plus, for dynamic light scattering and
zeta-potential measurements Malvern Zetasizer Nano ZS was utilized. The fundamental
basis of Judd–Ofelt analysis [49,50] and corresponding formulas [51,52] are collected in ESI.

3. Results and Discussion
3.1. Synthesis of Ligands c and d

Ligands a and b were obtained and reported previously [28,48]. Both syntheses
were reproduced in this work in order to synthesize a row of lanthanide(III) complexes
to conduct a comparative study. Ligands c and d were obtained using known methods
with some adjustments as depicted in Figure 1. In brief, ligand c was synthesized via
the interaction of 1-(dichloromethyl)-4-methoxybenzene and ethyl diphenylphosphinite,
including Arbuzov rearrangement at high temperature neat until the reaction mixture
solidified. The desired ((4-methoxyphenyl)methylene)bis(diphenylphosphine oxide) c was
obtained individually with recrystallization as a white poorly-soluble solid. Ligand d was
synthesized via the oxidation of a crude reaction mixture of corresponding phosphine
obtained as described by Ogawa et al. [53]. The desired N-(diphenylphosphoryl)-N-(4-
methoxyphenyl)-P,P-diphenylphosphinic amide c was obtained individually with two
subsequent recrystallizations.

3.2. Synthesis of [Ln(L)x] Complexes, Ln = Eu3+, Tb3+, L = a, b, c, x = 1,2,3 and XRD Data

Lanthanide complexes of bis(phosphine oxide) (a) and 2-diphenylphosphineoxide-
1-phenylethanone (b) were obtained previously and reproduced in this work in order
to compare luminescent properties within the row of complexes [29,30]. X-ray crystal
structures of [Tb(a)3] and [Eu(b)2(NO3)3] are illustrated in Figure 2a and 2b, respectively.

Single crystals of complex [Tb(c)(NO3)3(H2O)] as colorless prisms were prepared
using slow evaporation of a THF solution. The compound crystallizes in the monoclinic
space group C2/c as a crystallosolvate with 2.5 THF molecules per complex. One complex
molecule is present in the asymmetric cell. Its molecular structure is shown in Figure 2c,d
and reflects the 1:1 stoichiometry. Nine-coordinated Tb atom is surrounded by one ligand c
attached by bis(phosphine oxide) chelation through the P=O coordination, three ditopic
NO3

- residues, and one water molecule. Interestingly, the [P=]O–Tb internuclear distances
are notably different and equal to 2.368(1) and 2.295(1) Å. The internuclear distances
between the Tb and coordinated oxygen atoms of NO3

- vary between 2.430(2) and 2.507(1)
Å. Deposition number CCDC 2,218,909 contains the supplementary crystallographic data
for compound [Tb(c)(NO3)3(H2O)]. These data are provided free of charge by the joint
Cambridge Crystallographic Data Centre and Fach informations zentrum Karlsruhe Access
Structures service www.ccdc.cam.ac.uk/structures (Accessed on 10 November 2022).

X-ray structures of previously studied [Tb(a)3] and [Eu(b)2(NO3)3], as well as the
newly obtained [Tb(c)(NO3)3(H2O)], are presented in Figure 2a–c to illustrate the difference
in the inner-sphere environment of the lanthanide ions in the complexes. In particular,
the unsaturated coordination environment of Tb3+ ion in [Tb(a)3] by six oxygen atoms
derives from the chelation of three imido-bis-phosphinates. The coordination polyhedron of
[Eu(b)2(NO3)3] is filled by ten oxygen atoms arising from the coordination of both ligands
and nitrates, and the nine oxygen atoms in the polyhedra of complex [Tb(c)(NO3)3(H2O)]
also arises from the coordination of one organic ligand, three nitrates, and one water
molecule. Complex [Tb(a)3] crystallizes with two molecules in the asymmetric cell. Al-
though both molecules are situated at the crystallographic 3-fold proper rotating axes, they
show different coordination modes, namely, trigonal prismatic and octahedral. Complexes

www.ccdc.cam.ac.uk/structures
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[Eu(b)2(NO3)3] and [Tb(c)(NO3)3(H2O)] are located in general position in the crystals and,
consequently, they are asymmetric.
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Thus, the structure of ligands is of great impact on the complex structure. It is worth
noting the conversion of the ligand from phosphine oxide to phosphonate forms as the
reason for the formation of complex [Tb(a)3] with the coordinative unsaturated inner-
sphere environment of the Tb3+ ion. A similar structure is revealed for some 1,3-diketonate
complexes of lanthanides [54,55]. In turn, the substitution of N–H by N–R in the structure
of d (Figure 1) results in poor complexation. One can hypothesize that an impossibility
of the deprotonation of ligand d explains its poor ability to form complex, while the
ability of the phosphine oxide representative a with N–H bridging moiety to deprotonate
prerequisites its high complexing ability. The ligands b and c tend to chelate without
deprotonation, which agrees well with the literature data [30,31]. The smaller electron
donating properties of both bis(phosphine oxide) c and ketophosphine oxide b vs. the
anionic deprotonated form of ligand a result in the formation of the saturated coordination
sphere due to the coordination of the nitrates and water molecule along with the organic
ligands. The aforesaid difference in the coordination polyhedra can be of some impact on
the lanthanide-centered luminescence of the complexes. It is also worth noting that the
difference in the complex stoichiometry, which is 1:2 and 1:1 (metal-to-ligand ratio) for the
ligands b and c, respectively, can be explained by the additional steric constraints arising
from the introduction of the bulky methoxyphenyl moiety in the ligand c.

3.3. Absorption and Luminescent Properties of Ln(c)

Absorption spectra of the newly synthesized ligands c and d as well as their ter-
bium complexes were recorded in CH3CN (Figure 3a). Both ligands are characterized
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by an absorption band at 230 nm responsible for the π→π* transition. The spectrum of
[Tb(c)(NO3)3(H2O)] differs significantly from that of the ligand.
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emission spectra of [Ln(a)3] (1), [Ln(b)2(NO3)3] (2), [Ln(c)(NO3)3(H2O)] (3), (Ln = Tb3+ (b); Ln = Eu3+

(c)) (CLn = 10–5 M).

The as-synthesized terbium and europium complexes with ligands a, b, and c are
well soluble in CH3CN. Their luminescence spectra recorded at the same instrumental
conditions revealed that terbium centers are more effectively sensitized by ligands a and
b vs. c (Figure 3b). It is worth assuming that the tris-chelation of ligand a can be a
reason for better sheltering of a coordination center from solvent molecules, while the
inner-sphere nitrates in [Tb(b)2(NO3)3] and [Tb(c)(NO3)3(H2O)] can easily be substituted
by the solvent molecules. However, the excited state lifetime (τmeas) values calculated
from the luminescence decay kinetic measurements (Table 1) remain high, arguing against
dissociation of the complexes [Tb(b)2(NO3)3] and [Tb(c)(NO3)3(H2O)].

Table 1. Decay parameters and excitation wavelengths (λexc) for [Eu(L)x] in CH3CN.

R Tau_Rad (ms) lexc (nm) Tau_Meas(ms) PL Efficiency

[Tb(a)3] - - 2.20
[Tb(b)2(NO3)3] - - 4.79

[Tb(c)(NO3)3(H2O)] - - 3.05
[Eu(a)3] 11.22 1.49 275 1.5 1.00

[Eu(b)2(NO3)3] 1.52 6.86 271 3.90 0.57
[Eu(c)(NO3)3(H2O)] 1.38 7.40 271 4.20 0.57

PSS-[Eu(a)3] 12.18 1.41 273 0.46 0.33
PSS-[Eu(b)2(NO3)3] 1.17 8.10 271 3.50 0.43

PSS[Eu(c)(NO3)3(H2O)] 0.86 10.13 271 3.33 0.33

The sensitivity to changes in symmetry and strength of the ligand field is the peculiar
feature of the Eu3+-centered luminescence. The intensity ratio of 5D0→7F2/5D0→7F1 transi-
tions (R) is the well-known value that allows for following the changes in the symmetry and
strength of the ligand field around Eu3+ ions. This derives from the fact that the intensity
of the dipole transition 5D0→7F2 is hypersensitive to electric symmetry and strength of the
ligand field around Eu3+ ions, while the magnetic dipole transition 5D0→7F1 is not affected
by the surrounding charge distribution because it is parity-allowed, and its emission is
often used as internal standard [56]. Thus, the R-values calculated using Equation (1)
are collected in Table 1 along with the τ-values calculated from the luminescence decay
kinetic measurements.

R =
I(5D0 → 7F2)

I(5D0 → 7F1)
(1)

The higher the R, the lower the local symmetry around Eu3+ is with respect to an
inversion center since a high local symmetry strongly reduces the electric dipolar emission
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without affecting the magnetic dipolar one, and vice versa. In addition, in many complexes,
the ratio is high due to an increase in the covalency of Eu–ligand coordinative bonds, which
lowers the symmetry.

Focusing our attention on Eu complexes, the PL emission spectra show a much differ-
ent shape for the three analyzed complexes, as an indication of the different environment
surrounding the rare earth ion. Indeed, the R-value is the highest for complex [Eu(a)3] as an
indication of a low symmetry surrounding the rare earth ion. The opposite is observed for
complexes [Eu(b)2(NO3)3] and [Eu(c)(NO3)3(H2O)], where the R-values barely exceed 1.0,
thus, indicating that the magnetic transition intensity is similar to the electric dipolar one.

The luminescence decay kinetics of the europium complexes also demonstrate the
mono-exponential decay, which argues for a rather poor dissociation of the complexes
(Figure 4). The lifetime results (Table 1) are in agreement with the previous considerations.
Due to the forbidden nature of the internal 4f transitions, the probability of electric dipole
recombination is low, resulting in long lifetimes in the millisecond range as it occurs for
[Eu(b)2(NO3)3] and [Eu(c)(NO3)3(H2O)] complexes. However, when the surrounding
environment introduces an asymmetric perturbation to the wave functions, this increases
the dipole transition rate and the electric dipole emission component, while it reduces
the radiative lifetime. Thus, the calculated radiative lifetime reported in Table 1 is shorter
for the complex [Eu(a)3] and longer for the other two. The measured lifetimes follow the
same trend.
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Figure 4. Luminescence decay curves for [Eu(L)x] (a) and PSS-[Eu(L)x], (b) in logarithmic scale
(L = a(1), b(2), c(3)) under the excitation of corresponding wavelengths (Table 1).

3.4. Synthesis of PSS-[Ln(L)x] Nanoparticles, L = a, b, c, x = 1,2, 3, Ln = Tb, Eu

Chasing applicability for biomedical purposes, the complexes were converted to water
colloids according to the solvent change method [8], where the precipitated species are
incorporated into the PSS capsules through an electrostatic attraction. Thus, the charge of
the precipitated species is of great impact on the efficacy of the incorporation. The surface
charge of the colloidal species can be measured by measuring their electrokinetic potential
(ζ) values. Dropwise addition of the complexes in the acetonitrile solution (C = 1 mM) to
water results in the formation of the colloids, which were characterized by measurements
of their size and ζ-values (Table 2). These values were measured for the colloids formed
from the Eu3+ complexes with the ligands (Table 2). The positive ζ-values of the colloids
formed from complexes [Eu(b)2(NO3)3] and [Eu(c)(NO3)3(H2O)] are rather anticipated,
since the surface exposed complex units can undergo partial degradation, most probably,
due to the release of nitrate anions. The significant negative surface charging of the colloids
from complex Eu(a)3 also argues for its partial degradation, while the significant basicity of
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the released deprotonated ligand triggers a formation of hydroxyls under the interaction
with water molecules.

Table 2. DLS data (hydrodynamic diameter (dh), polydispersity index (PDI), and electrokinetic
potential (ζ)) for [Eu(L)x] precipitates and PSS-[Ln(L)x] colloids in water.

Name dh

(nm)
PDI ζ

(mV)

[Eu(a)3] 1305.0 ± 62.7 0.199 ± 0.182 –32.9 ± 0.6
[Eu(b)2(NO3)3] 878.6 ± 28.9 0.659 ± 0.016 35.7 ± 0.5

[Eu(c)(NO3)3(H2O)] 1922.0 ± 133.5 0.265 ± 0.157 28.3 ± 1.2
PSS-[Eu(a)3] 314.9 ± 11.2 0.272 ± 0.006 –27.1 ± 0.7

PSS-[Eu(b)2(NO3)3] 522.2 ± 58.3 0.549 ± 0.040 –67.1 ± 0.8
PSS-[Eu(c)(NO3)3(H2O)] 646.9 ± 68.5 0.561 ± 0.038 –62.0 ± 2.3

It is worth noting that the nanoprecipitation of the complexes in the solutions of
PSS and NaCl results in the formation of the aqueous colloids, which are manifested by
the average size values less than those of the nanoprecipitates formed in the aqueous
solutions. The PSS-stabilized colloids exhibit high colloid stability, while their uncoated
counterparts aggregate and precipitate within several hours. The efficient incorporation of
the nanoprecipitates into the PSS-based aggregates is rather anticipated for the lanthanide
complexes with ligands b and c since their nanoprecipitates are positively charged, while
the incorporation of the negatively charged nanoprecipitates of complex [Eu(a)3] into the
aggregates is rather unusual. However, we can keep in mind the high concentration of the
counterions derived from the high concentration level of NaCl in the PSS solutions, which
can facilitate the incorporation of the [Eu(a)3]-based nanoprecipitates into the PSS-capsules.

The efficacy of the complex transformation from the acetonitrile solutions into the PSS-
stabilized colloids can be assessed by the partial leaching of the lanthanide ions. Thus, the
equilibrium concentrations of the lanthanide ions were measured in the aqueous colloids
and two first supernatants after the phase separation and the washing procedure (for more
details see the experimental section). The percentage of the conversion calculated from the
data is represented in Table 3 for the complexes [Eu(L)x]. The most efficient conversion is
observed for [Eu(a)3], which indicates poor leaching of Eu3+ ions from the nanoprecipitates.
The leaching is more pronounced for complexes [Eu(b)2(NO3)3] and [Eu(c)(NO3)3(H2O)],
which correlates with the less tight binding of Eu3+ ions by ligands b and c than by ligand
a. It is worth mentioning that ligands b and c tend to coordinate without deprotonation,
while the tightest binding of Eu3+ by ligand a is due to its deprotonation, which enforces
the coordination bonds in [Eu(a)3].

Table 3. The equilibrium Eu3+ concentrations in the aqueous colloids and the supernatants after
the phase separation and the washing procedure along with the percentage of Eu3+ in the colloids
and supernatants.

Introduced Remain within the
Composition of Colloids CLn in Supernatant 1 CLn in Supernatant 2 Total Loss of Ln(III)

мM мM % мM % мM % мM %

PSS-[Eu(a)3] 0.5 0.344 68.94 0.13 26.50 0.023 4.55 0.155 31.05
PSS-[Eu(b)2(NO3)3] 0.5 0.108 21.69 0.37 73.49 0.024 4.82 0.392 78.31

PSS-[Eu(c)(NO3)3(H2O)] 0.5 0.116 23.29 0.38 37.67 0.007 1.38 38.36 76.71

Figure 5a illustrates the morphology of PSS-[Eu(a)3] colloids dried on the formvar
coated substrate. There are 35–70 nm particles of PSS stuffed by multiple 2–8 nm sized
cores built of [Eu(a)3] complexes. Such plum-duff architecture is the key to more efficient
sensing compared to PSS-PSS-[Eu(b)2(NO3)3] and [Eu(c)(NO3)3(H2O)] colloidal species
(Figure S1) due to a highly developed surface. The produced colloids exhibit Eu3+-centered
luminescence (Figure 5b). The R-values of the colloids follow a similar tendency as for the
complexes in solutions (Table 1). Thus, the specific R-value of [Eu(a)3] in the acetonitrile
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solution and in the PSS-stabilized colloids argues for the similarity in the inner-sphere
environment of the Eu3+ ion in both molecular and colloidal forms. The excited state
lifetime values of the colloids (Table 1) also reveal the specificity of [Eu(a)3] similar to the
complexes in the solutions. The aforesaid agrees well with the safe conversion of [Eu(a)3]
complexes into colloids (Table 3).
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Figure 5. (a) TEM image of PSS-[Eu(a)3]. (b) Excitation and emission spectra of PSS-[Eu(L)x] (L = a,
b, c, x = 3,2,1, respectively). (c) Simulated PXRD pattern out of single crystal data of [Eu(a)3] (2) in
comparison to dried PSS-[Eu(a)3] PXRD pattern (1). (d) PXRD patterns of dried PSS-[Eu(a)3] (1) and
ligand a (2).

The dried PSS-[Eu(a)3] colloids were analyzed using the PXRD method (Figure 5c,d).
The PXRD pattern of the colloids reveals their crystalline nature with very poor if any
contribution of an amorphous phase (Figure 5c,d). The PXRD pattern simulated out of
single crystal data of [Eu(a)3] is also shown in Figure 5c for comparison with that of
PSS-[Eu(a)3] colloids in order to prove their composition. The vast majority of reflections
in diffractograms of [Eu(a)3] and PSS-[Eu(a)3] coincide. At the same time, comparative
analysis of the difractograms of the powder samples of PSS-[Eu(a)3] colloids and ligand a
represented in Figure 5d reveals no coincidence between the PXRD patterns of ligand a and
PSS-[Eu(a)3]. This allows us to conclude that the nanoparticles contain a pure crystalline
phase of the complex without an admixture of the separately precipitated ligand phase.
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3.5. Detection of Ceftriaxone Using PSS-[Eu(a)3] Colloids

The high chemical stability of [Eu(a)3] and relative hydrophobicity ensured the efficient
transformation of [Eu(a)3] into PSS-[Eu(a)3], which makes these colloids the most promising
basis for reliable sensing of substrates. Short screening of antibiotics was performed for
PSS-[Eu(a)3] water dispersions in terms of possible luminescent response. No quenching
was observed for amoxicillin, while ciprofloxacin detection could be achieved only at
high concentrations (Figure S2). In the meanwhile, the presence of micromolar amounts
of ceftriaxone resulted in significant changes in emission intensity. The main europium
band at 612 nm demonstrated quenching for the factor of 7.23 when 87.5 µM ceftriaxone
was added (Figure 6a). Deviation of I0/I from the linear law in Stern–Volmer coordinates
indicates a mixed, static, and dynamic mechanism of quenching, which is typical for dark
complexes formation (Figure 6b) [57,58]. In turn, the dark complex formation observed
for PSS-[Eu(a)3] colloids in the presence of ceftriaxone argues for the ligand exchange
disturbing the ligand-to-metal energy transfer of [Eu(a)3]. The presence of the carboxylate
and hydroxy group of 1,2,4-triazin-3-yl moiety in the structure of sodium ceftriaxone
(Scheme S3, inset) prerequisites its efficiency in the ligand exchange. The limit of detection
(LOD), calculated as 3σ/S (where σ is the standard deviation for blank experiments and S is
the slope of the linear segment of luminescence intensity vs. the concentration of analyte),
is equal to 0.974 µM, which is comparable to the previously reported values (Table 4). For
comparative purposes, the luminescent response of PSS-[Eu(b)2(NO3)3] to ceftriaxone was
also monitored (Figure S3). The latter colloids demonstrate a less sensitive response to the
substrate, which can be explained by their mixed composition.
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Figure 6. (a) Gradual quenching of Eu3+ luminescence within the composition of PSS-[Eu(a)3] colloids
in the presence of increasing amounts of ceftriaxone (C = 57.4 µM). (b) I/I0 values vs. concentration
of ceftriaxone, I0 and I are the luminescence intensities of PSS-[Eu(a)3] colloids without and in the
presence of a certain concentration of ceftriaxone, respectively (1). Tangent for the curve (1) in the
low-concentration region used for LOD calculation.

Commonly, a level of ceftriaxone is evaluated in blood serum or urine. For further
use of the PSS-[Eu(a)3] nanoparticles for ceftriaxone detection in blood serum, the BSA,
glutamic, and aspartic acids in 0.01 M phosphate buffer interfering effect was estimated.
The luminescence response of PSS-[Eu(a)3] to ceftriaxone evaluated in the solutions model-
ing blood serum (Figure S4 in ESI) indicates that the applied concentration levels of the
protein and amino acids provide an insignificant effect on the sensitivity of PSS-[Eu(a)3] to
ceftriaxone. This argues for the applicability of PSS-[Eu(a)3] for bioanalytical purposes.



Nanomaterials 2023, 13, 438 11 of 15

Table 4. LOD values of ceftriaxone detection for various luminescent nanomaterials/compounds
reported in the literature.

Luminescent Compound LOD (M)

CdSe/CdS/ZnS quantum dots [59] 1 × 10–6

Ceftriaxone converted into a fluorescent compound [60] 3.5 × 10−8

Chemiluminescence emission generated from the
oxidation of ceftriaxone sodium [61] 4.5 × 10–8

Ceftriaxone converted into a fluorescent product [62] 2.3 × 10–9

Carbonized blue crab shell carbon dots [63] 9.0 × 10–9

Chicken drumstick-derived carbon dots [64] 4.4 ×10–10

Graphene quantum dots in a molecularly imprinted
polymer MIP-GQDs [65] 1.8 × 10–10

L-cysteine (Cys) coated CdS QDs [66] 1.3 × 10–9

L-cysteine capped ZnS (L-Cys-ZnS) QDs [67] 9.0 × 10−8

Our paper 9.7 × 10–7

4. Conclusions

Summarizing, the present work demonstrates the three representatives of bis(phosphine
oxides) and β-ketophosphine oxide as ligands for Tb3+ and Eu3+ ions. The nature of the
bridging group between phosphine oxide moieties has a great impact on the complex
structure. The specificity of the imido-group as the bridging one between two phospho-
ryl moieties phosphine oxide moieties, manifested by the possibility of conversion of
imido- bis(phosphine oxides) to their phosphonate form, is the reason for the formation
of complexes [Ln(a)3] (Ln = Eu3+, Tb3+) with the coordinative unsaturated inner-sphere
environment of the Ln3+ ion. The β-ketophosphine oxide and bis(phosphine oxide) ligands
with methylene bridging groups are efficiently coordinated to Ln3+ ions without deproto-
nation, while the complex ability is poor for the ligand possessing the N–R bridging group.
The coordination of the ligands with the Ln3+ ions results in the efficient sensitization
of both Tb3+- and Eu3+-centered luminescence. The ligand environment in the [Ln(a)3]
complexes provides the specific ligand field symmetry, which is manifested by the specific
spectral pattern and excited state lifetime value of [Eu(a)3]. Moreover, the high stability of
the [Ln(a)3] complexes provides their safe conversion into PSS-[Ln(a)3] colloids, while the
lanthanide complexes with carbamoylphosphine oxide and bis(phosphine oxide) ligands
suffer from the partial degradation under the synthesis of the PSS-stabilized colloids. The
red luminescence of PSS-[Eu(a)3] fitting to the wavelengths range of the so-called biological
window exhibit the pronounced luminescent response on the antibiotic ceftriaxone, which
allows for sensing the latter in aqueous solutions with the LOD value equal to 0.974 µM.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nano13030438/s1: Figure S1. TEM image of PSS-[Eu(b)2(NO3)3] and PSS-[Eu(c)(NO3)3(H2O)];
Figure S2. Emission spectra of PSS-[Eu(a)3] colloids in the presence of increasing amounts of (a) amoxi-
cillin and (b) ciprofloxacin in water; Figure S3. Gradual quenching of Eu3+ luminescence within the
composition of PSS-[Eu(b)2(NO3)3] colloids in the presence of increasing amounts (0–3 equivalents)
of ceftriaxone (C = 0.108 mM). Chemical structure of ceftriaxone is shown in the inset; Figure S4.
Emission spectra of PSS-[Eu(a)3] colloids (C = 0.05 mM) in the presence of BSA (C = 1 g/L), glutamic
(C = 175 µM), and aspartic (C = 30 µM) acids in 0.01 M phosphate buffer at the different concentrations
of ceftriaxone disodium salt (0–55 µM). References [68–71] are cited in the supplementary materials.
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