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Abstract: Glioblastoma multiforme (GBM) is the most aggressive primary malignant tumor of the
brain. Although there are currently a wide variety of therapeutic approaches focused on tumor
elimination, such as radiotherapy, chemotherapy, and tumor field therapy, among others, the main
approach involves surgery to remove the GBM. However, since tumor growth occurs in normal
brain tissue, complete removal is impossible, and patients end up requiring additional treatments
after surgery. In this line, Catalytic Nanomedicine has achieved important advances in developing
bionanocatalysts, brain-tissue-biocompatible catalytic nanostructures capable of destabilizing the
genetic material of malignant cells, causing their apoptosis. Previous work has demonstrated the
efficacy of bionanocatalysts and their selectivity for cancer cells without affecting surrounding
healthy tissue cells. The present review provides a detailed description of these nanoparticles and
their potential mechanisms of action as antineoplastic agents, covering the most recent research and
hypotheses from their incorporation into the tumor bed, internalization via endocytosis, specific
chemotaxis by mitochondrial and nuclear genetic material, and activation of programmed cell death.
In addition, a case report of a patient with GBM treated with the bionanocatalysts following tumor
removal surgery is described. Finally, the gaps in knowledge that must be bridged before the clinical
translation of these compounds with such a promising future are detailed.
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1. Introduction

Primary malignant brain tumors are detected in 5–6 instances per 100,000 people each
year, with malignant gliomas accounting for roughly 80% of these occurrences [1,2]. The
most prevalent type of primary brain tumors are gliomas, which also include astrocytoma,
oligodendrogliomas, and ependymomas [3]. Malignant gliomas are divided into grade
III/IV tumors, such as anaplastic astrocytoma, anaplastic oligodendroglioma, anaplas-
tic oligoastrocytoma, and anaplastic ependymomas, and grade III/IV tumors, such as
glioblastoma multiforme (GBM), according to the World Health Organization (WHO) [4].
GBM accounts for 80% of all initial malignant CNS tumors, 45.2% of all malignant central
nervous system (CNS) tumors, and around 54.4% of all malignant gliomas [5]. The aver-
age age of diagnosis is 64 years, and the prevalence is 1.5 times higher in males than in
women [6]. Over the past 20 years, the incidence has marginally increased, mostly as a
result of advancements in radiologic diagnosis, particularly in older patients [7].

Clinically speaking, GBM patients may have seizures, focal neurologic abnormalities,
disorientation, memory loss, or headaches [8]. Magnetic resonance imaging (MRI) and
adjunct technologies such as functional MRI, diffusion-weighted imaging, diffusion tensor
imaging, dynamic contrast-enhanced MRI, perfusion imaging, proton magnetic resonance
spectroscopy, and positron-emission tomography can help with diagnosis and treatment
response [9].

Grade III tumors and GBM are handled similarly when it comes to therapy. The
standard of treatment for individuals younger than 70 with newly diagnosed GBM is now
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maximum surgical resection with radiation plus concurrent and adjuvant temozolomide
administration [10]. Nevertheless, recurrence appears to be the rule despite regular treat-
ment. Recently, research has focused on figuring out the early molecular pathogenesis of
these tumors, including changes in cellular signal transduction pathways, the formation
of therapeutic resistance, and approaches to more easily cross the blood–brain barrier
(BBB) [11]. Yet, despite these treatments, the illness is still incurable, and the outlook is bad,
with a survival range of 6 to 15 months (median 14.6 months) and a mean survival rate of
just 3.3% after 2 years and 1.2% at 3 years [12]. Given this scenario, new approaches are
urgently needed.

In this regard, supramolecular nanomedicines are causing a paradigm change since
they have the potential to diagnose and cure brain cancers [13]. Several nanomedicines are
now in clinical use, and many more are making considerable progress in human research.
Nanomedicines provide several benefits over conventional formulations, including better
tissue selectivity, decreased toxicity, improved drug solubility, and bioavailability [14–16].
Nanomedicines can successfully transport drugs over the BBB by fine-tuning their physico-
chemical properties, including chemistry, size, shape, charge, and surface modifications [17].
In addition, a type of nanomedicine called bionanocatalysts has demonstrated the ability
to not only transport chemotherapeutic agents but also to enhance their effect and carry
out intrinsic selective cytotoxic activity through the catalytic cleavage of the genetic ma-
terial of cancer cells, without harming surrounding healthy tissues [18]. This branch of
nanomedicine is known as Catalytic Nanomedicine.

Therefore, throughout this review, we thoroughly explain the most promising results
regarding these novel bionanocatalysts, which are emerging as potential new therapies
for malignant gliomas such as GBM. To better understand the biochemical and molecular
basis that must be considered when these treatments are created, we first briefly review our
present understanding of brain cancer pathology. The most important developments in
the use of bionanocatalysts for the selective elimination of cancer cells are then discussed.
Additionally, we describe the main hypotheses regarding the mechanisms of action of these
nanomedicines in terms of selectivity, efficacy, and biocompatibility. In support of the
above, we include a clinical case of the therapeutic potential of bionanocatalysts against a
GBM in a patient. We conclude by providing a succinct overview of the major drawbacks
and security issues to take into account when creating nanomedicine-based treatments,
particularly in the areas of surface coating and nanotoxicity, because only by addressing
these knowledge gaps will research be able to enable further clinical translation. The
aforementioned aims to increase our comprehension of the mechanisms underlying the
actual perspectives that bionanocatalysts offer for researchers to advance in the search for a
cure for GBM.

2. Traditional Nanomedicine in Brain Tumors: Enhanced Drug Delivery

Among novel approaches against cancer, traditional nanomedicine has increasingly
addressed the challenge of tumor elimination by exploiting their unique properties, such
as improved bioavailability of beneficial compounds through controlled pharmacokinetics
and pharmacodynamics, blood–brain barrier crossing function, improved distribution to
brain tumor sites, and tumor-specific drug activation [19].

To date, the main approaches have focused on enhanced drug delivery. Nanofor-
mulations help to protect chemotherapeutic compounds from chemical and enzymatic
degradation in the systemic circulation, in addition to protein binding and reduced up-
take by normal tissues (non-reticuloendothelial system), thus increasing accumulation
in tumors via passive targeting [20]. There are currently several approved nanodrugs
using lipid-based nanotechnology platforms for chemotherapeutic drug delivery. DoxilTM

(Bridgewater, NJ, USA) was the first one approved by the FDA in 1995 [21]. Like DoxilTM,
the liposome-based nanoformulations CaelyxTM (Kenilworth, NJ, USA) and MyocetTM

(Castleford, UK) were also approved by the EMA in 1996 and 2000, respectively [22,23].
The three nanodrugs, DoxilTM, CaelyxTM (PEGylated), and MyocetTM (non-pegylated),
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stably encapsulate and retain chemotherapeutic doxorubicin. They were formulated to
improve the safety profile of the chemotherapeutic, which is characterized by its high
cardiotoxicity [24]. By reducing cardiotoxicity, a higher cumulative dose can be adminis-
tered in comparison to free doxorubicin [25]. Doxorubicin is an anthracycline antibiotic
that is generally believed to interact with DNA via intercalation, inhibiting macromolec-
ular biosynthesis [26]. Doxorubicin stabilizes the topoisomerase II complex after it has
broken the DNA strand for replication, preventing the DNA double helix from reseal-
ing and halting the replication process. Another reported mechanism of doxorubicin is
its ability to generate free radicals that induce DNA and cell membrane damage [27].
Doxil™, CaelyxTM, and MyocetTM exhibit prolonged circulation time and reduced volume
of distribution, which enhances tumor uptake and extends tumor therapy efficacy [28–30].
DoxilTM and CaelyxTM are indicated for the treatment of ovarian cancer, AIDS-associated
Kaposi’s sarcoma, and, in combination with bortezomib, for the treatment of multiple
myeloma. CaelyxTM and MyocetTM are also indicated for patients with metastatic breast
cancer [31–33].

DaunoXomeTM (Craigavon, UK) is another nanoliposomal preparation that encapsu-
lates daunorubicin, an anthracycline antibiotic with strong antineoplastic activity [34]. The
activity of daunorubicin has been attributed mainly to its intercalation between the base
pairs of native DNA [35]. It causes DNA damage, such as fragmentation and single-strand
breaks. There are two limiting factors in the use of anthracyclines as antitumor agents:
chronic or acute cardiotoxicity and spontaneous or acquired resistance [36]. Daunorubicin
has a particular affinity for phospholipids and the development of resistance is related to
some membrane alterations [37]. DaunoXomeTM is indicated as the first line for advanced
HIV-associated Kaposi’s sarcoma [38]. Similar to DaunoXomeTM, another compound is
MepactTM (Cambridge, MA, USA), a liposomal phosphatidylethanolamine muramyl tripep-
tide that activates monocytes and macrophages [39]. MepactTM is indicated in children
and young adults for the treatment of high-grade resectable nonmetastatic osteosarcoma
after complete surgical resection. Furthermore, AmeluzTM (Leverkusen, Germany) is a
gel formulation containing INN-5-aminolevulinic acid in a nanoemulsion, enhancing its
penetration into the epidermis [40]. The substance is metabolized to protoporphyrin IX
and activated by a red light, forming a reactive oxygen species and destroying the target
cells. It is indicated for the treatment of mild to moderate actinic keratosis on the face and
scalp [41].

Continuing with the list, MarqiboTM (Henderson, NV, USA) is a sphingomyelin and
cholesterol-based formulation of vincristine nanoparticles [42]. It is an antineoplastic drug
with a broad spectrum of activity against hematological malignancies and childhood sarco-
mas. It induces neurotoxicity and peripheral neuropathy in a dose-dependent manner [43].
The liposomal carrier component facilitates vincristine loading and retention; extravasa-
tion; and slow drug release into the tumor microenvironment, and improves the safety
profile of vincristine, reducing its side effects [44]. It is indicated in adults with advanced,
relapsed, and refractory diseases. Another compound is OnivydeTM (Cambridge, MA,
USA), an irinotecan (DNA topoisomerase I inhibitor) that is encapsulated in a lipid bilayer
vesicle, which prolongs circulation time and enhances irinotecan delivery in tumors with
compromised vasculature [45]. It is indicated for the treatment of metastatic pancreatic
adenocarcinoma in patients who have progressed after gemcitabine-based therapy. Finally,
VyxeosTM (Dublin, Ireland) is a liposomal formulation of a fixed combination of daunoru-
bicin (inhibitor of DNA polymerase activity) and Cytarabine (a cell cycle phase-specific
antineoplastic agent) [46]. It has a prolonged plasma half-life and accumulates and persists
in high concentrations in the bone marrow [47].

As a whole, this type of nanostructure allows the stabilization of drugs with chemother-
apeutic properties, which improves their bioavailability and decreases their intrinsic toxicity.
However, the nanostructure only serves as a carrier for the drug, without having a thera-
peutic effect on its own. The other type of approach to solid tumors has sought to exert the
chemotherapeutic effect by itself by directly attacking the genetic material of the cancer
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cells, without harming healthy cells. This new approach is based on the use of bionanocata-
lysts, nanostructures capable of eliminating tumors by their direct interaction with cancer
cells via reducing the activation energy when selectively attacking the bonds, as will be
described below [48,49].

3. Catalytic Nanomedicine in Brain Tumors
3.1. Bionanocatalysts

López-Goerne coined the term “bionanocatalyst” in 2013 [50] to refer to nanostruc-
tured materials made of pure or mixed oxide matrices that exhibit enhanced catalytic
properties (concerning typical solid cores) and inorganic coating groups that mimic cellular
ligands, giving them biocompatibility and affinity. Bionanocatalysts have drawn research
teams from all around the world in recent years. These nanomedicines are endowed with
inherent biochemical features of significant importance in clinical applications, such as
biocompatibility and selectivity, thanks to their surface coating [51]. Bionanocatalysts
can be engineered to be innocuous to healthy cells while exerting specific cytotoxicity
against pathogenic organisms or damaged cells, making them very well-suited for use in
disinfection and cancer treatments.

Unlike traditional nanomedicines, bionanocatalysts’ cytotoxicity is based on their
capability to destabilize organic bonds, such as carbon–carbon and carbon–nitrogen, in
macromolecules, especially nucleic acids [18]. As will be described in detail, when in contact
with DNA or RNA, the bionanocatalysts reduce the activation energy of the system by
forming complexes with the structure of the nucleotide chains [52]. Such interaction results
in the degradation of the molecule via a sequence of combustion and dephosphorylation
reactions that ultimately result in the molecules’ C–C and C–N bonds breaking [53]. With
the cell’s genetic material altered, it is inhibited from replicating itself.

In the following sections, we will describe in detail the structure of the bionanocata-
lysts for cancer therapy (onco-bionanocatalysts) and their relationship with the hypothe-
sized mechanism of action concerning their selectivity, efficacy, and biocompatibility for
healthy tissues.

3.2. Structure of Onco-Bionanocatalysts

Bionanocatalysts, like traditional inorganic nanocatalysts, have a structure that allows
them to carry out selective catalytic processes. However, unlike normal nanocatalysts,
bionanocatalysts have a series of additional components that provide them with biocom-
patibility and specificity towards genetic material exclusively in cancer cells. The oxide
core is the main component of any bionanocatalyst (Figure 1). It gives the compound
most of its physicochemical and catalytic properties, in addition to serving as a scaffold for
coating with transition metals that can be further released or used as active sites in the case
of a bionanocatalyst [54,55]. The kind of oxide to choose relies on both the physiological
environment in which the bionanocatalysts will function and the intrinsic qualities of the
oxide, such as catalytic activity, thermal stability, surface area, and mesoporosity.

The onco-bionanocatalysts base a considerable part of their properties on the nanome-
chanically structured titanium dioxide (titania) that composes them. This oxide provides
the nanoparticle with thermal stability, defined crystalline structure, biocompatibility, and
the external surface area [56]. These parameters are crucial to preserve the effect of the bio-
nanocatalysts under whatever conditions they are subjected to. In particular, the intrinsic
catalytic ability of nanostructured titania has been extensively studied, as it is necessary
to destabilize molecules [57]. This is enhanced due to the high surface areas exhibited by
these cores, which translates into larger contact zones and, therefore, reaction zones.
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of the metal. The surface coating of the oxide matrix surface determines the selectivity and biocom-
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onanocatalysts given its application as a catalytic converter in the full combustion of un-
burnt hydrocarbons in exhaust to produce carbon dioxide and water vapor [59,60]. This 
increases its catalytic activity and allows a 100% metal coating of the core. Depending on 
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Figure 1. Molecular structure and main components of an onco-bionanocatalyst. The nanostructured
oxide matrix provides a platform for the stabilization of transition metal nanoparticles for synergistic
effects. In addition, the matrix serves as a catalyst in its own right, enhancing the effect of the metal.
The surface coating of the oxide matrix surface determines the selectivity and biocompatibility of the
bionanocatalysts. Figure made in BioRender.com (accessed on 13 April 2023).

However, not only the catalytic core determines the cytotoxic effect of onco-bionanocatalysts.
The stabilization of nanoparticulated transition metals in the oxide lattice’s surface is a
bionanocatalyst’s second crucial component. Metal nanoparticle coating improves the
bionanocatalysts by producing synergistic effects as a result of these metals’ inherent
features [58]. Moreover, it has been shown that coating with these metals boosts their effec-
tiveness, requiring lower amounts of the metal to obtain equivalent outcomes. Platinum
(Pt) is the transition metal most frequently utilized in the design of onco-bionanocatalysts
given its application as a catalytic converter in the full combustion of unburnt hydrocarbons
in exhaust to produce carbon dioxide and water vapor [59,60]. This increases its catalytic
activity and allows a 100% metal coating of the core. Depending on the bionanocatalyst’s
preparation, high selectivity can be acquired for desired products, as was first demonstrated
for the hydrogenation of phenylacetylene [61].

Finally, unlike other nanostructures with catalytic properties (such as those used in
petrochemistry), the bionanocatalysts for oncological applications have a surface coating
with specific molecules, mainly hydracids. By stabilizing the OH groups in the oxide
matrix and creating larger stabilities in the solid with high specific areas, the addition of
these molecules enhances the physicochemical structure of the external surface [51,62].
Furthermore, as will be described in the following section, surface coating constitutes a
vital step in the synthesis of bionanocatalysts since the production of efficient, selective,
and specific molecules depends on the surface coating being designed correctly with
certain molecules. Its coating is thought to be directly connected to the mechanism of
internalization exclusively into cancerous cells.

BioRender.com
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3.3. Selectivity through Receptor-Recognition

López-Goerne et al. [63] observed that onco-bionanocatalysts internalized into cancer
cells through a process of endocytosis. In the assay, the capture of real-time transmission
electron micrographs allowed the cell incorporation process to be identified in great detail.
Figure 2 summarizes this phenomenon.
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Figure 2. Ligand–receptor-mediated endocytosis: selective internalization mechanism of onco-
bionanocatalysts. (a) Generally, tumors cells exhibit different types of receptors in the surface
of cell membrane. (b) When in the presence of onco-bionanocatalysts, certain receptors interact
with the superficial coating in the surface of the NPs (the ligands) and carry out a pinocytosis-like
process (yellow and black arrows). (c) Invagination of the membrane allows for onco-bionanocatalyst
internalization. (d) As the ligand–receptor interaction remains, onco-bionanocatalysts are observed
in the lumen face of the early endosome where the receptors are located. Micrographs from personal
archives. Figure made in BioRender.com (accessed on 13 April 2023).

As can be seen, the bionanocatalysts (identified by their darker coloration in contrast
to the cellular components) are located around the surface of the cell membrane (Figure 2a).
The micrograph suggests that there is a binding-type interaction between the nanoparticles
and the membrane components, as immediate vesicle formation is observed following
pinocytosis-like mechanisms (Figure 2b). A closer view (Figure 2c) shows membrane
invagination and incorporation of the bionanocatalysts via pinocytosis. Figure 2d confirms
the existence of binding between nanoparticles and membrane components since the
bionanocatalysts are exclusively located on the luminal face of the early endosome once
internalization is complete. This phenomenon suggests that the bionanocatalysts remain
attached to the membrane receptors once the endocytosis process is completed.

Based on the above, a hypothesis of the internalization of bionanocatalysts in cancer
cells has been developed. As mentioned above, it is hypothesized that the surface coating of
the nanoparticles is responsible for the selectivity of the nanostructures, with the superficial
coating molecules being the key to interact with the surface membrane receptors. As
for now, three possible types of endocytosis have been proposed for the uptake of the
bionanocatalysts: (1) receptor-mediated endocytosis; (2) caveolae-dependent endocytosis;
and (3) clathrin-mediated endocytosis.

Research is currently focused on elucidating the type of receptor involved, as well as
the signaling pathways activated during the process of endocytosis of bionanocatalysts.

BioRender.co
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3.4. Transport towards Mitochondria

Once in the cytoplasm, the early endosome containing the onco-bionanocatalysts
undergoes morphological and biological changes accompanied by vesicle trafficking before
their release [64]. According to the maturation paradigm, endosomes throughout the
endocytic route are temporary and discrete compartments that go through specific phases
as they develop [65]. Endosomal maturation is characterized in this model by four changes:
(1) an increase in the number of intraluminal vesicles (Figure 3a); (2) an increase in luminal
acidification (Figure 3b); (3) lysosome fusion and Rab protein switching (Figure 3c); and
(4) endosome escape (Figure 3d).
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endosomes following the direction of the small GTPase Rab5 [66]. Early endosomes often 
originate on the cytoplasm’s periphery, where the intracellular pH is somewhat acidic, 
allowing the receptor-ligand (bionanocatalysts) to be easily separated. Early endosomes 
function as crucial sorting stations, delivering dissociated bionanocatalysts to late endo-
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Figure 3. Early transport and endosome escape of onco-bionanocatalysts. (a) After endocytosis,
an early endosome is made; Rab5 determines the movement of the endosome. (b) pH decrease
dissociates ligand–receptor interactions and receptors are recycled into the cell surface by Rab4 and
Rab11. (c) The endosome travels towards the perinuclear region and fuses with lysosomes; pH
increases via H+ pumping by ATPases; Cl− are also pumped to balance the charge, creating an
osmotic pressure. (d) The endosome bursts due to excessive osmotic pressure, releasing the onco-
bionanocatalysts. Micrographs from personal archives. Figure made in BioRender.com (accessed on
13 April 2023).

Seconds after endocytosis, vesicles fuse with each other or with pre-existing early
endosomes following the direction of the small GTPase Rab5 [66]. Early endosomes often
originate on the cytoplasm’s periphery, where the intracellular pH is somewhat acidic,
allowing the receptor-ligand (bionanocatalysts) to be easily separated. Early endosomes
function as crucial sorting stations, delivering dissociated bionanocatalysts to late endo-
somes and eventually to lysosomes, while recycling back vacated receptors into the cell
surface. As previously stated, certain membrane receptors are carried to recycling endo-
somes with membrane-bound lipids for return to the cell membrane, a process mediated
by Rab4 and Rab11 [67,68].

The number of luminal vesicles Increases as endosomes sprout inside the endosomal
membrane. Maturation from early endosomes to late endosomes is accompanied by a transi-
tion from Rab5 to Rab7 binding [69]. Endosomes travel down to the perinuclear area, which
is controlled by interactions with dynein and kinesin, and this is followed by increased
intravacuolar acidity. Finally, late endosomes merge with lysosomes, a process focused

BioRender.com
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on cargo and intraluminal vesicle destruction. Nonetheless, given onco-bionanocatalysts’
resistance to acidic conditions due to their surface coating and acidic surface [70–74],
degradation does not take place. Instead, rupture of the newly formed endolysosome
occurs. The escape of the endosome, as this phenomenon is known, can follow several
mechanisms, but the current hypothesis suggests the osmolysis pathway [75]. In this
mechanism, onco-bionanocatalysts act as a buffer for pH as protons are pumped into the
endolysosome by ATPases. In turn, chloride ions are also pumped to maintain charge
balance. As the cell attempts to lower the pH of the endolysosome, an osmotic pressure is
created that causes endosomal lysis. Although it is not known whether this process causes
total membrane rupture or only pore formation [76], the compelling result is the release
of onco-bionanocatalysts into the cytosol. There are likely other factors involved in the
ability of these nanoparticles to escape from the endosome, so research continues along
these lines.

Upon release into the cytosol, onco-bionanocatalysts travel to the mitochondria, where
they interact with mitochondrial DNA. Although the precise mechanism regarding trans-
port from lysed endolysosome to these organelles is not fully elucidated, there is a promi-
nent hypothesis. Catalytic nanoparticles, in general, have been shown to have the ability
not only to travel by Brownian motion [77], but also to sense certain structures, such as
nucleic acids [78], and to be able to actively transport themselves to them [79]. Although it
may seem astonishing that a particle can actively move on its own without any external
assistance, there are now several well-established processes, including chemical interac-
tions, that may allow onco-bionanocatalysts to “self-propel”. This mechanism is based
on bacterial chemotaxis, in which the bacteria swims on a “random walk” until it detects
chemicals to which it reacts, resulting in the whole reorientation of the organism towards
the higher chemical gradient [80,81].

Hence, the procedure followed by onco-bionanocatalysts may be closely related to
the self-propulsion system of E. coli. It has been shown that catalytic nanoparticles with a
radius of at least 100 nm can swim by a process called “autophoresis” [82,83]. To this end,
the catalytic potential of onco-bionanocatalysts allows them to react chemically with “fuel”
molecules that are in the solution. Due to the catalyst coverage, a concentration gradient
of the reaction products develops across the particle, which creates a fluid flow near the
particle surface [84,85]. According to the conservation of momentum, the particle moves
against the direction of the fluid flow, just as a rowboat moves against the direction of
the oar strokes. The particle can move with the reactive side facing forward or backward,
depending on the individual surface reaction and the surface chemistry of the particle.
Normally, within a certain range, as the concentration of fuel molecules increases, so does
the activity (velocity) of the particles (chemokinesis) [86]. Because of this, a self-propelled
particle will accelerate as it moves towards higher fuel concentrations.

Following this theory, the “fuel” molecule would be hydrogen peroxide (H2O2). In
normal cells, ROS are produced at low levels by NADPH oxidases, and the amount of H2O2
is controlled by the glutathione system. In tumor cells, in contrast, large levels of ROS near
the cytotoxicity threshold are created through the mitochondrial respiratory chain, and the
H2O2 concentration is regulated by catalases [87–89]. In turn, the catalytic decomposition of
H2O2 is a well-known disproportionation process involving the simultaneous oxidation and
reduction of oxygen, giving rise to water and gaseous oxygen [90]. Notably, this reaction
is primarily catalyzed by platinum, one of the metals of choice when designing highly
efficient self-propelled nanomachines and micromachines. Thus, onco-bionanocatalysts
functionalized with platinum nanoparticles could be taking advantage of their catalytic
capacity for the transformation of H2O2 in increasing concentration gradients towards
mitochondria for transport into this organelle. This is depicted in Figure 4a.
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the mitochondria and (b–d) mitochondria internalization. The slip flows near the surface of the
colloid with velocity u (a product of catalytic conversion of H2O2 into H2O and O2), leading to
particle motion with translational velocity U in the opposite direction to the respective slip flows
because the total force in the system must be balanced. Once in interaction with the mitochondria,
the onco-bionanocatalysts internalize into the matrix. Micrograph in (d) is an amplification of the
region inside the red square in micrograph in (c). Micrographs from personal archives. Figure made
in BioRender.com (accessed on 13 April 2023).

However, questions remain regarding a possible cancellation of motion due to Brow-
nian motion itself in this model. Research continues to fully elucidate the transport
mechanism as a function of the H2O2 gradient. Similarly, although evidenced that onco-
bionanocatalysts internalize into the inner matrix of the mitochondria (Figure 4b–d), it the
pathways followed remain unclear.

3.5. Catalytic Bond-Breakage in Nucleic Acids

Upon contact with the genetic material of the mitochondria, the onco-bionanocatalyst
acts as a three-way catalyst for the selective reduction of three main types of bonds present
in the nucleotides of the macromolecule: carbon–carbon, carbon–nitrogen, and carbon–
oxygen [18]. The main agent involved in these reactions is Pt, as described above. The
coating with Pt nanoparticles in the catalytic TiO2 facilitates the full combustion of unburnt
hydrocarbons in the exhaust to produce carbon dioxide, molecular nitrogen, and molecular
oxygen (Figure 5) [59]. These reactions catalyzed by Pt include carbon monoxide oxidation,
nitrogen oxides’ reduction into N2 and O2, and the combustion of hydrocarbons [91]:

2 CO + O2 → 2 CO2 (1)

2 NOx → N2 + x O2 (2)

2 Cx H2x+2 + (3x + 1)O2 → 2xCO2 + 2(x + 1)H2O (3)

The result of the breaking of these bonds is the formation of innocuous compounds
such as CO2, N2, O2, and H2O. In turn, the destabilization of the nucleotide bonds results
in damage to the genetic sequence, mainly in the form of punctual defects such as depurina-
tions, depyrimidinations, and cytosine deaminations, among others [92]. Such alterations
result in genotoxicity associated with genomic instabilities and/or epigenetic alterations
that activate the intrinsic DNA repair mechanisms of the cell [93].
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on 13 April 2023).

3.6. Apoptosis-like Death

When onco-bionanocatalysts interact with DNA, the catalytic effect of bond-breaking
occurs randomly over the entire structure of the genetic material at a high rate of action [52].
When such damage to the structure of the molecule is produced, repair mechanisms
become insufficient to meet the demand. According to the current paradigm, if DNA
repair fails, cells will die by activating one of the programmed death pathways, such as
apoptosis [94]. In other words, in a given tissue, cells with DNA damage that exceeds
their repair abilities are removed from the population. DNA damage often activates
extra-cellular death receptors (Fas, CD95, Apo-1) and/or intra-cellular mitochondrial
apoptotic pathways [95]. The Fas signaling pathway activates receptors, forms the DIS
complex (FADD, Fas-associated protein with a death domain, and procaspase-8 and -10),
and activates the caspase cascade, leading to DNA cleavage by CAD (caspase-activated
DNAase) and inactivation by proteolysis of intracellular proteins by caspase-3 and -7 [96].
The mitochondrial apoptotic pathway, on the other hand, is based on the regulation of
cytochrome c release from mitochondria to the cytoplasm and proapoptotic proteins such
as Bax (Bcl-2-associated X protein) and Bak (Bcl-2 homologous antagonist killer) [97]. It
is regulated by antiapoptotic proteins and proteins such as Bcl-2 (B-cell lymphoma) and
Bcl-XL (large B-cell lymphoma). When cytochrome c is released, apoptosomes containing
procaspase-9, Apaf-1 (apoptosis protease activator 1), and cytochrome c are formed. The
apoptosome, like the DIS complex, triggers the caspase cascade, which results in protein
and DNA inactivation.

Although the exact mechanism of apoptosis following DNA damage by onco-
bionanocatalysts is not known, several mechanisms may act at the same time, as has been
seen in several studies. The conclusive result, either way, is cell death. This allows for the
reduction in size of solid tumors and avoids the survival of potential metastatic cells in
the tumor bed. For this reason, approaches to the application of onco-bionanocatalysts
in solid tumors have been based mainly on the removal of the tumor by surgery and the
application of nanoparticles to the tumor bed.
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3.7. Biocompatibility of Onco-Bionanocatalysts

The primary concern for the development of any new substance with biological
uses is biosafety. Throughout the ages, onco-bionanocatalysts have undergone exten-
sive physicochemical characterization for their catalytic applications in selective bond
cleavage [73,98–101]. Additionally, numerous studies have been conducted to see if these
nanostructures have the ability to exert selective toxicity, which means that they can only af-
fect the genetic destabilization of cancer cells and/or pathogenic organisms, without affect-
ing the nearby healthy cells and tissues or inducing a host immune response [102–104]. This
property is referred to as biocompatibility [105]. In vitro, in vivo, and clinical trials have all
been used to study the biocompatibility of onco-bionanocatalysts, with positive outcomes.

The role of the oxide as a cytotoxic chemical buffering agent in healthy cells has been
investigated at the cellular level. For instance, Lopez et al. [106] found that by limiting
the drug’s internalization into healthy cells, the nanostructured TiO2 matrix decreased the
phototoxic impact of zinc phthalocyanine by up to 80% compared with the pure substance.
Similarly, the functionalized matrix of onco-bionanocatalysts without transition metal is
harmless to cells, as observed in various cell viability assays [56,107]. Remarkably, relative
harmlessness is also seen when the onco-bionanocatalyst is functionalized with transition
metals, since various studies have demonstrated a minor drop in the cell survival of healthy
lines when exposed to large concentrations of onco-bionanocatalysts [102,108].

Additionally, it has been demonstrated in both animal and human clinical trials that
the incorporation of bionanocatalysts in tissues as diverse as the brain, liver, skin, and lung,
among others, has no adverse effects on those tissues or the organism as a whole, supporting
what has been seen in vitro for healthy cell lines [63,104,109–114]. Interestingly, the surface
coating and inherent biocompatibility of the nanostructured matrix of bionanocatalysts
appear to be closely connected [115]. The biosafety of bionanocatalysts is supported by
these findings; nevertheless, additional research on more cell lines and tissues is required
to establish their selective toxicity and biocompatibility.

4. Clinical Case of GBM Treated with Onco-Bionanocatalysts

Based on the results obtained both in vitro and in vivo, numerous tests have been car-
ried out on patients with different tumor formations, with positive results. Special attention
has been paid to solid brain tumors due to their high incidence and poor prognosis. In the
following, to exemplify the selective chemotherapeutic power of onco-bionanocatalysts,
we present a case study of an adult patient with glioblastoma multiforme.

4.1. Clinical Story

A 53-year-old man presented to the local emergency department after experiencing
a generalized seizure lasting more than one minute; he had a right-sided weakness. In
retrospect, the patient had noticed more subjective “clumsiness” in the hand he could move
one month before the last seizure, but did not communicate this to his family or physician.
An MRI was obtained along with an EEG. The patient complained of constant level nine
headaches, seizures, and subacute progressive neurological deficits. The patient had had
antiepileptic treatment and two surgeries for GBM tumor remotion before this visit. After
examination, a Karnofsky Performance Score of 90 was assigned, with subtle right-sided
pronator drift and hemiplegia. Right-sided foot movements were his only findings on
physical examination. Dexamethasone was started since he had symptoms of elevated
intracranial pressure, headache, and papilledema.

The typical MRI appearance of glioblastoma is a mass lesion, often iso- to hyperatten-
uating (bright) compared with normal gray matter, with surrounding hypoattenuation by
infiltrating tumor and vasogenic edema [116]. Classically, contrast-enhanced MRI reveals a
centrally necrotic enhancing mass. Since vascular proliferation is a hallmark of glioblas-
toma, intra-tumoral hemorrhage is common and can be visualized on MRI, although it
is more frequently identified as microbleeds on susceptibility-weighted imaging (SWI)
MRI [117]. Calcification is uncommon in glioblastoma, but can occasionally be seen [118].
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On MRI, almost all glioblastomas are gadolinium-enhanced [119]. In the case of this patient,
MRI revealed the presence of a tumor in the right hemisphere (Figure 6).
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4.2. Treatment

The goals of surgery are tissue diagnosis, including molecular analysis of the tumor,
as well as immunohistochemistry for symptom freedom and improved tumor control [120].
Tissue diagnosis is the standard for truly inaccessible tumors (such as GBM). Surgery
for high-grade gliomas is generally associated with relatively low rates of major compli-
cations [121]: perioperative mortality was reported as 1.5% [122]. In summary, surgery
remains the first and very important treatment modality for newly diagnosed glioblastomas.
Its efficacy in optimizing overall survival is related to the extent of resection, and its safety
depends on several intraoperative adjuncts that allow precise localization of the tumor as
well as eloquent cortical areas [123].

Given the patient’s clinical history, a third surgery was recommended for tumor
resection, with the difference that, in this surgery, the tumor bed was infiltrated with 2 g of
onco-bionanocatalysts during craniotomy using a neuronavigator (Figure 7).

4.3. Histology Analysis

The histologic diagnosis, in this case, was a WHO grade IV astrocytoma (glioblas-
toma multiforme). It was an infiltrating astrocytoma showing areas of high cellularity
and vigorous mitotic activity with necrosis and microvascular proliferation (Figure 8).
WHO diagnostic criteria include the presence of cytologic atypia, mitotic activity, mi-
crovascular proliferation, and/or tumor necrosis [124]. Briefly, an infiltrating astrocytoma
exhibiting cytologic atypia alone, including elongated, irregular, hyperchromatic nuclei, is
considered WHO grade IV (high-grade astrocytoma). The presence of increased cellularity,
nuclear atypia, and mitotic activity warrants a WHO designation (anaplastic astrocytoma).
Endothelial cells were found mixed with smooth muscle cells/pericytes via hematoxylin-
eosin histology. Necrosis surrounded by tumor cells is characteristic of GBM [125]. The
classification of astrocytoma is based on the highest histologic classification. Because in-
filtrating astrocytomas can have considerable regional heterogeneity, especially towards
their infiltrating edge into the surrounding parenchyma, it is important to assess whether a
biopsy specimen is representative of the entire tumor by correlating histologic, clinical, and
radiologic findings [126].
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4.4. Results and Prognosis

After surgery, the patient exhibited right-sided weakness but then improved. The pa-
tient was put in physical therapy for the next few weeks. He had a very favorable improve-
ment, with no pain or secondary sequelae due to the infiltration of onco-bionanocatalysts.

The patient was kept under observation for the next 4 months. No other organ
involvement or secondary effects were observed, suggesting biocompatibility of the onco-
bionanocatalysts only for tumor tissues. At 4 months a new MRI was performed (not
shown) where no recurrence was observed. The patient presented a survival of 5 years
after the application of the treatment.

4.5. Other Evidences in Solid Tumors

The above study evidences the efficacy of onco-bionanocatalysts to eliminate remain-
ing cancerous tissues following tumor removal, without observing recurrences or side ef-
fects associated with the incorporation of the nanoparticles. This work contributes to the ex-
tensive research that has been developed so far on the application of onco-bionanocatalysts
as a potential treatment for solid brain tumors. In this line, López-Goerne et al. (2020) [63]
also demonstrated the efficacy of these nanostructures in the elimination of a pediatric
ependymoma tumor, where the treatment allowed survival of the patient without side
effects after tumor resection and the application of the onco-bionanocatalysts in the tumor
bed. Another solid tumor treated with Catalytic Nanomedicine with promising results
is cellular hepatocarcinoma. The research group has demonstrated tumor size reduction
without the occurrence of side effects [110,112], suggesting an intrinsic biocompatibility
of the nanostructures. Notably, these and other in vivo studies corroborate the results
previously evidenced in vitro concerning the biocompatibility and selectivity of onco-
bionanocatalysts [102]. In this study, their cytotoxic capacity against cervical-uterine and
prostate cancer lines was evidenced, without affecting a normal fibroblast line. Taken
together, this evidence supports biosafety in the use of these nanostructures.

5. Perspectives and Challenges

Although the usefulness of onco-bionanocatalysts has been shown both in GBM
and other types of tumors, the specific processes behind their activity have not yet been
fully elucidated since speculations about some events remain unverified. The biggest
unanswered question in anticancer therapies is the specific mechanism that gives onco-
bionanocatalysts their selectivity for cancer cells without harming neighboring healthy
tissues. Although there are proposals related to protein–ligand interactions that facilitate
the recognition and endocytosis of onco-bionanocatalysts, there are currently no studies
describing the surface-coating agent responsible for this recognition or on the type of
membrane receptor particular to cancer cells whose interaction with the ligand results
in the uptake of the NPs. A multidisciplinary investigation is now being conducted to
examine this interaction, identify the receptors implicated, and determine the endocytosis
pathways that are activated as a result of the contact. To clarify the range of effects that these
onco-bionanocatalysts can have (especially concerning the most aggressive and common
cancers), as well as confirm their biocompatibility with the most crucial healthy tissues,
it is also necessary to increase the number of studies in various cell lines, both cancerous
and healthy.

It is also necessary to further investigate new routes of administration, biodistribution
tempering, and the passage of onco-bionanocatalysts through biological barriers, such as
the blood–brain barrier. In the present study, the in situ administration of the NPs allows
them to have a 100% biodistribution in the tumor bed, which allows a reduction in the
concentration required in the application. However, in the case of brain tumors, infiltration
of the tumor bed requires quite aggressive routes, such as surgery. In these routes, the
transport mechanism hypothesis is based on the enhanced permeability and retention
effect, which describes an increased concentration of particles in the nanoscale (such as
NPs and liposomes) in the tumor as compared with nearby healthy tissues [127]. This
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hypothesis proposes that the bioavailability of onco-bionanocatalysts in the tumor might
be linked to the tumor microenvironment, which would promote their absorption in the
tumor surroundings. However, in these alternatives, the different transport steps before
the localization of the onco-bionanocatalysts in the tumor hinder the permanence and
interaction with the target site, leading to the use of high concentrations of the NPs [128].
Furthermore, there is a chance of lung, liver, and kidney accumulation even when NPs
are regulated appropriately to lengthen the retention duration and half-life, and even
if the biocompatibility of onco-bionanocatalysts has been proven. For instance, lung
deposition of other types of NPs with inflammatory, oxidative, and cytotoxic effects has
been observed [129]. Therefore, research is needed to optimize the bioavailability of onco-
bionanocatalysts administered through systemic pathways. In this sense, the above could be
improved by surface-coating the nanostructures according to tumor type and location [130]
so that their systemic administration can be optimized, and the concentrations required for
the necessary concentration to reach the target site can be reduced. Likewise, the ability
of onco-bionanocatalysts to cross the blood–brain barrier is unknown so far, so before the
use of systemic routes as methods of administration of onco-bionanocatalysts for brain
tumors, it is necessary to study this phenomenon and, failing that, to venture into the
surface-coating of NPs for their blood–brain transport.

Finally, scale-up synthesis, equal optimization, and performance projections are onco-
bionanocatalysts’ technological hurdles. They are extremely important in ensuring these
NPs’ clinical success. The onco-bionanocatalysts utilized in in vivo and in vitro investi-
gations are often manufactured in small batches, and scale-up for enormous amounts is
frequently not practical due to equipment and other factors. The best lead clinical prospects
in animal models are not always systematically conceived and optimized. To get around
this, we can employ specific techniques that can evaluate a variety of nanoformulations
and pick one optimum formulation through careful iteration [131–133]. Such impacts,
meanwhile, should not be immediately added to human testing. It is challenging to predict
the effectiveness and performance of NPs, and it is impossible to reproduce in vivo findings
in human trials. Experimental data and theoretical or computational modeling can be used
to create an environment and tissue that mimic physiological conditions.

6. Conclusions

Onco-bionanocatalysts are catalytic nanostructures capable of selectively breaking
bonds in genetic material, allowing its destabilization. Such damage results in the activation
of cell death through apoptosis. Due to their surface-coating, these nanoparticles can
identify and internalize cancer cells without interacting with healthy cells, a property that
allows them to serve as a potential new treatment for solid tumors without altering the
surrounding tissues and, therefore, without associated side effects. In the present work,
the main hypotheses behind the selective surface-coating of these onco-bionanocatalysts
were presented. Although there are still gaps in knowledge concerning their mechanisms
of action, their effectiveness has been demonstrated in countless studies, as evidenced in
the treated glioblastoma multiforme patient. The application of the treatment improved the
patient’s survival, without generating side effects and preventing tumor recurrence. The
research will continue to resolve the key questions that remain to be answered, as described
in the Perspectives and Challenges section. Once the mechanisms of action have been fully
elucidated, onco-bionanocatalysts could become a highly efficient and safe alternative for
the treatment of localized solid tumors.
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