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In the 21st century, infections remain a major problem for society and are one of
the leading causes of mortality. Beyond healthcare, undesired bacterial contamination,
attachment, and colonization cause significant issues in many other areas of everyday
life and industry. Examples include the food manufacturing and distribution and the
marine industry. Despite the wide application of antibiotics, cleaning, and prophylactic
practices, to this date, the problems with undesired bacterial adhesion have not found a
complete solution. Moreover, the growing prevalence of antibiotic-resistant microorganisms
threatens to escalate the problem over the coming years substantially.

The extent of the problem of infections and undesired bacterial contamination has
triggered massive research efforts by researchers around the World in an attempt to find a
solution. One area that holds substantial promise is nanotechnology. Over the last three
decades, scientists and engineers have made exciting discoveries of natural and engineered
nanoscale materials capable of eliminating bacteria or preventing their attachment to
surfaces [1,2].

This Special Issue aims to serve as an exciting collection of primary research articles
on the recent progress in the synthesis, fabrication, and utilization of nanoscale materials
for antibacterial applications.

In this Special Issue, we selected ten research articles from research leaders that offer
interesting nanotechnology-based platforms that provide exciting future direction for
the field.

I will begin the summary of accepted papers with a research study by Bright et al. [3]
which deals with an intriguing technology that nature has inspired. First, observed on
insect wings, these surfaces can kill bacteria upon contact with sharp surface nanostructure
without the help of any chemicals or drugs. Since their discovery, these type of surface
nanostructures have been translated to many synthetic materials, such as silicon and
titanium [4,5]. In their article, Bright and co-workers investigated the role of etching
duration and sodium and potassium cations used during alkaline heat treatment on the
topographical, physical, and bactericidal properties of a medical-grade titanium alloy. The
authors determined the optimal time of hydrothermal processing in KOH and NaOH
that provides optimal antibacterial performance. The reported parameters can guide the
biomedical industry and researchers in translating this nanoscale antibacterial surface
modification to commercially used medical devices.

Several articles make use of the antibacterial properties of silver, which have been of
massive interest over the last two decades [6]. Hurtuková et al. developed an antibacterial
surface on flexible support by first sputtering a carbon base layer on PDMS, followed by
sputtering silver. In the next step, the nanostructured surface was heat treated and activated
by an excimer laser [7]. This process led to forming a surface with strong antibacterial
properties against bacterial pathogens such as S. epidermidis and E. coli. In another interest-
ing article, Beery et al. [8] developed silver nanoparticles incorporated in anion exchange
resin beads. The authors generated beads with different silver loadings and showed that
Ag-loaded resins made using 50 mM AgNO3 were able to eliminate 99% E. coli within three
hours of exposure. The authors’ motivation for this work was to offer antibacterial resins
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that are easy to handle, have a long-term shelf life, are reusable, and reduce the risk of
environmental contamination. Novel Bacitracin-Ag nanoclusters were prepared by Wang
and co-authors [9] with the specific goal of targeting Shigella flexneri. Ag nanoclusters have
recently become a hot research topic due to their high antibacterial potency [10,11]. Wang
et al. found that the Bacitracin-Ag nanoclusters were very potent against this pathogen and
determined that the minimum inhibitory concentration (MIC) and minimum bactericidal
concentration (MBC) were 0.03 mg/mL and 4 mg/mL, respectively. The authors suggest
that the nanoclusters can serve as a novel antimicrobial agent for application in the food
industry. Moorthy et al. reported a facile and green synthesis method of ecologically viable
silver nanoparticles using aqueous and ethanolic) dried bitter gourd (Momordica charantia)
fruit extract [12]. The bitter gourd fruit extract was utilized as both reducing and capping
agents. The authors claim that the synthesized silver nanoparticles possessed synergistic an-
tioxidant and antibacterial action and had MIC of 4 µg/mL against drug-resistant bacterial
strains. In another interesting paper, Murei and co-workers synthesized silver nanoparticles
by chemical and biological methods and then conjugated them with Pyrenacantha grandi-
flora extracts [13]. The prepared silver nanoparticles had very potent antibacterial activity
against multi-drug resistant pathogens. Very low MIC of 0.0063 mg/mL against MRSA
was measured when biologically synthesized silver nanoparticles were conjugated with
acetone and water extracts. The chemically synthesized silver nanoparticles had lowest
MIC of 0.0063 mg/mL against E. coli when conjugated with acetone and methanol extracts.

David et al. decorated multi-walled carbon nanotubes with several different types of
nanoparticles (NPs) to generate hybrid materials with improved antimicrobial activity [14].
The authors found that the presence of zinc oxide and silver nanoparticles enhanced the an-
timicrobial properties of the carbon nanotubes against clinically relevant microbial strains.

Yougbaré and co-workers synthesized visible-light-activated metallic molybdenum
disulfide nanosheets and plasmonic gold nanorods [15]. The obtained material was denoted
as MoS2@AuNRs. The photothermal and photodynamic activity of MoS2@AuNRs were
studied against E. coli. Combining photothermal and photodynamic therapy using the
MoS2@AuNR nanocomposites had higher antibacterial activity than photothermal or
photodynamic therapy alone. The authors proposed that the light-activated MoS2@AuNR
nanocomposites’ remarkable synergistic effect during the combination of photothermal and
photodynamic therapy can provide an alternative approach to fight bacterial infections.

Tan et al. fabricated plasmonic gold nanoisland film for bacterial theragnostic [16]. The
films exhibited greater capture efficiency towards E. coli than unmodified glass substrate.
Due to their nanostructured nature, the films could be used as a surface-enhanced Raman
scattering (SERS) sensor to enhance the Raman signal of E. coli. Furthermore, the films
displayed excellent capacity to kill E. coli photothermally, thus providing a promising
theragnostic platform.

Lastly, Hui and co-workers incorporated five plant essential oils on ZnO/palygorskite
nanoparticles by a simple adsorption process to form organic–inorganic nanocomposites
with antibacterial properties [17]. The carvacrol/ZnO/palygorskite was the most efficient of
the nanocomposites with minimum inhibitory concentration of 0.5 mg/mL and 1.5 mg/mL
against E. coli and S. aureus, respectively.

As a final note, the Editorial team would like to thank all contributing authors for
providing such interesting articles for this Special Issue and making it a great success.
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