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Abstract: The rate of sorption of n-butane on the structurally flexible metal-organic framework
[Cu2(H-Me-trz-ia)2], including its complete structural transition between a narrow-pore phase and a
large-pore phase, was studied by sorption gravimetry, IR spectroscopy, and powder X-ray diffraction
at close to ambient temperature (283, 298, and 313 K). The uptake curves reveal complex interactions
of adsorption on the outer surface of MOF particles, structural transition, of which the overall
rate depends on several factors, including pressure step, temperature, as well as particle size, and
the subsequent diffusion into newly opened pores. With the aid of a kinetic model based on the
linear driving force (LDF) approach, both rates of diffusion and structural transition were studied
independently of each other. It is shown that temperature and applied pressure steps have a strong
effect on the rate of structural transition and thus, the overall velocity of gas uptake. For pressure
steps close to the upper boundary of the gate-opening, the rate of structural transition is drastically
reduced. This feature enables a fine-tuning of the overall velocity of sorption, which can even turn
into anti-Arrhenius behavior.

Keywords: metal–organic frameworks; kinetic analysis; flexible materials

1. Introduction

Flexible MOFs, or PCPs of the third generation as described by Kitagawa, have been
studied extensively since the early 2000s [1,2]. Due to their tuneable pore geometry, rich
configurational diversity, and unique structural dynamics upon adsorption [3–7], these
materials have become promising candidates as adsorbents in important industrial fields
like gas separation [8–10] and storage [11,12], in sensor design [13,14] or in drug delivery
systems [15,16]. To drive this exciting class of materials towards applicability, information
about the sorption capacities in the given phases, the gate-opening conditions and their
thermal, mechanical, and chemical stabilities, in addition to gas uptake kinetics and the
subsequent heat transfer, must be garnered. During the last decade, much effort has been
invested into recording adsorption equilibrium data for known flexible MOF families,
such as MIL [17–19], DUT [7,20,21] or [Zn(bdc)(dabco)] [3,22–24], while also studying these
materials with respect to their decomposition under hot or wet conditions [25,26]. However,
uptake kinetics have been studied relatively scarcely in the field of flexible MOFs.

The few reports on the sorption kinetics of flexible materials so far are mostly con-
cerned with small pressure steps within the gate-opening of these materials at cryogenic
temperatures, mostly using noble gases, O2 or N2. The majority of these uptake curves
have in common that an inflection point occurs, indicating the superposition of at least two
processes during the uptake. Furthermore, equilibration times are much more extended
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compared to more conventional uptake curves on rigid materials like zeolites or carbon.
In order to describe this idiosyncratical adsorption uptake, mainly semi-empirical models
are used. For example, the double exponential (DE) model based on a linear driving
force (LDF approach), taking into account two separate diffusion processes, found vast
application in various reports over the years while no direct connection to the transition
rate is possible [27–29]. Furthermore, Lueking et al. [30] investigated both LDF-exceeding
stretched and compressed exponential models (SE/CE-models), which require an addi-
tional exponential factor to the LDF-equation, in order to fit uptake curves of N2, O2, and
argon on the flexible MOF RPM3-Zn at 77 K and 87 K. The fit of the curves had a good
overlap with the experimental data, with the interpretation being based on the Avrami
theorem regarding nucleus growth, which makes the comparison to the real-world sys-
tem quite challenging. A more sophisticated model was developed by Tanaka et al. [31].
Known as the “GO-Model” (gate-opening-model), a kinetic constant for the evolution of
the gate-opening (kGO) is introduced in addition to two rate constants, describing diffusion
in two different pore channels within the expanded MOF [Cd(bpndc)] upon adsorption of
N2 and O2 in a temperature range of 77 to 90 K.

While the bare kinetic behavior of flexible MOFs upon hydrocarbon adsorption at
ambient temperatures was not yet reported to the best of our knowledge, various reports
deal with the potential separation of hydrocarbon gas mixtures [8,9,32–34] using this class
of materials. Therefore, this work focuses on the investigation of the interplay between
diffusion and the structural transition in a flexible MOF described by a mathematical model
for gas uptake at various temperatures. Exemplary for a hydrocarbon/flexible MOF system,
n-butane as a probe molecule on [Cu2(H-Me-trz-Ia)2] (1) was studied, which was previously
investigated thermodynamically [35]. Gravimetric uptake and IR diffusion measurements
were conducted at different temperatures and for different pressure steps according to given
adsorption isotherms. In addition, the effect of particle size distribution on the adsorption
kinetics has been studied as well as the influence of several adsorption-desorption cycles
on the particle size distribution.

2. Materials and Methods
2.1. Materials

The MOF [Cu2(H-Me-trz-Ia)2] (1) studied herein is part of an isostructural series of
metal-organic frameworks built on Cu2+ metal ions and triazolyl-isophthalate linkers [36].
The adsorbent was further presented in a recent publication regarding the thermodynamic
analysis of the gate-opening using the Dubinin-based universal adsorption theory [35]. It
was shown that the material switches from a narrow-pore form (np-form) to a medium
pore form (mp-form) upon adsorption with n-butane while CO2 can even trigger a second
step towards a large-pore form (lp-form). Structurally, the bridging coordination of the
carboxylate groups of the linkers results in a square planar CuO4 environment, leading to
the well-known dinuclear paddle wheel motif. Through the coordination of nitrogen atoms
of the triazolyl groups to the metal centers in the apical positions, a three-dimensional
network is assembled.

The synthesis of [Cu2(H-Me-trz-Ia)2] (1) was conducted according to the original
procedure reported [36]. The crystal structure data, as well as further illustrations, are
given in the Supplementary Materials, Section S3.

2.2. Methods
2.2.1. Sorption Isotherms

Isotherms were measured according to a modified protocol by Keller and Staudt [27].
The adsorption and desorption isotherms of ethane, propane, and n-butane on the MOFs
were determined in a temperature range from 283 to 313 K and at pressures of up to
5 MPa using a magnetic suspension balance (Fa. Rubotherm GmbH, Bochum, Germany).
Three pressure transducers (MKS Instruments Deutschland GmbH, Munich, Germany,
Newport Omega Electronics GmbH, Deckenpfronn, Germany) were used to collect data
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for the pressure range up to 5 MPa. Before the sorption experiments, the MOFs (0.2 g) were
activated for at least 12 h at 373 K under a minimum pressure of 0.3 Pa until constant mass
was achieved. Materials were used only for a maximum number of 10 cycles, which avoids
any cycling stability issues with this series of MOFs. The temperature was kept constant
throughout the measurement with an accuracy of 0.5 K. Ethane, propane, and n-butane
were obtained from Linde (Linde AG, München, Germany) with purities of 99.5%. All
isotherms within this work are presented in absolute gas loading based on a buoyancy
correction [27].

2.2.2. Sorption Kinetics Investigation—Gravimetric Measurements

The gravimetric sorption kinetics measurements were conducted using a magnetic
suspension balance (Fa. Rubotherm GmbH, Bochum, Germany) according to Möller
et al. [37]. To minimize bed diffusion effects within the sample and to ensure good heat
transport between the sample and its surroundings, 400 mg of 1 were thinly distributed
on a special sample holder (see Figure S16). The sample cell was evacuated for at least
12 h at 373 K and 0.3 Pa until constant mass was achieved. To ensure constant pressures,
an additional gas reservoir of 5000 cm3 equipped with a pressure transducer was used.
The probe molecule n-butane was filled in the gas reservoir, and the valve connected to
the sample cell was completely opened after achieving constant temperature and pressure
conditions. Sorption equilibrium was assumed to be reached when no further weight
increase within 15 min was observed.

2.2.3. Sorption Kinetics Investigation—IR-Measurements

The methodology of IR microscopy for sorption and diffusion measurements has been
described in detail elsewhere [38,39] and is only briefly summarized here. The procedure
is based on monitoring the intensity of characteristic IR bands of the guest molecules,
which is known to be proportional to their concentration according to the Lambert–Beer
law. The setup consists of a Bruker HYPERION 3000 IR microscope which is attached to a
Bruker VERTEX 80v FTIR spectrometer (Bruker Optics GmBH, Ettlingen, Germany). Small
amounts of 1 soaked with MeOH were introduced into the IR cell. For activation, the IR
cell containing the sample was heated to 328 K with a heating rate of 5 K min−1 and kept
under vacuum at this elevated temperature for 12 h. For the measurement, the IR cell is
mounted on the movable x-y sample stage of the microscope. After the selection of an
individual area of particle agglomerates of the sample in visible mode, all IR measurements
were performed in IR transmission mode at 298 and 313 K, respectively. For the screening
of transport diffusivities DT in dependence of the amount adsorbed, each uptake curve
was fitted with a simple LDF model and the diffusivity approximated with the formula
DT = k d2

15 [40], where k is the fitting constant and d is the crystal diameter.

2.2.4. Sorption Kinetics Investigation—In-Situ PXRD-Measurements

A straightforward apparatus was built for pressure-dependent powder X-ray diffrac-
tion [41]. A gas supply was connected to a sample capillar mounted on a commercial X-ray
diffractometer in Debye–Scherrer geometry (StadiP, STOE and Cie. GmbH, Darmstadt,
Germany) equipped with a sealed X-ray tube (Cu-Kα1 radiation, λ = 154.060 pm) and a
DECTRIS Mythen detector (DECTRIS AG, Baden-Daettwil, Switzerland). A microcrys-
talline sample of 1 was filled into a glass capillary (outer diameter 1 mm) as the measuring
cell and activated by connecting to a vacuum pump before each measurement. The adsorp-
tive gas was admitted from a reservoir to the measuring cell through a dosing valve. The
measurements were carried out at room temperature by applying 10 kPa of n-butane to
the evacuated sample. The pressure in the cell was monitored over time using a pressure
transducer (Newport Electronics GmbH, Germany). Diffraction patterns were recorded
every 2.6 s, and the experiment was terminated after 10 min without apparent change
in the structure during the last PXRD scans. In order to calculate the state of transition
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in dependence on time, the reflection intensities at around 2θ = 13◦ were integrated and
normalized (see Figure S5).

2.2.5. Characterization of MOF-Particles—SEM Images

SEM imaging was performed on an LEO 1530 (LEO Electron Microscopy Ldt., Cambridge,
UK) under vacuum conditions with an acceleration voltage of 20 kV, detecting secondary
and backscattered electrons. EDX mapping was performed with an INCA-analysis system
(ETAS GmbH, Stuttgart, Germany). Prior to the imaging, the samples were carbon vapor
treated with a CED 030 from Balzers (Oerlikon Balzers, Balzers, Liechtenstein).

2.2.6. Characterisation of MOF-Particles—Particle Size Distribution Measurements

Particle size distribution measurements were conducted on a Cilas 1064 (Quantachrome
GmbH & Co. KG, Odelzhausen, Germany). The diffraction angles of a wet dispersion of 1
in water were analyzed using a monochromic laser beam (λ = 1064 nm). Calculations were
based on spherical particle shapes.

2.2.7. Kinetic Fitting Model Description

The model used within the main manuscript is based on the GO model of Tanaka
et al. [31] with slight alterations. It does utilize the linear driving force model (LDF model)
and is specifically useful to describe the beginning of gas uptakes in flexible materials
for pressure jumps close to the point of the structural transition. In the model approach
presented here, the overall velocity of gas uptake is separated into three distinct processes,
as stated in Section 3.3. The (i) diffusion on the outer particle surface, the (ii) gate-opening,
and the (iii) diffusion into newly opened pores. Within Tanaka’s model, the rate constant
for the gate-opening kGO was coupled with two diffusion constants for the diffusion within
two separate pore geometries. However, within the system at study herein, there is thought
to be only one pore size present, and thus, only one rate constant was implemented for the
diffusion into newly opened pores kD2. One rate constant of adsorption was added for the
surface adsorption kD1, which starts the process but is not coupled to the rate constant of
the structural transition kGO. Therefore, the whole gas uptake in dependence on time can
be described by Equation (1).

F(t) = A{1− exp(−kD1t)}+ (1− A)

{
1− kGO exp(−kD2t)− kD2 exp(−kGOt)

kGO − kD2

}
(1)

In this equation, A is a supplementary parameter in addition to the three rate constants
and marks the limit to which fractional loading on the surface adsorption is correlated.
Thus, A should adopt a value between 0 and 1. Within this work, the value of A was fixed
to 0.05 based on the sorption isotherms, reducing the model essentially to the three rate
constants as fitting parameters.

The fitting approach was processed within EXCEL and individual mathematical
solvers to minimize the residuals. Herein, all parameters were provided boundaries in
order to find reliable solutions. Furthermore, the focus was placed on the first section of the
uptake in order to get more insights into the inflection points and structural transition, while
larger residuals were allowed within the longer equilibration times, which are governed
by other effects. These are further idiosyncrasies (shown in the Supplementary Materials,
Section S2) in gas uptakes within flexible materials that are not represented by Equation (1).
These will be tackled in future works.

3. Results
3.1. Sorption Isotherms of n-Butane on [Cu2(H-Me-trz-Ia)2] (1)

The sorption isotherms of n-butane on 1 at 283, 298, 313, and 328 K are shown in
Figure 1. The stepped, sigmoidal shapes in the surface excess vs. log p diagrams typical for
flexible materials are displayed for various temperatures (Figure 1 left) and with the use of
the potential theory in a traditional Dubinin plot, where all isotherms are superimposed to



Nanomaterials 2023, 13, 601 5 of 16

one characteristic pattern (Figure 1 right). From the latter, a temperature-independent dual
Dubinin–Asthakov fit can be derived with only minor deviations for the underlying system
(see ESI Section S1). With this modeling, the boundaries of the structural transition or
so-called gate-opening, herein referred to as gate-opening start (GOS) and gate-opening end
(GOE), respectively, can be mathematically approximated using the excess surface work
theory [42] (see Supplementary Information, Section S2). The precise thermodynamics
governing the sorption process of the studied system, as well as the analytical framework
utilizing the Dubinin theory, were investigated in a previous work [35]. The basic model
conception of adsorption is summarized in the following.
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Figure 1. Adsorption isotherms for the system n-butane on 1 at 283, 298, 313, and 328 K in a
logarithmic pressure scale (left) and the resulting Dubinin plot using the corresponding states theory
for all temperatures, including the GOS- and GOE-points (right).

Generally, the uptake in the low-pressure region up until the GOS is small, evidenced
by a loading of 0.05–0.16 mole gas per mole unit cell (mol mol−1) for temperatures between
283 and 328 K. This can be interpreted as the adsorption of n-butane on the outer surface
area and within the spatial of the pore entries on the np-form of the framework. However,
as soon as a specific pressure is reached, the mp-form becomes energetically preferred [35].
Triggered by the adsorption stress that is exerted by the adsorptives within the pore en-
tries [5], the structure is destabilized, pressed open, and thus, will start to switch into the
larger pore form of the MOF—in a domain-by-domain mode [43]—and generate a microp-
orous pore structure accessible for gas molecules. Due to different sizes of MOF particles
and the analog distribution of energy needed to open the domains of the framework, as
well as a kinetic hindrance that is assigned to the adsorption process specifically, the phase
transition happens in a pressure range rather than at a sharp pressure point [35]. Once the
structural transition is complete, further pressure increase leads to minor pore filling of the
mp-form of 1 up to saturation loadings between 3.7 and 3.4 mol mol−1 in the investigated
temperature range. Thus, there is only little adsorption outside of the gate-opening range,
indicating that the structural transition leads to the largest loading increase on the material
and plays, therefore, a pivotal role during the overall sorption kinetics.

3.2. Structural Transition and the Effect on the Particle Size

By using a self-built in-situ powder X-ray diffraction (PXRD) sample holder [41], it was
possible to monitor the structural changes by means of changes in the diffraction patterns
during the ad- and desorption of n-butane on 1. Figure S11 shows equilibrium points in
the isotherm and their corresponding X-ray diffraction patterns. In order to monitor this
structural transition under a rapid pressure increase, the kinetic uptake of n-butane on 1
was registered via PXRD at room temperature. A glass capillary was filled with the MOF
sample, and the X-ray primary beam was focused on the upper part of the powder sample
(see Figure S15) to avoid diffusion limitations. After the prompt application of 10 kPa of
n-butane at 298 K, a pressure sufficient to open the framework, a rapid transition of the
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framework was observed, as shown in Figure 2. The powder diffraction patterns at 0 s and
200 s match the patterns of a fully evacuated np-form and the opened mp-form derived from
the equilibrium measurements, respectively. The transformation becomes most obvious
for the reflections around 2θ = 11◦, where a growing reflection can be assigned to the
mp-structure, and around 2θ = 13◦, where a shrinking reflection can be assigned to the
np-form.
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detector) patterns for the uptake of n-butane on 1 at 298 K for a pressure step of 0→ 10 kPa in a glass
capillary. The grey bars emphasize the two areas (2θ ≈ 11◦ and 13◦) with the most significant change
regarding the phase transition.

Interestingly, this experiment was only reproducible after the third time it was con-
ducted using the same sample (see Figure S14). During the first two tries, reflections
of the mp-form appeared not until several minutes after the gas application. It became
furthermore obvious that the signal intensity decreased from the first turn to the third,
indicating decreasing particle sizes. This is consistent with the results of Mason et al.,
where the particle sizes in flexible frameworks decrease upon the internal stress of several
adsorption-desorption cycles [12]. SEM images of a freshly synthesized, evacuated sample
and a sample that witnessed twenty adsorption-desorption cycles show that the particle
size decreases upon adsorption with a great extent of fractures on the surface for the latter
(Figure S16). The particle size distributions for different numbers of adsorption-desorption
cycles are presented in Figure 3. Already after one cycle, smaller particle sizes are observed.
After five and after twenty cycles, the particle size distributions show medians of 2.9 and
3.1 µm, respectively, indicating a stable particle size after at least five cycles. As explained
above, the adsorption on the surface of the np-form of 1 is crucial to the gate-opening, since
it is likely that n-butane cannot enter the framework in this state. With decreasing particle
size, the overall accessible surface area for these particles is increasing, meaning available
adsorption sites increase as well. This leads to a higher probability of a gate-opening as
observed during the XRD-monitored structural transition. Therefore, the investigated
uptake experiments shown below were all conducted after the sample experienced at
least five adsorption-desorption cycles, so an equal, stable, and reproducible particle size
distribution can be assumed.
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3.3. Characteristics of Sorption Kinetics in Flexible MOFs

In order to study the kinetics of the gate-opening of 1 triggered by n-butane in detail,
two additional techniques were applied. While IR-monitored sorption experiments are
suitable for small pressure steps and the subsequent evaluation of the diffusivities [44],
gravimetric measurements are robust enough to study gas uptakes to much higher pres-
sures [37]. In the first investigation, the transport diffusivity coefficients were screened in
dependence on the loading in the MOF using the IR technique. From Figure 4, it becomes
obvious that there exist at least three distinct diffusion regimes. It has to be stated that the
majority of uptakes at relatively low and high pressures are completed almost instanta-
neously, leading to the conclusion that the diffusion is too fast to be observable under the
used resolution. Thus, within the bare np- and mp-forms, the transport diffusivity is at least
around one order of magnitude larger compared to the mixed regime during the structural
transition. Herein, molecules diffusing through already opened cell domains are hindered
at closed domains until these are opened, too. Thus, the overall velocity of gas uptake
decreases, but this is rather correlated to the triggering of the structural transition than to
the bare mobility of the guest molecules inside the defined pore system. This apparent
transport diffusivity already indicates that rather the gate-opening is the rate-determining
step of the investigated process than the bare diffusion process.

The gravimetric uptake after a pressure step from 0 to 10 kPa at 298 K—the same
settings as those used during the PXRD investigation—is shown in Figure 5. The shape
of the uptake curve reveals two characteristic and significant deviations from diffusion
behavior as generally described by Fick’s law. First, an inflection point after around 10 s and
a smooth increase in loading even after a long equilibration time (for further representations
see Figure S4).

Firstly, the inflection point can be explained as the first adsorption step on the outer
particle surface, which is then followed by a much slower structural transition. Secondly,
an observed long-term behavior is usually accounted to non-isothermal behavior. An
increased temperature due to sorption heat temporarily reduces the amount adsorbed
and the subsequent cool-down to the initial temperature leads to a prolonged adsorption
process. However, during IR uptakes, the same prolonged development of mass increase
was observed as well. The herein used very small sample mass and the large sample
holder relative to that would not enable such drastic heat effects [39], indicating that there
is another factor governing the long-term behavior of sorption uptakes in the studied
system. The distribution of particle sizes, as seen in Figure 3, infers a distribution of
energy needed for the structural transition [45], which may furthermore affect the rate of
structural transition. This is further indicated by the in-situ PXRD experiment itself, in
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which the first tries with larger crystal sizes took much more time (see Figure S14). The
XRD intensities from Figure 2 were furthermore integrated, normalized, and plotted as a
relative uptake in Figure 5 as well. These states of structural transition in dependence on
time are not in complete agreement with the gravimetric uptake, however, they show the
same characteristic shape and long-term behavior (see also ESI Section S2). This further
strengthens the argument that the gate-opening mostly governs the overall velocity of
gas uptake.
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measurable under the experimental conditions.

Nanomaterials 2023, 13, x FOR PEER REVIEW 8 of 17 
 

 

0 1 2 3

10
-15

10
-14

10
-13

GOE

tr
a

n
s
p

o
rt

 d
if
fu

s
iv

it
y
 D

T
 /
 (
m

2
 s

−
1
)

surface excess n

 / (mol mol

−1
)

GOS

 

Figure 4. Transport diffusivities of n-butane on 1 in dependence of the loading. The grey area marks 

the loading range between gate-opening start (GOS) and gate-opening end (GOE). The arrows indi-

cate much higher diffusivities in the regions of very low and very high pressures, which were not 

measurable under the experimental conditions. 

The gravimetric uptake after a pressure step from 0 to 10 kPa at 298 K—the same 

settings as those used during the PXRD investigation—is shown in Figure 5. The shape of 

the uptake curve reveals two characteristic and significant deviations from diffusion be-

havior as generally described by Fick’s law. First, an inflection point after around 10 s and 

a smooth increase in loading even after a long equilibration time (for further representa-

tions see Figure S4).  

0 100 200 300
0.0

0.2

0.4

0.6

0.8

1.0

298 K 0−10 kPa

 data

 fit

 XRD

re
l.
 u

p
ta

k
e

 
 /
 -

time t / s  

Figure 5. Gravimetric uptake of n-butane on 1 at 298 K after a pressure step 0 → 10 kPa, the fitted 

model presented in this work and the uptake as derived from PXRD data measured under the same 

conditions, representing the state of structural transition in dependence of time. 

Firstly, the inflection point can be explained as the first adsorption step on the outer 

particle surface, which is then followed by a much slower structural transition. Secondly, 

an observed long-term behavior is usually accounted to non-isothermal behavior. An in-

creased temperature due to sorption heat temporarily reduces the amount adsorbed and 

the subsequent cool-down to the initial temperature leads to a prolonged adsorption pro-

cess. However, during IR uptakes, the same prolonged development of mass increase was 

observed as well. The herein used very small sample mass and the large sample holder 

relative to that would not enable such drastic heat effects [39], indicating that there is an-

other factor governing the long-term behavior of sorption uptakes in the studied system. 

The distribution of particle sizes, as seen in Figure 3, infers a distribution of energy needed 

for the structural transition [45], which may furthermore affect the rate of structural tran-

sition. This is further indicated by the in-situ PXRD experiment itself, in which the first 

Figure 5. Gravimetric uptake of n-butane on 1 at 298 K after a pressure step 0→ 10 kPa, the fitted
model presented in this work and the uptake as derived from PXRD data measured under the same
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These findings lead to the following assumptions: First, a surface diffusion and
adsorption process on the np-form takes place as it is unlikely that adsorptives can enter
the structured pore system due to a narrow pore width. Secondly, adsorbed gases at the
pore entries of the np-phase can trigger a structural transition. This process itself is particle-
size-dependent as bigger particles have a slower rate for the gate-opening compared to
smaller particles and thus long equilibration times are observed. Diffusion and adsorption
into newly opened pores then further trigger structural transitions in still closed crystal
domains, leading to a coupled mechanism of diffusion and gate-opening.

Thus, the proposed model in Section 2.2.7 was built on these assumptions. The first
diffusion on the outer surface is described by the rate constant kD1, enabling the modeling
of the inflection point at the beginning of the sorption uptake. The overall uptake in
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this part is limited to an overall fraction of 10% of the whole uptake, taking into account
the limited loading in the isotherm at low pressures in this phase. This is followed by
the model proposed by Tanaka et al. [31], taking into account one rate constant for the
diffusion into newly opened crystallographic domains kD2, as well as one rate constant for
the structural transition kGO. More generally, kGO incorporates all processes not included
by kD1 and kD2, which includes the hindered diffusion into pore entries of the np-phase
and the adsorption within there. Furthermore, in order to trigger a structural transition
within one crystallographic domain, several adsorbed molecules may have to be present
within said pore entries to induce enough mechanical stress. Thus, kGO describes the time
dependency of the entirety of the processes involved for the structural transition to occur
for all crystallographic domains in all particles of the probed sample. The model is thus
reduced to three parameters, given a fixed fraction for the first phase for all uptakes. The
overall schematics of the whole process are represented in Figure 6.
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Figure 6. Schematic representation of the governing processes during adsorption of n-butane on 1
and their respective rate constants.

The derived fit shown in Figure 5 is based on this model and is constructed for an
isothermal case. As can be seen, the previously stated long-term behavior due to particle
size dependency of kGO is not taken into account as this would (a) drastically increase
the complexity of the model and (b) usually the beginning of gas uptakes are of higher
importance as compared to the long-term behavior. However, further model varieties
regarding non-isothermal behavior as well as particle size dependency on the rate of
sorption are currently being developed and will be published in the future.

3.4. Temperature Dependence of the Sorption Kinetics

Since the gate-opening start and end pressures (pGOS and pGOE) are temperature-
dependent, the pressure step required to completely open the framework increases with
increasing temperature. Thus, it is not trivial to identify experimental conditions that
allow a fair comparison of uptakes at different temperatures. In the first investigation, the
pressure was varied from 0 to p/p0 = 0.04 of n-butane. The corresponding pressure steps
were 0 to 6, 10, 15, and 23 kPa for 283, 298, 313, and 328 K, respectively. Figure 7 shows the
resulting gas uptakes as a function of time. A remarkable feature of the uptake curves is
noticeable in the temperature dependence that switches from Arrhenius behavior before
~15 s to anti-Arrhenius behavior after 15 s (especially Figure 7 right).
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0 and

their corresponding fits for the whole process (left) and zoomed-in for the first 50 s (right).

Interestingly, the fastest uptake is not only at the lowest temperature (283 K) but
also with the smallest absolute pressure step. Such anti-Arrhenius behavior is commonly
observed for gas uptakes during gate-opening in flexible MOFs [27–29], and similar obser-
vations were reported for the inclusion of organic vapors in clathrate hosts [46–48].

Fitting the uptakes with the isothermal model presented in Section 3 (Equation (1))
leads to the fitting parameters kD1, kD2, and kGO for all four uptakes given in Table 1. Within
the range of 0 ≤ Ψ ≤ 0.5 of relative uptake, the model fits are in good agreement with the
experimental data. However, the deviation between the model and data above 0.5 relative
uptake increases with increasing temperature. This would indicate that the particle size
dependency of the process evolves in the same order, meaning very small dependency at
283 K (almost perfect fit) compared to a large impact on the overall adsorption process
(largest deviation) at higher temperatures.

Table 1. Comparison of the model fitting parameters for uptakes of n-butane on 1 at 283, 298, 313,
and 328 K for a pressure step 0→0.04 p p−1

0 .

T/K kD1/s −1 kD2/s −1 kGO/s −1

283 0.03 0.03 0.070
298 0.04 0.04 0.045
313 0.08 0.08 0.016
328 0.12 0.15 0.010

From the model parameters, it becomes obvious that both rate constants of diffusion
kD1 and kD2 increase with increasing temperature, as would generally be expected. More
precisely, the values of kD1 and kD2 at 298 K would translate to a transport diffusivity of
around 10−13 m2 s−1, which is in good agreement to other transport diffusivities of n-butane
in microporous materials [37]. Furthermore, the same order of magnitude was observed for
the diffusivities during the desorption, which is not thought to be hindered by the structural
transition (see Figure S3). On the contrary, the rate constant of the structural transition itself
decreases with increasing temperature, leading to the described anti-Arrhenius behavior.
Thus, the question arises as to why temperature and kGO are inversely correlated within
this set of uptakes.

Generally, the change in chemical potential dµ is regarded as the driving force for the
diffusion flux Ji [49], and according to the Dubinin theory, it is mathematically the same
as the sorption potential A. For the remainder of this work, it will be referred to as the
sorption potential A.

− dµ = A = RT ln
p0

papp
(2)
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Herein, R is the universal gas constant while p0 and papp denote the saturation pressure
and applied pressure in the gas uptake experiment, respectively. Since, in this experimental
setup, the ratio p0

papp
remains constant, one would expect an increase in the rate constant of

diffusion with increasing temperature, as is the case. However, the rate of the structural
transformation for the entirety of the framework, kGO, decreases with increasing temperature.

The driving force for the structural transition is also a change in the applied chemical
potential, which triggers the adsorption stress, but, in contrast to regular adsorption, a
minimum chemical potential has to be overcome in order to trigger the gate-opening.
Although the structural transition energy barrier is rather an energy distribution than a
definite value, this minimum value of chemical potential is herein assumed to be AGOE.
Therefore, the applied adsorption potential must exceed the adsorption potential of the
fluid at the gate-opening end (GOE) in order to guarantee a complete transition. This
condition is fulfilled for all four gas uptakes, nevertheless, since the gate-opening pressure
range becomes broader with increasing temperature, the pressure steps of 0→ 0.04 p p−1

0
get closer to pGOE, the higher the applied temperature is (see Figure S13). In order to take
into account the relative position of pGOE and to properly quantify the driving force of
the structural transition, a fixed change in adsorption potential dA for all temperatures is
needed in order to investigate the temperature dependence.

dAGO = Aapp − AGOE = RT ln
papp

pGOE
(3)

Considering the results of the first investigation (Figure 7), it has to be stated that both
applied temperature and applied pressure are changed without taking into account the
different changes in chemical potential, similar to reports with the same observations [29,31].
Since the boundary conditions of the structural transition are so sensitive to these two
parameters, it is possible that the apparent anti-Arrhenius behavior is an artifact, occurring
only under specific experimental conditions. Therefore, in order to further investigate
the temperature influence, two comparative studies with constant changes in adsorption
potential were conducted. For that purpose, pressures were chosen that lead to a change in
adsorption potential of dAGO = 4100 J mol−1 and dAGO = 5700 J mol−1 (both are marked
S1 and S2 in Figure 8, respectively. The precise pressure steps are tabulated in Table S3).
The resulting uptake curves can be seen in Figure 9.
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(AGOE = 10,600 J mol−1) and of the uptake equilibria for dAGO = 4100 J mol−1 (S1: A = 6500 J mol−1)
and dAGO = 5700 J mol−1 (S2: A = 4900 J mol−1) with respect to GOE are shown as dotted lines.
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Figure 9. Gas uptake curves for n-butane on 1 at 283, 298, 313, and 328 K for changes in adsorption
potential of dA = 4100 J mol−1 (left) and dA=5700 J mol−1 (right) with respect to AGOE.

Since these pressure steps are largely overdosing the pGOE (papp >> pGOE), the curves
attain more regular shapes, showing less pronounced inflection points and, therefore,
cannot be distinguished anymore into three distinct segments. This is probably due to the
fact that the energy necessary to open the framework is provided almost instantaneously
after the pressure application, and thus, the rate of structural transition becomes less
dependent on the particle size. All fitting parameters of the isothermal model are presented
in the ESI Section S3.

From these uptakes, it becomes clear that the temperature dependence does follow an
Arrhenius behavior, meaning higher applied temperatures combined with larger pressure
steps lead to faster uptakes. Thus, given the results of the first investigated set of uptakes
(Figure 7), there has to be a crossover where identical uptake curves can be measured at a
combination of lower temperature with a smaller pressure step and at higher temperature
combined with a larger pressure step (see Figure S9). This is experimentally shown in
Figure 10, where an uptake at 298 K and a pressure step 0→ 20 kPa overlaps with only
small deviations with an uptake at 313 K and a pressure step 0 → 26 kPa. Given the
isotherms at these temperatures, the differences in loading at these conditions are marginal.
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Figure 10. Two uptakes with the same sorption rate coefficient, although the black curve shows the
relative uptake at a lower temperature and a smaller pressure step.

Therefore, the relative position of a pressure step in a Dubinin plot appears to be
related to the rate of the structural transition kGO and subsequently, the velocity of sorption.
This leads to the conclusion that the rate of structural transition is mainly influenced by
the energy difference between the two states for the respective structures (bare np-form
of [Cu2(H-Me-trz-ia)2] (1) and mp-form with guest molecules) at given temperature and
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pressure and thus is rather described by basic thermodynamic relations, such as free-energy
profiles. Using the latter from molecular simulations, the transition state theory (TST) can
be used to calculate a theoretical rate of the structural transition for a perfect crystal. This
was done already by Numaguchi et al. for a model system [45], but no application of the
TST for a real flexible system was conducted, to the best of our knowledge. However, Free
Energy profiles are currently a hot topic in the computational chemistry community of
flexible materials [50–52] and further advancements are to be expected. The possibility
of approximating the rate of the gate-opening and finding optimal pairs of temperature
and pressure via large-scale computational screenings could open possibilities for efficient,
cost-effective sorption applications. Given the fact that gas separations of enormous
industrial importance (e.g., CH4/N2 separation) most often show high thermodynamic
selectivities but low or even opposite kinetic selectivities at low temperatures or vice versa,
flexible materials might be advantageous for the design of new separation materials for
such processes.

4. Conclusions

Based on the experimental results and the subsequent modelling, it is shown that
the overall velocity of gas uptakes in flexible MOFs is predominantly determined by the
rate of the structural transition. The latter is, in turn, much more strongly influenced by
the applied temperature and pressure steps than conventional diffusion. Moreover, the
particle size has a governing effect, with larger particles having much longer structural
transition times.

This can lead to anti-Arrhenius behavior, i.e., a slower velocity of gas uptake at higher
temperatures with larger pressure steps compared to a case vice versa. The change in
adsorption potential between the applied pressure step to the upper boundary of the
gate-opening pressure (pGOE) has proven to be suitable for qualitatively describing the
occurrence of both Arrhenius and anti-Arrhenius behavior. Thus, the rate of structural
transition is considered to be mainly governed by basic thermodynamic relations rather
than by bare diffusion phenomena.

Thus, this thermodynamic basis for the overall velocities of gas uptake in flexible
MOFs has a high potential for future applications as it becomes possible to systematically
shift velocities of gas uptake and thus, separation selectivity in gas mixtures. This is
due to the infinite number of combinations of temperature and pressure that lead to
very similar uptake curves. Furthermore, if differences in host–guest interactions are to be
assumed, this could further enable a fine-tuning of sorption selectivities within gas mixtures.
This, however, will (have to be) be substantiated within future work. The fundamental
understanding and the mathematical description of the kinetics of sorption and structural
transition within flexible MOFs is an important step towards potential applications of this
material class for gas separation or gas storage.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nano13030601/s1, Section S1: Isotherm fitting and gate-opening
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and Figures; Section S4: Further Figures. Section S5: References [53–56] are cited in the Supplementary
Materials.
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