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Abstract: Electro-optic modulators (EOMs) are pivotal in bridging electrical and optical domains,
essential for diverse applications including optical communication, microwave signal processing,
sensing, and quantum technologies. However, achieving the trifecta of high-density integration, cost-
effectiveness, and superior performance remains challenging within established integrated photonics
platforms. Enter thin-film lithium niobate (LN), a recent standout with its inherent electro-optic
(EO) efficiency, proven industrial performance, durability, and rapid fabrication advancements. This
platform inherits material advantages from traditional bulk LN devices while offering a reduced
footprint, wider bandwidths, and lower power requirements. Despite its recent introduction, com-
mercial thin-film LN wafers already rival or surpass established alternatives like silicon and indium
phosphide, benefitting from decades of research. In this review, we delve into the foundational
principles and technical innovations driving state-of-the-art LN modulator demonstrations, exploring
various methodologies, their strengths, and challenges. Furthermore, we outline pathways for further
enhancing LN modulators and anticipate exciting prospects for larger-scale LN EO circuits beyond
singular components. By elucidating the current landscape and future directions, we highlight
the transformative potential of thin-film LN technology in advancing electro-optic modulation and
integrated photonics.

Keywords: electro-optic modulator; lithium niobate; waveguide; integrated nanophotonics

1. Introduction

High-speed electro-optic modulation is fundamental to numerous critical applications
spanning optical communication [1], microwave photonics [2], computing [3], frequency
metrology [4,5], and quantum photonics [6,7]. Various methods have been employed for
electro-optic modulation, including carrier plasma dispersion [8], electro-absorption [9],
and the Pockels effect [5]. The latter is particularly compelling due to its ability to of-
fer ultrafast and pure refractive-index modulation across an exceptionally broad optical
spectrum without introducing additional dissipation loss [5]. Prominent electro-optic
modulators have been widely achieved in various platforms including silicon [8], silicon
nitride [10], gallium arsenide [11], indium phosphide [12] and aluminum nitride [13]. De-
spite significant advancements photonic integration in these platforms, they have not yet
demonstrated the capability to simultaneously realize ultralow propagation loss, rapid and
low-loss optical modulation, and efficient all-optical nonlinearities. For example, although
large-scale and low-cost photonic chips with silicon photonics have been commercially
available due to the mature complementary metal–oxide–semiconductor (CMOS) technol-
ogy, the lack of intrinsic electro-optic effect in silicon prevents achieving high bandwidth
and low power consumption. Lithium niobate (LiNbO3, LN) stands out as one of the
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most prominent electro-optic Pockels materials, extensively utilized in telecommunica-
tions. Recently, thin-film monolithic LN has emerged as a promising platform, as this
platform combines low-loss, high-quality photonic integration with the robust Pockels
effect, enabling superior modulation performance [1]. With its potential to serve as an
outstanding medium for photonic integrated circuits and future photonic interconnects,
thin-film monolithic LN holds significant promise for advancing electro-optic modulation
and integrated photonics [14].

This review endeavors to provide a comprehensive overview of integrated electro-
optic modulators utilizing thin-film lithium niobate (LN), spanning from foundational prin-
ciples to cutting-edge developments. Among LN’s remarkable properties, the electro-optic
(EO) effect stands out as particularly enticing. This effect facilitates the direct integration of
optical and RF fields, enabling a plethora of functionalities including optical modulation,
sideband generation, and frequency shifting within the gigahertz range. The implemen-
tation of low-loss ridge waveguides coupled with closely spaced microwave electrodes,
robust field confinement, and high-quality resonators in thin-film LN has significantly
enhanced the EO interaction strength. Recent advancements have witnessed a surge in
research on EO modulators in LN, leveraging both non-resonant and resonant optical
structures to achieve broader microwave bandwidths and lower half-wave voltages. Ex-
ploiting this efficient EO interaction has also led to the development of EO frequency combs,
holding promise for applications in spectroscopy and topological photonics. In the realm
of quantum technologies, EO-based frequency conversion emerges as a compelling avenue
to bridge microwave and optical photons, with potential implications for superconducting
quantum systems and long-haul optical networks. Furthermore, the utilization of time
modulation facilitates the exploration of synthetic dimensions in the frequency domain.
This section comprehensively covers EO optical modulators, EO frequency comb sources,
coupled-ring modulators (photonic molecules), cavity EO for quantum transduction, and
EO-modulation-based synthetic photonics, elucidating their significance and potential
contributions to the field.

2. Photonic Properties of Thin-Film Lithium Niobate

LN boasts a wide transparency window spanning from 350 nm to 5 µm, encompassing
the visible, near-infrared, and mid-infrared wavelength ranges. With a relatively large
refractive index (~2.2 at 1550 nm), LN facilitates the formation of high-index-contrast
waveguides on various substrates (see Figure 1), including amorphous and crystalline ones
such as SiO2 or sapphire. Its high Curie temperature (~1210 ◦C) ensures the stability of its
ferroelectric phase, rendering it compatible with a diverse array of fabrication processes and
operating conditions. In contrast to Si and SiNx, LN processes large second-order nonlinear
coefficients with d33 = 27 pm/V and remarkable Pockels coefficient (r33 = 31 pm/V), which
makes LN-based modulators at the pivotal components in optical communication networks.
The comparison of photonic properties between LN and other popular materials is listed in
Table 1.

Traditional waveguides in bulk LN have historically relied upon two primary fabrica-
tion methods: titanium (Ti) in-diffusion and the proton exchange technique. However, the
low optical index contrast between bulk LN waveguide and surroundings is a significant
limitation for integration (Figure 1a), which leads to inadequate optical confinement with
the large mode size and large bending radius in the millimeter range. Consequently, this
weak optical confinement in bulk LN poses challenges in dense integration, microresonators
and dispersion engineering.
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Figure 1. Optical mode distribution in LN waveguides. (a) Mode profile in bulk LN with Ti in-
diffusion waveguide. (b) Mode profile in waveguide in thin-film LN. Adapted from [15].

Table 1. Summary of photonic properties of representative materials for modulators.

Material Optical Refractive
Index

EO Coefficient
(pm/V)

Second-Order Nonlinear
Coefficient (pm/V) RF Dielectric Constant

LiNbO3
2.21 (o)
2.14 (e)

r13 = 9.6
r22 = 6.8
r33 = 30.9
r51 = 32.6

d31 = −4.3
d33 = −27.0

d22 = 2.1

ε11,22 = 44
ε33 = 27.9

Si 3.48 0 0 11.7

SiO2 1.44 0 0 3.9

Si3N4 2 0 0 7.5

AlN 2.12 (o)
2.16 (e)

r13 = 0.67
r33 = −0.59

d31 = −1.6
d33 = −4.7 8.6

GaAs 3.38 r41 = 1.43 d36 = 170 12.9

LiTaO3
2.119 (o)
2.123 (e)

r13 = 8.4
r22 = −0.2
r33 = 30.5
r51 = 20

d31 = 0.85
d33 = 13.8

ε11,22 = 38.3
ε33 = 46.2

Compared to bulk LN counterparts, thin-film LN platforms not only retain the ex-
cellent material properties of LN but also offer significantly improved light confinement,
integrability, and compactness due to a substantial increase in refractive index contrast
(Figure 1b). This merit is particularly noteworthy as it equips the LN platform with a
comprehensive array of high-performance devices, including broadband frequency comb
sources, ultra-high-Q microresonators, programmable filters, efficient frequency convert-
ers/shifters, and low-loss delay lines. Importantly, these devices hold the potential for
integration with high-linearity electro-optic (EO) modulators on the same photonic chip,
enabling the realization of complex microwave photonics (MWP) functions. Notably, a
multitude of miniaturized and high-performance thin-film LN modulators have already
been demonstrated, showcasing ultra-high bandwidths surpassing 110 GHz, which works
with CMOS-compatible drive voltages, and lossless waveguides. Recently, high-quality
thin-film LN-on-insulator (LNOI) wafers were produced using “Smart-Cut” technology,
which is commonly employed for the fabrication of Silicon-On-Insulator (SOI) wafers. The
fabrication of LNOI using Smart-Cut technology is illustrated in Figure 2. Starting with a
high-quality LN bulk wafer, a damaged interplane is first defined through helium (He+) or
hydrogen (H+) ion implantation. Simultaneously, the SiO2/Si substrate wafer is prepared
with an adhesive layer. Then, the bulk LN with a damaged layer is bonded to the substrate
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wafer and followed by the thermal annealing process to split the LN substrate along the
damaged layer, leaving thin-film LN bonded to SiO2/Si substrate. The subsequent anneal-
ing process is utilized to alleviate crystal defects induced by the ion collision, while the
surface smoothness is improved by the chemical mechanical polishing (CMP).
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Figure 2. LNOI wafer fabrication using Smart-Cut technology.

3. Etching of LN Waveguides

The LN waveguides can be patterned through mechanical polishing, wet etching and
dry etching. As shown in Figure 3, the chemical mechanical polishing (CMP) process
basically involves four steps [16]: chromium deposition; mask patterning through laser
ablation or lithography; CMP polishing; chromium removal with post polishing. LN
waveguides with sub-nanometer roughness yield an optical loss of 0.027 dB/cm, enabling
the realization of high-density photonic integration. However, LN waveguides fabricated
through CMP are accomplished with shallow sidewalls, imposing a challenge on the
bending radius. Wet etching with a solvent consisting of H2O2, NH4OH and H2O has
also been employed to fabricate LN waveguides [17,18]. As shown in Figure 3i,j, high-
quality LN waveguides with smooth sidewalls have been demonstrated using wet etching
technology, which yields an intrinsic quality factor as high as 107 and a large EO bandwidth
of 110 GHz. The advantages of wet etching technology lie in their cost-effectiveness, high
reproducibility and high efficiency, which also avoid EBL-induced sidewall roughness from
photoresist. However, given the crystal anisotropic property of LN, the wet etching process
must be controlled carefully to get rid of crystal defects, which will be further amplified
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during etching. The anisotropic etching rate of wet etching limits its capability to fabricate
symmetrical and high aspect ratio LN waveguides.
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waveguides through CMP. (e) Diagram of CMP. (f–h) Characterization of CMP fabricated LN waveg-
uides. (i,j) Results of LN waveguides through wet etching. (a–h) Adapted from [16]. (i) Adapted
from [17]. (j) adapted from [18].
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In contrast to silicon and silicon nitride platforms, the absence of a suitable reactive ion
etching recipe for LN opens up challenges for dry etching. The non-volatile lithium fluoride
(LiF) redeposition is formed during the fluorine-based dry etching of LN, which stops
further etching and results in sidewall roughness. To avoid LiF redeposition, Ar+ plasma-
based physical dry etching is preferred for LNOI structure fabrication. Compared to CMP
and wet etching, the etch depth can be well controlled with a symmetric cross-section. There
are several challenges associated with the physical dry etching of LN. First, considering
the low selectivity of etched materials and available photoresists, hydrogen silsesquioxane
(HSQ) [6,19–24], Zeon electron-beam positive-tone resist (ZEP) [25], CSAR [26], SU8 [27],
as well as hard marks including Cr and Si are commonly used. The second challenge
is nonvertical sidewalls with an angle ranging from 40◦ to 80◦, which results from LN
redeposition during dry etching. This redeposition and other contaminants can be removed
by the wet etching process. The domain optical loss in Ar+ etched LN waveguides is
attributed to sidewall roughness. To improve the sidewall roughness, the dry etching
parameters have to be optimized. LN waveguides with a low loss of 0.1 dB/cm have been
demonstrated by several groups, which proves that thin-film LN is a reliable photonic
platform. Alternatively, the sidewall roughness can also be reduced by the CMP after the
dry etching of LN [28].

4. Non-Resonant Electro-Optic Modulators Based on Thin-Film LN

EO modulators, converting electrical waves into light waves, play a pivotal role in
current communication systems. Among various candidates, LN has been widely preferred
for host material of modulators due to its substantial EO coefficient, chemical stability,
and low RF and optical losses. While bulk LN-based modulators have been commercially
available for decades, transitioning EO modulators into thin-film platforms brings up
unique opportunities for advanced photonic integration [29–31]. The essential of the LN
electro-optic modulator relies on the modification of the refractive index of LN crystal by
an internal electric field. Figure 4 shows typical EO modulators in x- or y-cut LN. The
simplest type is a phase modulator with only one Pockels cell (Figure 4a), where the phase
delay of transmitted light is induced by the external voltages. The alignment between
the polarization of input light and extraordinary axes of LN crystal is required for robust
modulation efficiency. Combined with two-phase modulators as shown in Figure 4b, typical
Mach–Zehnder interferometer (MZI) based modulators consist of two arms with opposite
polarities and a coplanar waveguide (CPW) electrode, yielding efficient modulation of
optical signals in accordance with microwaves.
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modulated by the applied voltages. (b) MZI intensity modulator, consisting of two phase modulators
experiencing opposite phase changes. G: Ground electrode, S: Signal electrode.

In order to reduce the optical loss of waveguides and bypass the challenges of LN
direct dry etching, the research focus has gradually shifted towards hybrid/heterogeneous
integrated devices based on the LNOI platform. In 2013, the research group led by S.
Fathpour demonstrated an electro-optic modulator based on heterogeneously integrated
silicon nitride ridge waveguides on the LNOI platform [32]. The modulator operated with
a half-wave voltage of 6.8 V and a Vπ·L modulation efficiency of 4 V·cm, significantly
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exceeding typical commercial LN modulators. By optimizing the traveling-wave electrode
of this heterogeneous integrated structure, the same research group achieved a half-wave
voltage of 3.9 V and a 33 GHz operating bandwidth on the LNOI platform in 2016, with an
optical transmission loss of 1.2 dB/cm [33]. This enhancement extended the significantly
improved DC modulation efficiency to the radio frequency range (see Figure 5a). Further-
more, by employing a reverse ridge design in LN, the modulator achieved a 110 GHz
operating bandwidth [34], albeit with a high transmission loss of up to 7 dB/cm. In 2020,
Xinlun Cai’s team from Sun Yat-sen University proposed a hybrid silicon/LN waveguide
structure on a silicon-based chip (see Figure 5b), capitalizing on the low-cost and high flexi-
bility of silicon combined with LN’s excellent electro-optic properties [35]. They achieved
modulation frequencies exceeding 70 GHz and a modulation efficiency of 2.2 V·cm using
the high-performance modulation of the upper thin-film LN waveguide. Simultaneously,
they utilized the lower-layer high-quality silicon waveguide for low-loss optical trans-
mission, with an insertion loss of less than 2.5 dB. Efficient optical transmission between
waveguides was achieved through vertical adiabatic couplers. Additionally, the device
exhibited high linearity and integration, with a switch modulation rate of up to 100 Gbit/s
and an amplitude modulation rate of 112 Gbit/s. In 2021, the research group led by Yi
Luo and Bing Xiong from Tsinghua University designed a SiO2-LNOI hybrid waveguide
with an electrode spacing of only 3 µm [36]. By adjusting the SiO2 thickness, they achieved
the phase matching between microwave and optical waves, enabling a half-wave driving
voltage of 3.4 V and demonstrating a modulation bandwidth of up to 67 GHz within a
5 mm modulation region. Also, in the same year, Yonghui Tian’s team from Lanzhou Uni-
versity prepared a silicon nitride waveguide on the LNOI platform, as shown in Figure 5c.
This modulator fully utilized LN’s excellent electro-optic modulation performance while
avoiding dry etching of LNOI, achieving a 3 dB modulation bandwidth of 30 GHz and a
modulation efficiency of 2.24 V·cm, with an extinction ratio of approximately 20 dB, and
a switch key-controlled modulation speed of 80 Gb/s [37]. Building upon Si-LN hetero-
geneous integration, Professor Liu’s group from Zhejiang University further improved
the performance of the modulator by employing a capacitive load-type traveling-wave
electrode design based on substrate trenching, achieving a half-wave voltage of 1.7 V and a
working bandwidth of over 67 GHz [38]. Meanwhile, heterogeneous integrated detectors
and lasers based on the LNOI platform are also gradually developed [39], as summarized in
Table 2. Heterogeneous integrated LNOI modulators have demonstrated high-performance
electro-optic modulation. However, heterogeneous/hybrid integration faces a series of
challenges such as material mismatch, high optical loss, and high packaging costs. Ad-
dressing these issues requires in-depth research in materials science, photonic chip design,
manufacturing processes, and packaging technologies to achieve high-performance, stable,
and cost-effective photonic chip heterogeneous integration.

Table 2. Performance of heterogeneous/hybrid LN modulators.

Material Platforms Vπ·L (V·cm) 3 dB Bandwidth
(GHz)

Optical Propagation
Loss (dB/cm)

LN on SOI [35] 2.55 70 0.98

Sulfide/LN [40] 3.8 1 1.2

Ta2O5/LN [32] 4 - 5

SiN on LN [41] 3 8 7

SiN on LN [33] 3.1 33 -

SiN on LN [42] 1.925 - <2.25

LN on SiN [43] 6.67 30.55 1.6

LN on SOI [44] 6.7 >106 0.6
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Figure 5. Representative types of nonresonant thin-film LN modulators. (a) Heterogeneously
integrated Si3N4/LN modulators with Si3N4 as guiding waveguides on top of thin-film LN. (b) Het-
erogeneously integrated LN modulator on silicon on insulator (SOI) platform. (c) Low loss Si3N4/LN
modulator. (d) Monolithic LNOI monolithic modulator based on Mach–Zehender interferometer
(MZI). (e) Coherent in-phase and quadrature (IQ) modulator on LNOI platform with a working
bandwidth over 70 GHz at 7.5 mm length. (f) LNOI modulator with structured electrodes, showing
a bandwidth of 50 GHz with a Vπ of 1.3 V in a 20 mm device. (a) Adapted from [33], (b) adapted
from [35], (c) adapted from [37], (d) adapted from [1], (e) adapted from [45], (f) adapted from [46].
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The scheme of electro-optic modulators based on monolithic integration on the LNOI
wafer has become a hot research topic due to its scalability, and it has significant applications
in fields such as telecommunication systems and optical networks, leading to numerous
studies and applications in this area. With the breakthrough in low-loss LNOI waveguide
etching technology [19,47,48], single-chip LNOI modulators have demonstrated higher
modulation efficiency, while microwave design and device fabrication have become more
convenient. In 2018, Harvard University demonstrated a single-drive high-performance
LNOI electro-optic modulator by optimizing the traveling-wave electrode design and LN
etching process (see Figure 5d). The half-wave voltage of the modulator was only 1.4 V,
and the 3 dB operating bandwidth reached 45 GHz, with an internal optical transmission
loss of approximately 0.5 dB [1]. In 2020, Xinlun Cai’s team from Sun Yat-sen University
demonstrated a more complex IQ modulator for coherent communication on a single-chip
LNOI platform (see Figure 5e). The performance level of each IQ branch was similar to that
of a single modulator. The modulation rate of the device reached 320 Gbit/s, far exceeding
that of commercial LN modulators [45]. To further improve the operating bandwidth of
LNOI modulators, researchers have proposed more complex designs for the modulator’s
electrode structure. To overcome the dominant Ohmic losses in transmission line electrodes,
several design concepts are being explored, including thick electrodes and asymmetric
electrodes. For instance, as shown in Figure 5f, researchers at HyperLight in the United
States designed an electrode structure with periodic slotting slow waves on the LNOI plat-
form [46]. Over a modulation length of centimeters, a wide range of speed and impedance
matching was achieved, with a 3 dB modulation bandwidth reaching 110 GHz, breaking
through the voltage-bandwidth limitation. When the frequency approaches or exceeds
100 GHz, other RF loss sources should also be considered, including linear dielectric ab-
sorption loss and substrate radiation loss. In LNOI modulators, the substrate radiation loss
is significantly suppressed due to the reduced electrode gap, thereby efficiently reducing
microwave losses. Table 3 summarizes the monolithic LNOI modulator performance. Bulk
LN modulators face strong attenuation from substrate radiation above 70 GHz, while LNOI
modulators have demonstrated modulation rates of up to 500 GHz. Compared to bulk LN
modulators, LNOI modulators also have advantages in size. The size of LNOI modulators
is limited by Vπ·L, i.e., the size requirement to achieve a specific driving voltage. Currently,
the Vπ·L of LNOI modulators is 1.5–3 V·cm. Significantly improving Vπ·L without signif-
icantly increasing optical and microwave losses poses a significant challenge. For LNOI
modulators, the Vπ of a modulator with a length of 5 mm is approximately 4 V, but its
bandwidth exceeds 100 GHz. In contrast, the Vπ of a silicon modulator with the same
size is approximately 6.3 V, with a bandwidth of 30 GHz and a phase shifter loss of over
5 dB. Therefore, to fully exploit the low-driving-voltage characteristics of LNOI modulators
(such as Vπ is approximately 1 V), the electrode length needs to reach 20 mm [42]. Due to
the spatial constraints of Vπ·L improvement, to achieve a balance between bandwidth and
voltage performance, the effective region length of MZI-type LNOI modulators may range
from the millimeter to low centimeter.

Table 3. Performance of monolithic LNOI modulators.

Modulator Type Vπ·L (V·cm) 3 dB Bandwidth
(GHz)

Optical Propagation
Loss (dB/cm)

Intensity Modulator [46] 2.7 175 <0.5

Intensity Modulator [49] 3.12 56 -

Intensity Modulator [1] 2.2 100 0.3

Intensity Modulator [50] 2.2 20 0.5

Intensity Modulator [51] 1.748 47 7

Intensity Modulator [52] 3.5 >45 0.5

IQ modulator [45] 2.47 48 0.15
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5. Resonant Electro-Optic Modulators Based on Thin-Film LN

With the rapid advancement of micro-nano device processing technology, the size of
detectors and laser chipsets in large-scale photonic links has reached the micron level, while
the size of direct-waveguide modulators based on MZI is usually in the millimeter range
(over 5 mm), greatly limiting the development of miniaturization of photonic integrated
circuits. At the same time, the transmission of light in long-distance waveguides will lead
to phase mismatch, requiring additional phases to compensate for the phase difference
between different devices, further increasing the size of the devices. To further enhance
the optoelectronic coupling, improve the efficiency of electro-optic modulators, and reduce
device size, resonant modulators based on Bragg gratings, photonic crystals, and micro-
rings provide a new approach for miniaturizing devices. By optimizing the design of
the resonator, stronger local enhancement effects can be achieved, thereby enhancing
the interaction between light and electric field, and significantly improving modulation
efficiency, thus facilitating compact optical modulation in small-sized devices. Resonant
modulators can achieve high modulation efficiency in small sizes because the optical
field circulates within the device and interacts multiple times with the electric field from
external voltages.

5.1. Bragg Gratings

An optical Bragg grating is a transparent device characterized by a periodic mod-
ulation of the refractive index. This modulation results in a substantial reflectance, or
reflectivity, within a specific wavelength range, known as the bandwidth, centered around
a particular wavelength that satisfies the Bragg condition [53,54]:

λB = 2Λne f f

Here, λB represents the vacuum wavelength of light, ne f f denotes the average refrac-
tive index of the medium, and Λ stands for the grating period. When this condition is
satisfied, the wavenumber of the grating aligns with the discrepancy between the wavenum-
bers of the incident and reflected waves.

5.2. Microring Resonator

A typical optical microring resonator consists of a closed loop waveguide and a
coupling mechanism to couple in/out the light. Resonance occurs when the waves traveling
within the loop accumulate a phase shift equivalent to an integer multiple of 2π, resulting in
constructive interference and resonance within the cavity. Assume that the reflections from
the ring loop to the bus waveguide are negligible, the transmitted light field is expressed
as follows:

Ethrought

E0
= ej(π+ϕ) a − re−jϕ

1 − raejϕ

Here, ϕ = βL is the phase shift after one loop, L denotes the microring length, β is the
propagation constant of the supported modes, and a represents the transmission amplitude
and relates to the loss: a2 = e−αL. r is the self-coupling coefficient. The pass transmission of
the bus waveguide is then written as:

Tthrough =
a2 − 2ra cos ϕ + r2

1 − 2ra cos ϕ + (ra)2

The ring is in resonance when the phase ϕ is an integer multiple of 2π. Then, the
frequency of the light fits an integer number of times inside the effective length of microring:

λres =
ne f f L

m
, m = 1, 2, 3 . . .
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The transmission is zero at critical coupling when the coupled light is totally attenuated
inside the microring with r = a. Microring resonators serve as fundamental elements in
high-index contrast photonic platforms, facilitating on-chip field enhancement, spectral
filtering, and rapid modulation of optical signals. Over the last decade, microring resonators
have been effectively showcased in various platforms, notably including LNOI.

Yaocheng Shi’s group utilized the principle of photonic bound states in the continuum
in continuous media to fabricate photonic crystal nano-cavities on the LNOI platform (see
Figure 6a,b). The device length is approximately 100 µm, with a quality factor exceeding
10,000. Due to the use of photoresist as the waveguide, there is no need to etch lithium
niobate, significantly reducing processing difficulty [55]. Katia’s group proposed a slow-
light structure of Bragg grating waveguide, as shown in Figure 6c, achieving a transmission
bandwidth as narrow as 8.8 pm using phase-shifted Bragg grating filters [56]. Qiang
Lin’s group at the University of Rochester designed and fabricated high-quality factor
one-dimensional photonic crystal nano-resonators on LNOI (see Figure 6d). The device has
a bandwidth of 17.5 GHz, with an electro-optic mode volume of only 0.58 µm3, achieving
miniaturized modulators at the wavelength scale level on the LNOI platform for the first
time [57]. Regarding micro-ring modulators, Marko Loncar’s team at Harvard University
fabricated micro-ring electro-optic modulators on LNOI, achieving modulation bandwidths
exceeding 10 GHz [58]. Liu Liu’s group at Zhejiang University introduced the MZI structure
into the coupling region of micro-ring modulators, further improving their bandwidth
while retaining the advantages of small half-wave voltage and device size [59]. Table 4
summarizes the performance of resonant LNOI modulators. Resonant LNOI modulators are
typically limited by the trade-off between modulation efficiency and operating bandwidth,
making it difficult to achieve high-speed, high-efficiency electro-optic modulation. They
are usually only used for applications with high-quality factor requirements and relatively
low bandwidth requirements, such as optical switch networks [60] and optical beam
polarization [61].

Table 4. Performance of resonant LNOI modulators.

Modulator Type Materials Modulation
Efficiency (pm/V)

Loaded Quality
Factor

Microring Modulator [27] LNOI 1.05 4 × 103

Microring Modulator [62] LN on SOI 1.7 1.7 × 104

Microring Modulator [63] LN on SOI 12.5 1.1 × 104

Microring Modulator [64] LN on SOI 3.3 1.2 × 105

PhC Modulator [65] Si on bulk LN ~2 1.2 × 105

Racetrack Modulator [58] LNOI 7 5 × 104

Microring Modulator [66] LNOI 4 2 × 106

Microring Modulator [67] SiN on LN 1.8 ~9 × 104

PhC Modulator [57] LNOI 16 1.34 × 105

Microring Modulator [68] LNOI 2.15 2.8 × 103
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Figure 6. Resonant LNOI modulators. (a,b) Bragg gratings modulator based on the xcut LNOI
platform. (c) MZI modulator based on slow-light Bragg gratings on two arms, showing large
modulation efficiency Vπ·L = 0.67 V·cm and a compact footprint of 0.3 mm × 1.2 mm. (d) PhC
modulator on LNOI platform, showing a modulation bandwidth of 17.5 GHz with a tiny volume of
0.58 µm3. (a,b) Adapted from [55], (c) adapted from [56], (d) adapted from [57].

6. Conclusions

In conclusion, we have demonstrated that thin-film LN modulators offer a promising
solution for next-generation telecommunication systems and optical networks, largely due
to their comprehensive performance in power consumption, bandwidth, and compact
size, which are critical metrics for large scale photonic integrations. Despite not being the
smallest in footprint or possessing the highest electro-optic efficiency compared to other
promising material platforms like polymers, plasmonics, or barium titanate, LN offers well-
balanced material properties and adequate integrability with decades of industry-proven
operation. Next-generation photonic integration circuits require ultrahigh bandwidth, low
driven voltage, and compact footprint, all of which thin-film LN is highly qualified. While
intense research is ongoing to determine the most effective way to integrate thin-film LN
with the rest of the photonics modality when considering techno-economic constraints,
the outlook for fully realized thin-film LN circuits is unparalleled. The combination of
low-loss passive optics, electro-optic, acousto-optic, and nonlinear optic functionalities on
a monolithic material platform provides an incredibly powerful toolbox that we are only
just beginning to explore.
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7. Future Advancements
7.1. Fabrication Technologies

Future advancements in material preparation, such as the production of less expensive
and higher quality wafers or the utilization of stoichiometric LN, hold the potential to
significantly enhance device performance. Likewise, improvements in device fabrication
processes, including etching, poling, doping, and annealing, will play a crucial role. Addi-
tionally, advancements in system integration, particularly in optical and radio frequency
(RF) packaging, are essential for realizing immediate enhancements in device performance.

7.2. Loss Control

Further studies on photorefraction, charge accumulation, power handling, and loss
mechanisms are urgently needed. These investigations are essential for a wide range of
applications, including the achievement of extreme optical nonlinearities and the operation of
electro-optic (EO) devices at high power, in harsh environments, and with long-term stability.

7.3. Linearity

The nonlinearity of the LN modulator arises when driven by large microwave sources,
thus challenging the signal integrity in analog datalinks and multilevel photonic systems.
Future linearity improvements include link loss control and complex linear modulation
such as ring-assisted MZI [69] and cascaded MZI [70] in the LNOI platform.
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niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 2018, 562, 101–104. [CrossRef]
2. Marpaung, D.; Yao, J.; Capmany, J. Integrated microwave photonics. Nat. Photonics 2019, 13, 80–90. [CrossRef]
3. Boes, A.; Chang, L.; Langrock, C.; Yu, M.; Zhang, M.; Lin, Q.; Loncar, M.; Fejer, M.; Bowers, J.; Mitchell, A. Lithium niobate

photonics: Unlocking the electromagnetic spectrum. Science 2023, 379, eabj4396. [CrossRef] [PubMed]
4. Saravi, S.; Pertsch, T.; Setzpfandt, F. Lithium Niobate on Insulator: An Emerging Platform for Integrated Quantum Photonics.

Adv. Opt. Mater. 2021, 9, 2100789. [CrossRef]
5. Li, M.; Chang, L.; Wu, L.; Staffa, J.; Ling, J.; Javid, U.A.; Xue, S.; He, Y.; Lopez-Rios, R.; Morin, T.J.; et al. Integrated Pockels laser.

Nat. Commun. 2022, 13, 5344. [CrossRef] [PubMed]
6. Chen, P.K.; Briggs, I.; Hou, S.; Fan, L. Ultra-broadband quadrature squeezing with thin-film lithium niobate nanophotonics. Opt.

Lett. 2022, 47, 1506–1509. [CrossRef] [PubMed]
7. Zhu, D.; Shao, L.; Yu, M.; Cheng, R.; Desiatov, B.; Xin, C.J.; Hu, Y.; Holzgrafe, J.; Ghosh, S.; Shams-Ansari, A.; et al. Integrated

photonics on thin-film lithium niobate. Adv. Opt. Photonics 2021, 13, 242–352. [CrossRef]
8. Reed, G.T.; Mashanovich, G.; Gardes, F.Y.; Thomson, D. Silicon optical modulators. Nat. Photonics 2010, 4, 518–526. [CrossRef]
9. Liu, M.; Yin, X.; Ulin-Avila, E.; Geng, B.; Zentgraf, T.; Ju, L.; Wang, F.; Zhang, X. A graphene-based broadband optical modulator.

Nature 2011, 474, 64–67. [CrossRef]
10. Alexander, K.; George, J.P.; Verbist, J.; Neyts, K.; Kuyken, B.; Van Thourhout, D.; Beeckman, J. Nanophotonic Pockels modulators

on a silicon nitride platform. Nat. Commun. 2018, 9, 3444. [CrossRef]
11. Donnelly, J.; DeMeo, N.; Ferrante, G.; Nichols, K.; O’Donnell, F. Optical guided-wave gallium arsenide monolithic interferometer.

Appl. Phys. Lett. 1984, 45, 360–362. [CrossRef]

https://doi.org/10.1038/s41586-018-0551-y
https://doi.org/10.1038/s41566-018-0310-5
https://doi.org/10.1126/science.abj4396
https://www.ncbi.nlm.nih.gov/pubmed/36603073
https://doi.org/10.1002/adom.202100789
https://doi.org/10.1038/s41467-022-33101-6
https://www.ncbi.nlm.nih.gov/pubmed/36097269
https://doi.org/10.1364/OL.447695
https://www.ncbi.nlm.nih.gov/pubmed/35290350
https://doi.org/10.1364/aop.411024
https://doi.org/10.1038/nphoton.2010.179
https://doi.org/10.1038/nature10067
https://doi.org/10.1038/s41467-018-05846-6
https://doi.org/10.1063/1.95270


Nanomaterials 2024, 14, 867 14 of 16

12. Liu, T.; Pagliano, F.; van Veldhoven, R.; Pogoretskiy, V.; Jiao, Y.; Fiore, A. Low-voltage MEMS optical phase modulators and
switches on a indium phosphide membrane on silicon. Appl. Phys. Lett. 2019, 115, 251104. [CrossRef]

13. Xiong, C.; Pernice, W.H.; Tang, H.X. Low-loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic
signal processing. Nano Lett. 2012, 12, 3562–3568. [CrossRef]

14. Chen, G.; Gao, Y.; Lin, H.-L.; Danner, A.J. Compact and Efficient Thin-Film Lithium Niobate Modulators. Adv. Photonics Res. 2023,
4, 2300229. [CrossRef]
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