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Figure S1. The actual ratio of Y/(Gd+Y) as determined by XPS versus the ratio of Y/(Gd+Y) used in 

the synthesis. 
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Figure S2. (a) The X-ray diffraction patterns of GdOxHy films exposed to 10 and 35 times of light. 

(b) Schematic diagram of the photochromic mechanism. (c) Sample photos before and after illumi-

nation [1, 2]. 

It is clear from the displacement of the characteristic peaks that the expansion of the 

lattice occurs with increasing light exposure, which may be due to the entry of oxygen. 

 

Figure S3. The EDS elemental mapping images of the surfaces of (a) Gd0.3Y0.7OxHy and (b) 

Gd0.75Y0.25OxHy films shows a uniform distribution of the elements on the surface of the films, indi-

cating that a homogeneous phase is formed during the co-sputtering process, rather than a mixture 

of two substances. 

 

Figure S4. The maximum optical contrast and the change in transmittance of the corresponding 

wavelength after 9 cycles of Gd0.75Y0.25OxHy films. The cycling process was 30 min of light and 30 

min of heating at 50°C. It has been previously shown that heating provides energy to help the re-

covery of the samples[3]. 
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Figure S5. (a) The sample pictures, (b) Tauc-plots, and (c) transmittance spectra of Y and Gd films 

with different ratios. 

 

Figure S6. The AFM images of (a) GdOxHy, (b) Gd0.75Y0.25OxHy, (c) Gd0.3Y0.7OxHy, (d) Gd0.8Ti0.2OxHy, 

and (e) Gd0.8Cr0.2OxHy films. 

The co-sputtering process inevitably leads to an increase in surface roughness. How-

ever, the surface roughness decreases gradually with the decrease of the lattice constant. 

 

Figure S7. The transmittance spectra of GdOxHy and Gd0.75Y0.25OxHy films after oxidation. 
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