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Abstract: NaBiF4 nanocrystalline particles were synthesized by means of a facile precipitation synthe-
sis route to explore upconversion emission properties when doped with lanthanide ions. In particular,
the incorporation of the Yb3+-Ho3+-Ce3+ triad with controlled ion concentration facilitates near-IR
pumping conversion into visible light, with the possibility of color emission tuning depending on Ce3+

doping amount. We observed that introducing a Ce3+ content up to 20 at.% in NaBiF4:Yb3+/Ho3+,
the chromaticity progressively turns from green for the Ce3+ undoped system to red. This is due to
cross-relaxation mechanisms between Ho3+ and Ce3+ ions that influence the relative efficiency of
the overall upconversion pathways, as discussed on the basis of a theoretical rate equation model.
Furthermore, experimental results suggest that the photoexcitation of intra-4f Ho3+ transitions with
light near the UV-visible edge can promote downconverted Yb3+ near-IR emission through quan-
tum cutting triggered by Ho3+-Yb3+ energy transfer mechanisms. The present study evidences the
potentiality of the developed NaBiF4 particles for applications that exploit lanthanide-based light
frequency conversion and multicolor emission tuning.

Keywords: nanophosphor; lanthanide ion emission; upconversion luminescence; visible-to-NIR
downconversion; chromaticity tuning

1. Introduction

Light conversion includes a series of photon management procedures for modifying
light energy and frequency in a selected spectral range, which find wide application in
diverse technologies such as solar and photovoltaic, photosynthetic biomass production,
bioimaging and lighting [1–5]. Trivalent lanthanide ions (Ln3+)-doped materials historically
represent an interesting class of luminescent light converters since, under appropriate
photoexcitation, they give rise to photophysical mechanisms which can lead to wavelength
shift and multicolor emission, with careful control of the chromaticity output [6–11].

Upconversion (UC), where two or more absorbed low-energy photons are converted
into a higher-energy one, and downconversion (DC) via quantum cutting (QC), where
the absorption of a single high-energy photon originates two or more photons emitted at
lower energies, are widely mentioned as nonlinear processes that bring to light frequency
modification [12]. These mechanisms are highly fostered in lanthanide-doped phosphors
due to the unique optical properties exhibited by lanthanide ions, deriving from a char-
acteristic ladder-like arrangement of energy levels from ultraviolet to near-infrared and
parity-forbidden intra-4f transitions with long-lived intermediate states. Among the most
studied types of lanthanide-based UC systems, phosphors based on Yb3+-Ln3+ (Ln3+ = Er3+,
Ho3+, Tm3+) pairs still receive great attention due to the incomparable near IR-to-visible
UC emission efficiency [8,13–15]. This is due to an overall photophysical process based on
a sequence of sensitizer–activator energy transfer mechanisms, which exploits the large
absorption cross section of Yb3+, the sensitizer ion, under 980 nm photoexcitation, and
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the resonant level matching with the activator ion (Er3+, Ho3+, Tm3+), which is promptly
promoted to high-energy states by the conversion of several absorbed near-infrared (NIR)
photons and then relaxes radiatively, producing an emission spectrum characteristic of
the Ln3+ energy levels scheme. In particular, both Yb3+-Er3+ and Yb3+-Ho3+ pairs show
UC photoluminescence in the visible range dominated by a green and a red emission,
both originating from two-photon UC processes. The relative intensity of the two bands
determines the chromaticity output and can be controlled by concentration of the doping
Ln3+ species.

Strategies for UC efficiency enhancement as well as for color output tuning include
the incorporation of a further doping species for manipulating the Yb3+-Ln3+ UC pathways
and then sensitize and/or foster specific emission outputs. Relevant results in Yb3+-Er3+

UC efficiency increase was achieved by embedding alkali or transition metal ions, such
as Li+, Fe3+, Cd2+, into Ln3+-doped matrix, while pure single red band resulted by means
of Mn2+ codoping of NaYF4:Yb3+/Er3+ NPs [16–20]. Redshift tuning of UC emission is
particularly appealing in the field of bioimaging and biolabeling, since it achieves emission
in the first biological window and simultaneous suppression of visible light noise. In this
regard, Ce3+ incorporation has been reported as a valid method for green-to-red conversion
in Yb3+/Ho3+ codoped fluoride hosts [21–25]. Photophysical mechanisms underlying the
sensitizer–activator process are influenced by the presence of Ce3+ since it can enhance
the population of the activator intermediate states involved in the red band UC emission
process by virtue of its peculiar 4f energy level structure.

To develop efficient lanthanide-based UC phosphors, the choice of the host matrix
is crucial. It is well known that fluoride materials offer several advantages, such as the
extremely low phonon energy. Mainly for this reason, they are widely considered for the
preparation of both bulk and nanostructured lanthanide-doped UC systems used in several
fields, such as theranostics, nanothermometry, color displays, optical encoding, to name a
few [26–31]. Bismuth-based compounds are characterized by a high refractive index, which
induces a reduction in multiphonon relaxation rates and enhancement of spontaneous
emission probability; namely, they are a popular choice as a host for optical dopants
suitable for the realization of UC phosphors and optical thermometers [32–36]. Recently,
Yb3+/Ln3+ (Ln3+ = Er3+, Ho3+, Tm3+) codoped NaBiF4 nanoparticles have been prepared
by means of a room-temperature, one-pot synthesis procedure, representing a valuable
alternative with respect to conventional methods based on high-temperature solvothermal
and hydrothermal route employed for the preparation of fluoride-based particles [37].
Later, the issue of thermal and chemical stability of the bismuth based fluoride materials
has been addressed to exploit their potential in possible photonic applications [38].

Within the scope of a research activity related to the development of a specific class of
Bi-based fluoride compounds with tailored optical properties, this study was conceived to
elucidate the properties of light conversion of Yb3+/Ho3+/Ce3+ tridoped NaBiF4 nanocrys-
talline particles (NPs). The investigation of UC emission chromaticity control as a function
of Ce3+ content is aimed at establishing the condition for green-to-red conversion tuning.
A theoretical model based on a steady-state rate equations scheme for Ho3+ energy level
population is adopted to account for the different photophysical mechanisms taking place
in the Yb3+-Ho3+ UC pathways, and to define the role of Ce3+ in the emission chromaticity
shift, finding a real agreement with the observed experimental trend. Furthermore, spec-
troscopic results show that UV-visible excitation promotes Yb3+ NIR emission, which is
particularly efficient through photoexcitation of Ho3+ energy levels around the UV-visible
edge. This may represent a possible fingerprint of a DC process triggered by a Ho3+-Yb3+

QC mechanism. The point is discussed on the basis of a proper photophysical scheme,
considering that the observed visible-to-NIR QC-mediated DC expands the potentiality of
the investigated NaBiF4:Yb3+/Ho3+/Ce3+ NPs for applications as a spectral converter.
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2. Materials and Methods
2.1. Chemicals

Bi(NO3)3·5H2O (99.99%), NH4F (99.9%), Yb(NO3)3·5H2O (99.9%), Ho(NO3)3·5H2O
(99.9%), Ce(NO3)3·5H2O (99.9%), NaNO3 (99.9%), ethylene glycol (EG, 99.8%), ethanol
(EtOH, 99.8%), Milli-Q water. All reagents were purchased from Sigma Aldrich, Italy.

2.2. Synthesis

The preparation route of the investigated Ln3+-doped NPs is a modification of the
procedure reported by Lei et al. in [37]. In a typical synthesis, 1 mmol of Bi, 1 mmol of
Ln3+ nitrates and 2 mmol of NaNO3 were dissolved into 10 mL of EG. In another beaker,
6 mmol of NH4F was dissolved in 25 mL of EG, and then added to the above solution
under stirring; on the basis of the results of our previous work [38], the NH4F amount
was chosen to stabilize the hexagonal NaBiF4 phase. The obtained solution was stirred, at
room temperature, for one minute, and the product was collected by centrifugation and
washed with anhydrous ethanol three times before natural drying. The synthesized NaBiF4
NPs incorporate Yb3+ and Ho3+ ions with doping level set to 10 and 2 at.%, respectively,
as optimal condition to maximize the UC emission, with different amounts of Ce3+ up to
20 at.% for controlled chromaticity output tuning.

2.3. Characterization

X-ray powder diffraction (XRPD) measurements were performed by means of a Philips
diffractometer with a PW 1319 goniometer with Bragg–Brentano geometry, connected to a
highly stabilized generator, a focusing graphite monochromator and a proportional counter
with a pulse-height discriminator. Nickel-filtered Cu Ka radiation and a step-by-step
technique were employed (steps of 0.05◦ in 2θ), with collection times of 30 s per step.

Size and morphology determination of the nanoparticles and EDX analysis were
carried out with a Carl Zeiss Sigma VP Field Emission Scanning Electron Microscope
(FE-SEM) equipped with a Bruker Quantax 200 microanalysis detector.

Room-temperature photoluminescence (PL) and PL excitation (PLE) measurements,
as well as time-resolved PL analysis, were carried out by means of a FluoroLog 3–21
system (Horiba Jobin-Yvon) equipped with a 450 W xenon arc lamp as excitation source,
whose wavelength was selected by a double Czerny–Turner monochromator and signal
detection stage including an iHR300 single grating monochromator coupled to a Hamamtsu
photomultiplier tube (model R928P for visible range; model R5509-73 N2-cooled for NIR
range). Alternatively, PL spectra were acquired by means of a QE65 Pro Ocean Optics
spectrometer. Upconversion measurements were performed by using a CNI MDL-III-980
diode laser as 980 nm photon pumping source, with output power of 2 W over a spot of
5 × 8 mm2 (power density of 5 W/cm2). For time-resolved PL investigation, the Fluorolog
system operated in TCSPC/MCS mode, and the sample excitation was achieved through a
pulsed laser source (Horiba SpectraLED) featuring 460 nm peak wavelength and 30 nm
spectral FWHM.

3. Results and Discussion

The following results represent a comprehensive characterization of a Ce3+-free
Yb3+/Ho3+ codoped sample (Ce_0) as compared to tridoped samples embedding a Ce3+

content of 2 (Ce_2), 5 (Ce_5), 10 (Ce_10) and 20 at.% (Ce_20).

3.1. Structural and Morphological Characterization

Figure 1a reports the XRD measurements of the investigated samples. All the diffrac-
tograms match well with the crystallographic pattern of the hexagonal NaBiF4 phase (chart
JCPDS#41-0796), regardless of Ln3+ doping content. At the highest Ce3+ amount it is no-
ticed the appearance of some faint peaks, which could be attributed to the formation of
secondary fluoride phases. From the XRD pattern fitting, we estimated the trend of the
cell volume parameter as a function of the Ce3+ content. In this regard, Figure S1 shows
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that the cell volume progressively shrinks by increasing the Ce3+ doping level, tending to
a plateau for large concentration, in agreement with the fact that Ce3+ has a smaller ionic
radius with respect to Bi3+ (1.14 Å vs. 1.17 Å, respectively).

Morphological properties of the studied NPs can be characterized by the representative
SEM image of the tridoped sample with 10 at.% of Ce3+ (Ce_10), which is shown in Figure 1b.
The synthesized NaBiF4 NPs appear as nm-sized spheroidal aggregates, resulting from
the assembly of smaller primary nanocrystals [38]. Further SEM images relating to the
other investigated samples are included in Figure S2. EDX spectrum together with related
elemental maps for Ce_10 sample are reported in Figures S3 and S4, respectively.
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Figure 1. (a) XRPD patterns of the Ln3+-doped NaBiF4 samples with different Ce3+ content. (b) FE-
SEM image of Ce_10 sample.

3.2. UC Properties and Color Tuning Effect

The analysis of the fluorescence properties characterizing the investigated Ln3+-doped
NPs firstly focuses on UC emission due to Yb3+-Ho3+ sensitizer–activator coupling and on
the chromaticity tuning driven by Ce3+ incorporation.

Figure 2a presents upconversion photoluminescence (UCPL) spectra measured in the
visible range under 980 nm light pumping and representative NPs with different Ce3+

content. The spectra are dominated by three main emission features with maximum at
around 540 nm (named as GRN band, being peaked in the green range), 645 nm (named
as RED band, being peaked in the red range) and 750 nm, attributed to Ho3+ 5S2/5F4 →
5I8, 5F5 → 5I8 and 5S2/5F4 → 5I7 transitions, respectively. It can be observed that the
progressive increase in Ce3+ content determines a decrease in intensity for the GRN band
compared to the RED one. In addition, for Ce3+ content higher than 5%, the overall lumi-
nescence emission signal settles down at about 70% of the intensity of the Ce3+ undoped
sample (Ce_0), as shown in the inset of Figure 2a. This evidence suggests that the impact
of any detrimental effects, such as fluorescence quenching due to high lanthanide ions
concentration, is rather limited for the system under investigation.

The CIE chromaticity diagram and the photographs of the observed luminescence
spots are reported in Figure 2b,c, respectively. The Ce3+-induced color rendering index
modification is clearly appreciable, going from a pale green emitted spot for the Ce3+

undoped sample to dark orange, reaching 20 at.% of Ce3+ doping.
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In the context of the photophysical mechanisms underlying the UCPL activity ob-
served for the Ln3+-doped NPs, the diagram of Figure 3 depicts the main relaxation and
transition processes that involve 4f energy levels for the Yb3+-Ho3+-Ce3+ triad. The trig-
ger of the overall mechanism is the intra-4f Yb3+ 2F7/2 → 2F5/2 ground-to-excited-state
transition under 980 nm light, whose absorption by Yb3+ ions is characterized by a very
large cross-section. Due to the long Yb3+ 2F5/2 lifetime, the Ho3+ upper excited states can
be populated through a very effective Yb3+-Ho3+ energy transfer (ET) interaction. The
diagram highlights the three main mechanisms, labeled as ET1, ET2, and ET3, that lead to
the excitation of the Ho3+ 5I6, 5F5 and 5S2/5F4 levels, respectively, and thus activate the UC
emission pathways for the generation of the observed emissions in the visible range.

As previously reported, the GNR band, as well as the emission peaked at 750 nm,
is a consequence of the relaxation process from the Ho3+ 5S2/5F4 excited state, which is
populated through a sequence of ET1 and ET3 mechanisms involving Ho3+ 5I6 state as the
intermediate level. On the other hand, the RED band originates from the relaxation of
the Ho3+ 5F5 state, whose excitation can occur through two possible UC paths. One ends
with the direct Ho3+ 5F5 population through non-radiative relaxation of Ho3+ 5S2/5F4 level
after a combined sequence of ET1 and ET3 mechanisms. The other is instead based on
a sequence of ET1 and ET2 processes, interspersed by Ho3+ 5I6 non-radiative relaxation
to the Ho3+ 5I7 level. Therefore, both paths include a multiphonon relaxation step which
is supposed to strongly affect the overall efficiency for the RED band emission process.
In fact, it is worth considering that both 5S2/5F4 → 5F5 and 5I6 → 5I7 transitions span an
energy gap of about 3000 cm−1. Since the typical phonon energy for fluoride-based hosts is
relatively low (i.e., in the order of 500 cm−1), the upper excited level depopulation must
involve a substantial number of phonons, limiting the occupancy of the lower excited level
and then the resulting RED band intensity.
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Figure 3. Scheme of the energy level diagram representing UC and transition mechanisms originating
the PL emissions observed for the Ln3+-doped NaBiF4 samples. The pink upward arrow refers to Yb3+

ground-state absorption process (GSA); thick downward arrows refer to Ho3+ radiative relaxations,
where the attributed colors refer to emissions in the red, green and NIR spectral ranges; cyan and
orange arrows refer to Yb3+-Ho3+ energy transfer (ET1, ET2, ET3) and Ce3+-mediated cross-relaxation
(CR1, CR2) processes; grey wavelike arrows refer to multiphonon relaxations.

In this scenario, Ce3+ incorporation becomes effective. As shown in the diagram of
Figure 3, Ce3+ ion admits a unique intra 4f transition involving the 2F5/2 ground and the
2F7/2 excited states. The separation between these energy levels matches the gap that
characterizes both the Ho3+ 5S2/5F4→ 5F5 and 5I6→ 5I7 transitions. This implies that cross-
relaxation (CR) mechanisms take place, involving the transitions Ho3+ 5I6 + Ce3+ 2F5/2
→ Ho3+ 5I7 + Ce3+ 2F7/2 (labeled as CR1) and Ho3+ 5S2/5F4 + Ce3+ 2F5/2 → Ho3+ 5F5 +
Ce3+ 2F7/2 (labeled as CR2), which flank the multiphonon relaxation steps in the overall
upconverting process that leads to the population of the Ho3+ 5F5 excited state. UCPL
measurements reported in Figure 2a demonstrate that the efficiency of the CR1 and CR2
processes is such as to lead to a manifest RED band enhancement with respect to GRN one
as the Ce3+ content increases.

3.3. Rate Equation Modeling of UC Mechanisms

In order to account for the impact of Yb3+-Ho3+ ET and Ce3+-mediated CR processes
on the resulting UCPL activity, we have revisited the model proposed by Chen et al. in [21]
to formalize a system of rate equations describing the time evolution of the population of
Ho3+ excited energy levels involved in the observed emission processes:

dNHo
1

dt
= wMP

21 NHo
2 + c2NHo

2 NCe
0 − w1NHo

1 − k1NYb
1 NHo

1 , (1)

dNHo
2

dt
= k0NYb

1 NHo
0 − w2NHo

2 − k2NYb
1 NHo

2 − c2NHo
2 NCe

0 , (2)

dNHo
3

dt
= wMP

43 NHo
4 + k1NYb

1 NHo
1 + c4NHo

4 NCe
0 − w3NHo

3 , (3)

dNHo
4

dt
= k2NYb

1 NHo
2 − w4NHo

4 − c4NHo
4 NCe

0 . (4)
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The symbols used in the equations have the following meaning: NHo
i (with

i = 0, 1, 2, 3, 4) refers to the population density of Ho3+ 5I8 ground and 5I7, 5I6, 5F5,
5S2/5F4 excited levels, respectively; NYb

i (with i = 0, 1) refers to the population density
of Yb3+ 2F7/2 ground and 2F5/2 excited levels, respectively; NCe

i (with i = 0, 1) refers to
the population density of Ce3+ 2F5/2 ground and 2F7/2 excited levels, respectively; wi (with
i = 1, 2, 3, 4) refers to the overall transition rate from Ho3+ i level to the lower ones, while
wMP

21 and wMP
43 are the multiphonon-assisted relaxation rates for Ho3+ 5I6→ 5I7 and 5S2/5F4

→ 5F5 transitions, respectively; ki (with i = 0, 1, 2) refers to the coupling constant for the
Yb3+-mediated ET processes involving Ho3+ 5I8 → 5I6, 5I7 → 5F5 and 5I6 → 5S2/5F4 transi-
tions, respectively; ci (with i = 2, 4) refers to the coupling constant for the Ce3+-mediated
CR processes involving Ho3+ 5I6 → 5I7 and 5S2/5F4 → 5F5 transitions, respectively.

In steady-state conditions under cw pumping excitation, from Equations (1)–(4) we
obtain the following expressions for the Ho3+ excited levels:

NHo
1 =

(
wMP

21 + c2NCe
0
)
k2k0NYb

1 NHo
0(

w1 + k1NYb
1
)(

w2 + k2NYb
1 + c2NCe

0
) , (5)

NHo
2 =

k0NYb
1 NHo

0(
w2 + k2NYb

1 + c2NCe
0
) , (6)

NHo
3 =

[k1(wMP
21 +c2 NCe

0 )(w4+c4 NCe
0 )+k2(wMP

43 +c4 NCe
0 )(w1+k1 NYb

1 )]k0(NYb
1 )

2
NHo

0
w3(w2+k2 NYb

1 +c2 NCe
0 )(w1+k1 NYb

1 )(w4+c4 NCe
0 )

, (7)

NHo
4 =

k2k0

(
NYb

1

)2
NHo

0(
w2 + k2NYb

1 + c2NCe
0
)(

w4 + c4NCe
0
) . (8)

Assuming that the transition rates for the Ho3+ 5I7 and 5I6 levels are much larger than
the corresponding upconversion rates, the latter terms can be relaxed in Equations (5)–(8),
leading to the following reformulation of the previous expressions:

NHo
1 =

k0k2
(
wMP

21 + c2NCe
0
)

NHo
0

w1
(
w2 + c2NCe

0
) NYb

1 , (9)

NHo
2 =

k0NHo
0(

w2 + c2NCe
0
)NYb

1 , (10)

NHo
3 =

k0
[
k1
(
wMP

21 + c2NCe
0
)(

w4 + c4NCe
0
)
+ w1k2

(
wMP

43 + c4NCe
0
)]

NHo
0

w1w3
(
w2 + c2NCe

0
)(

w4 + c4NCe
0
) [

NYb
1

]2
, (11)

NHo
4 =

k0k2NHo
0(

w2 + c2NCe
0
)(

w4 + c4NCe
0
) [NYb

1

]2
. (12)

Considering that Yb3+ light absorption occurs linearly in the adopted pump power
regime, it can be stated that the parameter NYb

1 describing the population density of the
Yb3+ 2F5/2 excited level is proportional to the intensity of the excitation source. Therefore,
Equations (11) and (12) would imply a quadratic pump power dependence for the NHo

3 and
NHo

4 population density parameters, and then for the emission intensitiy of GRN and RED
bands, since they originate from Ho3+ 5F5 and 5S2/5F4 excited level relaxations, respectively.
As a matter of fact, this behaviour finely agrees with the trends shown in the log–log plot
of Figure 4a, where the linear fit of the experimental data related to the power density
dependence of UCPL emission for Ce_10 sample resulted in a slope close to 2 for both GRN
and RED emissions, thus confirming the occurrence of a two-photon UC process.

For a qualitative assessment of the observed chromaticity tuning effect, the bar graphs
in Figure 4b evidence the Ce3+ content dependence for the intensity of the GRN and RED
bands, as extracted from PL bands shown in the spectra of Figure 2a. Moreover, Figure 4b
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also reports the trend of the RED-to-GRN intensity ratio as a function of Ce3+ content,
evidencing a progressive growth of this parameter up to 10 at.% of Ce3+, whereas with a
Ce3+ content of 20 at.%, a sort of saturation effect takes place, leading to a less pronounced
increase in the ratio.

From Equations (11) and (12), we can formalize an expression of the Ce3+ content
dependence for the RED-to-GRN intensity ratio parameter:

IRED
IGRN

∝ NHo
3

NHo
4

=
[k1(wMP

21 +c2 NCe
0 )(w4+c4 NCe

0 )+w1k2(wMP
43 +c4 NCe

0 )]
w1w3k2

=
wMP

43
w3

+
wMP

21 w4k1
w1w3k2

+

(
c4
w3

+
wMP

21 k1c4
w1w3k2

+ w4k1c2
w1w3k2

)
NCe

0 + k1c2c4
w1w3k2

[
NCe

0
]2 .

(13)

This equation accounts for the observed increase in the intensity ratio with the Ce3+

doping level. This behaviour is predictable by observing the structure of Equation (12),
where the NHo

4 parameter, namely, the GRN emission intensity, is forced to decrease as the
Ce3+ content rises.

Given the parabolic trend of the expressions in Equation (13), Figure 4b also includes
a fit of the ratio values with a parabolic function, which results in a real agreement with the
trend of the experimental values up to 10 at.% of Ce3+.

Furthermore, to generalize the proposed scenario and to validate the adequacy of the
proposed rate-equation model, it is worth pointing out that similar experimental results
are reported for Yb3+/Ho3+/Ce3+ tridoped fluoride systems investigated in the works of
Gao et al. [22,39,40], Chen et al. [21], and Pilch-Wróbel et al. [41], where the trend of the
resulting GRN intensity ratio recalls a parabolic dependence on Ce3+ doping level, in some
cases reaching possible saturation effects at large Ce3+ content.
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Figure 4. (a) Log–log plot of the integrated UCPL intensity of GRN and RED emissions vs. 980 nm
pumping power density; the order n of the UC processes corresponds to the slope of the linear fit
(dashed lines) of the experimental data; the measurements were performed on Ce_10 sample. (b) Bar
graphs of GRN and RED emission intensity and scatter + line plot (hollow blue dots and solid blue
line) of RED-to-GRN intensity ratio vs. Ce3+ content; the dashed line corresponds to a parabolic fit of
the intensity ratio, considering the data in Ce3+ content range of 0–10 at.%.

3.4. Efficiency of Ce3+-Mediated CR Processes

The observed color tuning effect is closely linked to the Ce3+ doping level adopted for
the investigated samples. From the rate equations previously reported, it can be inferred
that the CR processes impact on the occupancy of the Ho3+ levels involved in the overall
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UCPL mechanism. In particular, the CR1 and CR2 processes (identified by the coupling
constants c2 and c4, respectively) constitute a depletion channel for the Ho3+ 5I6 and 5S2/5F4
levels, respectively, leading to the loss of efficiency of the GRN emission (and also of the PL
signal at around 750 nm) and to the corresponding increase in the population of the levels
involved in the photophysical mechanism responsible for the RED emission.

To account for the evolution of the Ho3+ 5I6 level occupancy, which is related to the NHo
2

parameter, Figure 5 shows the NIR emission deriving from Ho3+ 5I6 radiative relaxation to
the ground state, as a function of the Ce3+ content. The fact that the luminescence signal
promptly drops down as the Ce3+ content increases is a clear evidence of the Ho3+ 5I6 level
depletion driven by the occurrence of the CR1 process.
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Figure 5. Ho3+ 5I6 → 5I8 PL spectra under 980 nm excitation of the Ln3+-doped NaBiF4 samples with
different Ce3+ content. In the inset, trend of integrated PL intensity vs. Ce3+ content, with signals
normalized to Ce_0 sample.

For a quantitative assessment of the efficiency of the CR1 process, from Equation (10)
we define the ratio of the NIR emission intensity due to Ho3+ 5I6 relaxation between a
Ce3+-doped sample and the undoped reference as:

INIR[Ce_X]
INIR[Ce_0]

=
w2(

w2 + c2NCe
0
) . (14)

The Ce3+ content dependence of this parameter can be evaluated from the trend of the
experimental data shown in the inset of Figure 5.

The efficiency ηCR1 of the CR1 mechanism can be expressed as the ratio between the
rate of the Ce3+-mediated process and the overall rate of the mechanisms that drive Ho3+ 5I6
depletion. Therefore, considering Equation (14), we obtain:

ηCR1 =
c2NCe

0(
w2 + c2NCe

0
) = 1− INIR[Ce_X]

INIR[Ce_0]
. (15)

The results of the calculation for the different Ce3+-doped samples are reported in
Table 1. It is worth noting that already with 2 at.% of Ce3+, the estimate is around 60% for
ηCR1 parameter, which then grows to over 90% by increasing the Ce3+ content.

At this point, a comparison with the assessment of the efficiency for the CR2 process is
proposed. In this case, the data for efficiency assessment have been extracted by considering
the results of PL measurements by direct photoexcitation of Ho3+ ions under visible light
exposure.

The spectra of Figure 6a show the typical Ho3+ emission signals in the visible range,
together with a band at around 980 nm referable to the excited-to-ground-state relaxation
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originating from Yb3+ 2F5/2 level. This aspect is addressed in the next section. Figure 6b,c
report the time-resolved PL decay curves for the Ho3+ GRN and RED emissions. As can
be inferred from the trend of the lifetime estimates reported in the two insets, the GRN
values progressively decrease as the Ce3+ content increases, while the RED one remains
substantially unchanged. The different behaviour is strictly linked to the role played by
the CR2 mechanism, through which the presence of Ce3+ ions involves the activation
of a further non-radiative de-excitation channel of Ho3+ 5S2/5F4, with consequent GRN
emission weakening.
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Figure 6. (a) PL spectra under 448 nm excitation of the Ln3+-doped NaBiF4 samples with different
Ce3+ content; each spectrum is normalized to the RED band signal. (b,c) GRN and RED PL decay
curves under 460 nm excitation of the Ln3+-doped NaBiF4 samples with different Ce3+ content;
solid lines are the result of the double-exponential fit of the decay curves by using the function
I(t) = I0 + Ae−t/τ1 + Be−t/τ2 , where τ1 and τ2 represent the fast and the slow components of the
overall decay process, respectively. In the inset, trend of GRN and RED lifetime τ parameters vs. Ce3+

content, where τ is determined through the weighted average calculation τ = Aτ1+Bτ2
A+B .

The CR2 conversion efficiency ηCR2 can be calculated according to the following
equation, based on the lifetime ratio between a Ce3+-doped and the undoped sample:

ηCR2 = 1− τGRN [Ce_X]
τGRN [Ce_0]

. (16)

The values obtained for the investigated samples are reported in Table 1 for a final
comparison among the efficiencies of the two Ce3+-mediated CR processes. What emerges
is that the ηCR1 parameter is always greater than ηCR2 in the whole explored Ce3+ doping
range, and therefore, it can be stated that CR1 process plays a primary role in the observed
GRN-to-RED conversion effect induced by Ce3+ incorporation in the NaBiF4:Yb3+/Ho3+

system.
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Table 1. Results of the intensity measurements of Ho3+ NIR emission, and of the calculations related
to Ho3+ GRN emission lifetime and Ce3+-mediated CR efficiency for the investigated Ln3+-doped
NaBiF4 samples.

Sample INIR ηCR1 τGRN ηCR2
normalized to Ce_0 [%] [ms] [%]

Ce_0 1.000 - 60.1 -
Ce_2 0.410 59.0 53.1 11.7
Ce_5 0.300 75.8 51.5 14.3

Ce_10 0.137 88.9 29.7 50.5
Ce_20 0.101 91.8 21.3 64.6

3.5. Visible-to-NIR DC Effect

Here, we return to discuss the PL spectra in Figure 6a, obtained by direct Ho3+

excitation into 5F1/5G6 level through 448 nm pumping source. In addition to the typical
visible emissions attributable to Ho3+ radiative transitions, a fluorescence band around 980
nm was also observed, which is linked to the Yb3+ 2F5/2 → 2F7/2 relaxation. As these are
the only Yb3+ intra-4f transitions, it is reasonable to hypothesize that the activation of the
980 nm band originates from a mechanism of indirect Yb3+ excitation mediated by Ho3+

ions. Several studies have already investigated the peculiarities of this phenomenology,
highlighting its potentiality for the conversion of high-energy radiation into NIR photons
in view of applications in the field of photovoltaics and solar cells technology [42–45].

Figure 7 reports a series of PLE spectra for the Yb3+/Ho3+ codoped sample (Ce_0),
obtained by monitoring the intensity for the three main Ho3+ emissions in the visible range
and the Yb3+ emission at 980 nm. To facilitate the comparison, the spectra were normalized
with respect to the emission signal resulting under 483 nm excitation, corresponding to the
Ho3+ 5I8 → 5F3 ground-to-excited-state absorption. This gives the possibility to ascertain
that, while the PLE spectra for Ho3+ emissions are characterized by almost the same
intensity ratio between the different peaks in resonance with Ho3+ absorptions, for the Yb3+

emission the feature at 483 nm marks a sort of threshold beyond which the higher-energy
peaks show enhanced relative intensity. This suggests a larger efficiency of the visible-to-
NIR DC for the Yb3+/Ho3+ codoped system when operating with excitation light towards
the UV-visible edge.

To get deeper inside the mechanism underlying the observed DC process, the scheme
in Figure 8 depicts two of the major energy transfer processes proposed as responsible of the
Ho3+-mediated Yb3+ ion photoexcitation [43]. On the one hand, upon Ho3+ excitation into
high-energy 4f levels, which is followed by quick phonon-assisted relaxation to lower-lying
ones responsible of Ho3+ visible emissions, resonant CR processes can take place, involving
the transitions (i) Ho3+ 5S2/5F4 + Yb3+ 2F7/2 → Ho3+ 5I6 + Yb3+ 2F5/2 and (ii) Ho3+ 5F5 +
Yb3+ 2F7/2→Ho3+ 5I7 + Yb3+ 2F5/2. The observation in the 980 nm PLE spectrum of Figure 7
of specific features at the wavelengths of Ho3+ direct pumping into 5S2/5F4 and 5I6 levels
could reflect the activation of these CR processes.

On the other hand, it has been proposed that, at high Yb3+ doping level, Ho3+-Yb3+

pairs can effectively interact through a cooperative energy transfer (CET) mechanism that
originates from the Ho3+ levels involved in non-radiative relaxation processes, in particular,
Ho3+ 5F3 with transition scheme Ho3+ 5F3 → 2Yb3+ 2F5/2, as it nearly falls at twice the
energy for Yb3+ ground-state relaxation [43]. As this CET mechanism is configurable as
a two-photon NIR QC and supposing an intrinsic larger efficiency with respect to the
mentioned CR processes, this would explain the enhanced relative intensity of the PLE
peaks in the 980 nm spectrum when pumping with photons in the UV-blue range.

A further aspect to note is linked to a possible role of Ce3+ in the observed visible-
to-NIR DC process. The PL spectra of Figure 6a show that the increase in Ce3+ content
determines an enhancement of the Yb3+ 980 nm band with respect to the different Ho3+

emissions in the visible range. This cannot be solely attributed to a Ce3+-induced loss in
efficiency for the Ho3+ radiative processes, otherwise we would expect at least a lifetime
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decrease for the Ho3+ PL emission at 650 nm. Rather, the idea is that the presence of Ce3+

can foster the Ho3+-Yb3+ ET coupling. In this regard, in the literature, a role of the Ce3+

5d states is invoked, suggesting a first ET process from Ho3+ high-energy 4f levels to Ce3+

5d ones upon UV-blue light pumping, followed by a Ce3+-Yb3+ cooperative DC involving
Ce3+ 5d non-radiative relaxation and ET to a pair of Yb3+ ions, with final 980 nm photon
emission [46].

As a final suggestion, it is worth considering a peculiar aspect that emerges in the PL
spectra of Figure 6a. These show that the Ho3+ emission bands in the visible range seem to
float above a background luminescence signal. The inset of Figure 7 highlights that, under
UV photoexcitation, this PL signal is strongly enhanced, resulting in a wide band with peak
located at around 565 nm and characterized by a large Stoke shift with respect to the 300 nm
absorption threshold which appears in the PLE spectrum. Luminescence emissions in the
visible spectral range, also active at room temperature, have been observed for the NaBiF4
system [38]. In general, RT luminescence activity observed for bismuth-based compounds
is typically attributed to Bi3+ s-p transitions.
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Figure 7. PLE spectra of emission signals at 540, 642, 750 and 980 nm and PL spectrum (grey line)
under 448 excitation of Ce_0 sample; each PLE spectrum is normalized to the signal at 483 nm,
corresponding to the Ho3+ 5I8 → 5F3 transition, which is marked by the vertical dotted line. In the
inset, PLE spectrum of emission signal at 565 nm and PL spectrum under 260 nm excitation of Ce_0
sample.
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Figure 8. Scheme of the energy level diagram representing the photophysical mechanisms involved
in the downconverted PL emissions observed for the Ln3+-doped NaBiF4 samples. The blue upward
arrow refers to Ho3+ excitation into high-energy 4f levels; thick downward arrows refer to Ho3+

radiative relaxations in the visible range, and Yb3+ excited-state relaxation (purple arrow); cyan
and orange arrows refer to Ho3+-Yb3+ cooperative energy transfer (CET) and cross-relaxation (CR)
processes, respectively; grey wavelike arrows refer to multiphonon relaxations.

4. Conclusions

This work has focused on the investigation of the luminescence properties exhibited
by NaBiF4 NPs embedding specific amount of Yb3+, Ho3+ and Ce3+ ions. Operating in UC
mode, which determines NIR-to-visible conversion through Yb3+-Ho3+ ET mechanisms, we
observed that the variation of the Ce3+ content induces a modification of the PL chromaticity
output as determined from the relative intensity of the two main visible Ho3+ emission
features (GRN and RED bands). The effect is attributed to a pair of efficient CR mechanisms,
by which a color tuning effect takes place with progressive green-to-red conversion with
increasing Ce3+ content. On the basis of a rate equations model, we established a hierarchy
between the two Ce3+-mediated CR processes from the experimental data, and a parabolic
dependence on the Ce3+ content of the intensity ratio between the Ho3+ RED and GRN
emissions in a specific Ce3+ doping range, beyond which a saturation effect is observed.

Furthermore, direct photoexcitation of Ho3+ ions into high-energy levels originates
luminescence spectra featuring an intense 980 nm Yb3+ band as the result of a visible-to-
NIR DC mechanism. The Yb3+ emission process is particularly efficient with UV-visible
pumping above the energy threshold corresponding to the Ho3+ 5I8 → 5F3 transition,
then suggesting the occurrence of a QC process driven by Ho3+-Yb3+ CET that enhances
the overall DC mechanism. Moreover, we observed that the presence of Ce3+ ions can
contribute to this process by further fostering the visible-to-NIR DC effect.

All these evidences make Yb3+/Ho3+/Ce3+ doping of the developed NaBiF4 NPs as a
promising way to prepare phosphors with controlled UC and DC emission performance for
possible applications in several fields such as photonics, bioimaging and anticounterfeiting.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano13040672/s1, Figure S1: Trend of cell volume vs. Ce3+

content; Figure S2: FE-SEM images of Ce_0, Ce_2, Ce_5 and Ce_20 samples; Figure S3: EDS spectrum
of Ce_10 sample; Figure S4: FE-SEM image and elemental maps of Ce_10 sample.
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