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Abstract: Metal nanoparticles are increasingly used as key elements in the fabrication and processing
of advanced electronic systems and devices. For future device integration, their charge transport
properties are essential. This has been exploited, e.g., in the development of gold-nanoparticle-based
conductive inks and chemiresistive sensors. Colloidal wires and metal nanoparticle lines can also be
used as interconnection structures to build directional electrical circuits, e.g., for signal transduction.
Our scalable bottom-up, template-assisted self-assembly creates gold-nanorod (AuNR) lines that
feature comparably small widths, as well as good conductivity. However, the bottom-up approach
poses the question about the consistency of charge transport properties between individual lines, as
this approach leads to heterogeneities among those lines with regard to AuNR orientation, as well
as line defects. Therefore, we test the conductance of the AuNR lines and identify requirements for
a reliable performance. We reveal that multiple parallel AuNR lines (>11) are necessary to achieve
predictable conductivity properties, defining the level of miniaturization possible in such a setup.
With this system, even an active area of only 16 µm2 shows a higher conductance (~10−5 S) than a
monolayer of gold nanospheres with dithiolated-conjugated ligands and additionally features the
advantage of anisotropic conductance.

Keywords: self-assembly; gold nanorods; anisotropic conductance

1. Introduction

Metal nanoparticles (NPs) are increasingly used as key elements in the fabrication
and processing of advanced electronic systems and devices. At a comparably small size
(e.g., >1.4 nm for gold [1]), an electronic band structure develops, and metal NPs become
electrically conductive. In addition, gold NPs can serve as model systems in fundamental
research [2] because of their precise shapes, chemical stability, ease of surface functionaliza-
tion and processability.

In many applications, the conductivity of gold NP assemblies is crucial. It has been
exploited, e.g., in the development of gold-NP-based conductive inks [3]. Assembled
metal NPs and metal NP films can also be implemented into strain-sensitive [4] or resistive
pressure-sensitive devices [5–7], which can be used, e.g., in healthcare [8]. Moreover,
the fact that gold NPs possess a high surface-to-volume ratio proved them useful as
sensing platforms to detect alcohols or neurotransmitters [9,10], solvent vapor [11–13], or
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electrochemical reactions [14] upon adsorption. Furthermore, arrays of parallel colloidal
nanowires can be implemented to create surfaces with anisotropic conductance [15]. These
could be used as interconnection structures to build electrical circuits, e.g., for signal
transduction of directional mechanical events.

The step from single NPs to electronic components such as colloidal nanowires requires
NP arrangement into tailored supracolloidal structures. The assembly of metal NPs into
lines, as well as the optical properties of the resulting colloidal wires have been the subject
of a plethora of investigations. Lines of plasmonic nanoparticles show optical effects, such
as the coupling of plasmonic modes [16–19], and higher enhancement factors for surface-
enhanced Raman spectroscopy (SERS) than single plasmonic NPs [20,21]. Whereas top-
down methods can fabricate metal nanowires of arbitrary shape, large-scale fabrication is
challenging, and lithographic methods are energy consuming and environmentally critical.
In contrast, colloidal nanowire fabrication via self-assembly is scalable and has a reduced
environmental footprint. Various bottom-up methods have been employed to assemble
metal NPs into lines and stripes, including spin coating [20,22,23], dip coating [19,24],
microfluidics [25] and capillary-assisted assembly [26]. The above-mentioned papers
partially include testing the conductivity of the fabricated linearly assembled NPs. Studies
on the conductivity mechanisms in three-dimensional networks of metal NPs [27] and in
non-linear gold nanosphere chains [28] report that hopping dominates the charge transport
at room temperature.

However, even for the fabrication of colloidal gold nanowires, top-down methods [17,26]
are often used. Among the existing colloidal nanowires, there are only a few examples of linear
gold nanorod (AuNR) assemblies. AuNR lines offer lower percolation thresholds for electrical
conduction compared to colloidal nanowires composed of less anisotropic nanoparticles [29].
Therefore, they are well-suited for creating micron-sized surfaces with anisotropic conductivity.
Most of the fabricated AuNR lines have widths in the (sub-)micrometer range, which is
unfavorable for pushing the limit of device miniaturization. The printed stripes of poly
[2-(3-thienyl)-ethyl-oxy-4-butylsulfonate]-functionalized AuNRs by Reiser et al. had low
resistivities of 10−6 Ωm, but, on the other hand, widths of several hundred micrometers [3].
Rey et al. used a procedure of template-assisted capillary assembly of AuNRs by polydimethyl
siloxane (PDMS) templates based on electron-beam lithography-made masters, which relies
on lithographic processing steps. The resulting single AuNR lines had gaps of 5–7 nm between
the AuNR tips and did not show any measurable conductance [26]. Despite the partial use
of expensive methods, in none of these examples were the AuNR lines obtained with small
dimensions while still maintaining acceptable conductivity values.

In contrast, our bottom-up, template-assisted, self-assembled AuNR lines feature
comparably small widths [3,30] and better conductivities than other comparable assem-
blies, such as gold nanospheres with dithiolated-conjugated ligands [31]. Nevertheless,
the bottom-up approach for preparing AuNR lines poses the question about the consis-
tency of charge transport properties between individual lines, as this approach leads to
heterogeneities among those lines with regard to AuNR orientation, as well as line defects.
However, consistent charge transport properties are essential for future device integration.
Therefore, the motivation of this work was to test the conductance of the AuNR lines and
identify requirements for reliable performance. We revealed that multiple parallel AuNR
lines (>11) are necessary to achieve predictable conductivity properties, defining the level
of miniaturization possible in such a setup. Thereby, we set the foundation to use AuNR
lines as resistance-based sensor wires or as anisotropically conducting surfaces in devices
on the meso scale.

2. Materials and Methods

Materials. Cetyltrimethylammonium bromide (CTAB, 99%) was received from Merck
chemicals. Cetyltrimethylammonium chloride (CTAC), HAuCl4·3H2O (99.9%), HBr (48%
in water), silver nitrate (AgNO3, 99.9999%), sodium borohydride (NaBH4, 99%), and
hydroquinone (99%) were purchased from Sigma-Aldrich. Photoresist maP-1215 and the
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developer maD-331/S were purchased from micro-resist technology. All chemicals were
used as received. Purified water (Milli-Q-grade, 18.2 MΩ cm at 25 ◦C) was used as obtained
from the purification system.

Gold Nanorod (AuNR) Synthesis. AuNRs were synthesized with minor modifica-
tions, as published elsewhere [32]. Briefly, seed particles were prepared by adding 3 mL
of a freshly prepared 0.01 M NaBH4 solution in a 47 mL mixture of 0.1 M CTAB and
0.25 mM HAuCl4 under vigorous stirring at 40 ◦C. The solution was stirred rapidly for
2 min, followed by continued slow stirring at 32 ◦C for 30 min. A 1 L of 0.1 M CTAB
solution was prepared and 5 mL of 0.1 M HAuCl4 solution (fc.: 0.5 mM), 500 µL of 0.1 M
HBr, and 4 mL of 0.1 M AgNO3 were added (f.c.: 0.4 mM). Of the 0.1 M hydroquinone
solution (f.c.: 5 mM), 50 mL was added as the reducing agent while stirring and 2 min later,
18 mL of the as-prepared seed solution was added and kept at 32 ◦C for at least 48 h.

Vis-NIR measurements. The extinction spectrum of the CTAC-stabilized AuNRs in
aqueous solution were acquired with the spectrophotometer Cary 5000 (Agilent Technolo-
gies Deutschland GmbH, Germany). With the intensity of the extinction spectrum (Figure 1)
at a wavelength of 400 nm (interband transition of gold [33], the concentration of the AuNR
dispersion was calculated.

TEM measurements. Transmission electron microscopy (TEM) measurements were
performed with a Libra200 (Zeiss, Germany) operated at an acceleration voltage of 200 kV.
For TEM analysis, 1 mL as-synthesized nanoparticle solutions were concentrated to 50 µL
via centrifugation, and washed twice to reduce the surfactant concentration below the
critical micelle concentration (cmc; ~0.9 mM). Subsequently, 2–5 µL of these solutions
were dried on a 400 mesh copper grid covered with a carbon support film. The geometric
dimensions of over 250 AuNRs were determined by using ImageJ.

Template Fabrication. Wrinkled PDMS templates were fabricated as follows. Pre-
polymer and agent from the PDMS Sylgard 184 kit were mixed in a ratio of 10:1. It was
hardened for 1 day at room temperature and subsequently cured at 80 ◦C for about 4 h.
Stripes of 1.0 cm × 4.5 cm were cut from the cooled PDMS. To create wrinkles on the
PDMS surface, a PDMS stripe was formed to 140% of its original length by a custom-made
stretching device. After treatment with oxygen plasma (80 W, 0.2 mbar) for 5 min, the
PDMS stripe was released to its original length. This procedure resulted in wrinkles with a
wavelength of about 950 nm and a depth of ca. 220 nm.

Substrate Fabrication. Si/SiO2(230 nm) wafers (15 × 15 mm) were used as the sub-
strate, and gold electrodes of 80 µm width and 1.5 µm channel length (finger width 10 µm)
were photolithographically prepared using a chromium adhesion layer. Photoresist maP-
1215 was spin-coated on the wafer (3000 rpm; 30 s) and soft-baked on the hot plate (100 ◦C)
for 60 s. A Karl Süss Mask Aligner MA/BA6 was used for light exposure and after develop-
ment in maD-331/S, the substrates were metallized with 3 nm chromium and 30 nm gold in
a PLS570 evaporator. The lift-off was done in acetone in an ultrasonic bath for two minutes.

Template-Assisted Self-Assembly of AuNRs. The substrates were cleaned by soni-
cation in acetone and isopropanol, consecutively, blow-dried (air) and cleaned for 5 min in
UV/ozone. The AuNRs were assembled from the aqueous solution. Of a 10 mg/mL solu-
tion with 1 mM CTAC, 2 µL was deposited on top of a substrate and a 12 × 12 mm PDMS
template with the wrinkles being oriented perpendicular to the gold electrodes (Figure 2a)
was left on top for 4 h, giving rise to the AuNR lines due to confinement assembly (see
Figure 1c). Usually, a AuNR line has a width of 300 nm and is formed by the template with
a periodicity of around 905 nm, see Figure 2a.

Electrical Measurements. Electrical measurements were executed at room tempera-
ture under nitrogen in a Lake Shore Cryotronics probe station CRX-6.5K with a Keith-
ley 2634B System Source Meter, and the samples were contacted with tungsten two-
point probes.
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Scanning Electron Microscopy. Scanning electron micrographs were taken using a
HITACHI model SU8030 at 30 kV.

3. Results and Discussion
3.1. Fabrication

Gold nanorods (AuNRs) with an aspect ratio of 7.3 were synthesized as previously
described. Shortly, seeded growth was performed with tetrachloroauric acid in aqueous
solution of Cetyltrimethylammoniumbromide (CTAB) with AgNO3 and hydroquinone.
Into this mixture, single crystalline gold seeds were injected rapidly while vortexing by
hand, followed by overnight resting at 32 ◦C, exchange of the stabilizing surfactant to
CTAC, and purification. Thorough purification and consistent behavior of the colloids
would not have been ensured with CTAB due to crystallization [34]. The exchange of the
surfactant from CTAB to CTAC, however, enabled easy handling of the colloidal AuNRs at
room temperature.

The positions of the plasmonic modes of the AuNRs in the UV-vis spectrum (Figure 1a)
at 505 nm (transversal) and at 1107 nm (longitudinal) correlate to the length of 118 ± 16 nm
and width of 16 ± 1 nm derived from the TEM images (Figure 1b and Figure S1) [35,36].
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Figure 1. (a) Vis-NIR spectrum of the AuNRs with the transversal plasmon mode at 505 nm and the
longitudinal plasmon mode at 1107 nm. (b) TEM image of AuNRs and (c) scheme of the template-
assisted self-assembly of the AuNRs from aqueous solution on a Si/SiO2 (230 nm) wafer with a
wrinkled PDMS template.

To create AuNR lines, template-assisted self-assembly with wrinkled PDMS tem-
plates was used, since it allowed for easy and cost-effective assemblies on various sub-
strates [37,38]. We chose an FET substrate consisting of a Si/SiO2(230 nm) wafer with
photolithographically deposited gold electrodes. The PDMS templates were fabricated by
treating stretched PDMS stripes with oxygen plasma, followed by relaxation. This results in
PDMS stripes with a wrinkled surface of sinusoidal shape. By changing the parameters of
the plasma treatment, the geometrical dimensions of the wrinkles, periodicity and feature
height can be tuned [39–41] and thereby, adjusted exactly to the required dimensions of
the attempted application. AuNRs were assembled from aqueous solution into lines by
confinement assembly (see Figure 1c). This is a template-assisted self-assembly method in
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which the colloids are confined between the PDMS template and the substrate [37]. The
AuNR lines formed in the grooves of the wrinkles (Figure 1c). The PDMS templates had a
periodicity of 950 nm and depth of 220 nm. These dimensions allowed for the flow of the
AuNRs through the channels between the substrate and the template during the assembly
process, but still provided enough confinement to result in narrow AuNR lines, with widths
of 319 ± 139 nm (Figure 2a).
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Figure 2. SEM images of (a) AuNR lines on Si/SiO2 wafer and (b) on an FET substrate, with the
AuNR lines perpendicular to the gold electrodes of the substrate.

3.2. Measurement Results

To measure the resistance of these AuNR lines, the electrode array of the substrate
with parallel gold electrodes was used. The AuNR lines were assembled perpendicular
to the electrodes, thereby connecting the electrodes (see Figure 2b). The center-to-center
distance of the AuNR lines was about 905 ± 31 nm. The resistance was measured between
each of the two parallel gold electrodes with a distance (channel length) of 1.5 µm.

The measured resistances were then correlated with SEM images of the AuNR lines.
For each measured channel, the resistance and total number of continuous, electrode-
connecting AuNR lines was noted as in the examples in Figure 3a,b. Any AuNR lines with
gaps larger than 50 nm in between were not counted. This “coarse-grained” approach
still does not rule out that there is no conductivity due to smaller gaps, as will become
apparent in further discussion. As electronic conductivity decreases exponentially with the
increasing spacing between the gold NPs [42–46], we do not expect charge to be transferred
from one AuNR to another if the gap between them is 5–7 nm or larger [26].

The channel in Figure 3 (i) does not show a continuous AuNR line, and consequently,
there is no conductance (R = 3.3 TΩ). In Figure 3 (ii) there is one continuous AuNR line
visible and, thus, to that, the resistance measurement shows a much lower resistance of
79 GΩ. This is comparable with the resistances of 1 nm spaced gold nanowires, which
have similar widths as this AuNR line [47]. In accordance with the literature of colloidal
nanowires, the AuNR line shows an ohmic behavior at room temperature in this low-
voltage regime [48,49]. The channel depicted in Figure 3 (iii) is connected by six AuNR
lines, and a resistance of 7.4 MΩ was measured. For all the studied channels with a
conductivity higher than the detection limit, the current-vs-voltage curves exhibited ohmic
behavior, independent of the number of connecting AuNR lines. After acquiring the data
for all channels, we correlated the number of apparently continuous AuNR lines with the
corresponding resistances (see Figure 3c).
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3.3. Discussion

In Figure 3c, the measured resistances for each channel are plotted against the corre-
sponding number of continuous AuNR lines, n. The more AuNR lines connect a pair of
electrodes, the lower the measured resistance. The large scattering of the resistances for a
lower n can be attributed to AuNR lines with strongly deviating resistance due to lower
or a complete lack of conductance. If a channel has only a few conductive AuNR lines, its
conductivity will be more severely affected by a low or non-conductive line, as is the case
with many lines per channel. Unlike the scattering resistances for low numbers of AuNR
lines, the total channel resistances converge for n > 11 and are constant within one order
of magnitude (~105 Ω). Therefore, it can be concluded that more than 11 AuNR lines are
needed for reliable conductance.
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As for the non-conductive AuNR lines, we cannot rule out that some seemingly
channel-bridging AuNRs still have charge-transport interrupting gaps which could
not be detected by the coarse-grained SEM method. For the conducting AuNR lines,
the reasons for deviating conductance can be manifold. Firstly, they can be attributed
to the nonuniform arrangement of AuNRs in different AuNR lines. This causes a
distribution of the number of charge–transport paths in the AuNR lines (corresponding
to resistors connected in parallel) and of the number of resistive gaps within such a
charge–transport path (corresponding to resistors connected in a series). Secondly, as
we work with a CTAC concentration around the critical micelle concentration during the
AuNR line assembly, the formation of the CTAC bilayers around the AuNRs could differ
from one AuNR to another. The formation of the CTAC bilayers between the AuNRs
is linked to the gap size and the latter one to the resistance of this gap. Assembled
CTAC-stabilized AuNRs were shown to have a minimum distance of 3.4 nm, which
corresponds to the thickness of a shared interdigitated CTA+ bilayer [50]. The thickness
of CTA+ multilayers can also be significantly larger (i.e., 9 nm) as Sau and Murphy [50]
reported, thus giving rise to a larger gap resistance, contributing to an increased total
resistance of the AuNR line.

To attempt a more detailed account of the consistency of the resistances, we consider
the AuNR lines as ohmic resistors Ri connected in parallel. The measured total resistance
Rtotal of each channel then results as:

1
Rtotal

=
n

∑
i=1

1
Ri

, (1)

with Ri being the resistance of an individual AuNR line in one channel. We cannot know the
resistance of every single AuNR line, but we can model the resistance with the assumption
that every AuNR line in a considered channel has the same resistance, Rsingle. Although
this assumption may have weaknesses (as can be seen from the comparably large scattering
of resistances in Figure 3c), it helps in assessing the resistance measurement data. Assuming
all Ri = Rsingle, Equation (1) yields

1
Rtotal

= n· 1
Rsingle

, (2)

with n as the total number of continuous AuNR lines within the relevant channel. Figure S2
shows that the Rsingle values are roughly constant for n > 11, and therefore supports the
assumption of our model of uniform AuNR lines acting as ohmic resistors connected in
parallel. To calculate a general Rsingle, we can use a linear regression for the total channel
resistances, Rtotal versus 1

n , with Rsingle, fitted as the slope of the linear graph:

Rtotal = Rsingle, fitted(n > 11)· 1
n

. (3)

With a coefficient of determination of 0.81, this linear regression gives a slope, i.e., Rsingle, fitted

of 5.3·106 Ω (see Figure S3). This single AuNR line resistance is in the range of the lowest
resistances measured for similarly sized gold nanowires, which were about 1 nm apart from
each other [47]. This shows that despite the surfactant-induced gaps, the charge transport
along the AuNR lines works remarkably well. Inserted into the plot of the total channel
resistances versus the number of AuNR lines per channel (Figure 4), the modeled total
channel resistance, Rtotal,model, fits the measured data well for the ohmic-resistors regime for
n > 11 and even for the smallest values of the total channel resistances for a lower n.
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Figure 4. Conductivity measurements: measured and modeled total channel resistances.

Our conductivity measurement results mirror the heterogeneities of the AuNR ar-
rangement between different AuNR lines, which results in strongly fluctuating resistances
for small numbers of AuNR lines. However, by connecting electrodes with several (n > 11)
AuNR lines, this heterogeneity does not negatively impair the consistency of conductivity
measurements. Hence, the assembly of multiple conductive supracolloidal lines offers a
suited approach to mitigate inconsistency in the transport behavior of this promising class
of mesoscale electronic materials. This approach takes up an area of 10.8 µm × 1.5 µm for
12 parallelly aligned AuNR lines with a center-to-center distance of about 950 nm. Such a
system still shows higher conductance (~10−5 S) than a monolayer of gold nanospheres
with dithiolated-conjugated ligands (>10−7 S) [31], and additionally features the advantage
of anisotropic conductance.

4. Conclusions

In summary, we successfully fabricated AuNR lines via template-assisted self-assembly
and characterized their conductance. By using bottom-up fabricated PDMS templates and
wet-chemically synthesized AuNRs for the confinement assembly, the whole process of the
linear assembly did not require expensive equipment. Another advantage is the possibility
to print these AuNR lines on a plethora of materials [37,38], including heat-sensitive
polymer films, since our fabrication process does not include sintering. Additionally, our
structures feature comparably low dimensions in terms of the AuNR line width [3,30].
We observed a dependence of the conductance on the number of channel-bridging AuNR
lines. For more than 11 AuNRs per channel, the single-line resistances approached a
unified behavior, described by the ohmic model of uniform resistors connected in parallel.
The results demonstrate that consistent conductivity properties can be reached if several
supracolloidal wires are employed, even if their conductivity properties fluctuate strongly
among the individual lines. This is especially applicable to the development of sensors
based on surfaces with anisotropic resistance properties. With our approach, the active
areas can be as small as 16 µm2, but also as large as cm2 [18], depending on the intended
application. In this regard, the up-scalable fabrication and integration of our AuNR lines
into robust technical processes is promising for future device integration [51].

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/nano13091466/s1, Figure S1: Histograms of the AuNRs’ dimensions, their
width and length, derived from TEM measurements; Figure S2: Conductivity measurements: Calcu-
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lated mean resistance for single AuNR lines; Figure S3: Linear fit of the measured R_total and model
for R_total by using the R_(single, fitted) derived from the linear regression; Figure S4: Conductivity
measurements: (a) calculated conductances per AuNR line and (b) total channel conductances G,
measured and modeled values; Figure S5: The measured channel resistances for n = 1, n = 2, n = 3
and n = 4 exemplarily illustrate the scattering of the total channel resistances R_total for small n.
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