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Abstract: In this study, two new nanohybrids (NH-A and NH-B) were synthesized through carbodiimide-
assisted coupling. The reaction was performed between carboxymethyl-scleroglucans (CMS-A and
CMS-B) with different degrees of substitution and commercial amino-functionalized silica nanoparti-
cles using 4-(dimethylamino)-pyridine (DMAP) and N,N′-dicyclohexylcarbodiimide (DCC) as cata-
lysts. The morphology and properties of the nanohybrids were investigated by using transmission
(TEM) and scanning electron microscopy (SEM), electron-dispersive scanning (EDS), attenuated total
reflection-Fourier transform infrared spectroscopy (ATR-FT-IR), X-ray photoelectron spectroscopy
(XPS), powder X-ray diffraction (XRD), inductively coupled plasma atomic emission spectroscopy
(ICP-OES), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic
light scattering (DLS). The nanohybrids exhibited differences in structure due to the incorporation of
polyhedral oligomeric silsesquioxane (POSS) materials. The results reveal that hybrid nanomaterials
exhibit similar thermal properties but differ in morphology, chemical structure, and crystallinity
properties. Finally, a viscosity study was performed on the newly obtained nanohybrid materials;
viscosities of nanohybrids increased significantly in comparison to the carboxymethyl-scleroglucans,
with a viscosity difference of 7.2% for NH-A and up to 32.6% for NH-B.

Keywords: scleroglucan; carboxymethyl-scleroglucan; carbodiimide coupling; nanohybrid; EOR

1. Introduction

Polysaccharides are polymers of monosaccharides bound via o-glycosidic linkages.
Their physical, surface, and interfacial properties depend on differences in their confor-
mational parameters, composition, purity, degree of branching and polymerization, and
molecular weight [1]. Polysaccharides offer various primary structures and conformations,
making them suitable for different applications [2].

Polysaccharides such as xanthan gum, scleroglucan, hydroxyethylcellulose, carboxymethyl-
cellulose, welan gum, guar gum, and schizophyllan [3] have been evaluated as viscosifying
additives for enhanced oil recovery (EOR) processes since the mid-1990s [4]. Several ex-
perimental and pilot tests have been carried out with biopolymers [5], which have shown
increments in oil production compared to water or synthetic polymers such as partially
hydrolyzed polyacrylamide (HPAM) [6]. These polysaccharides are good candidates for
EOR applications because they are environmentally friendly [7] and most of them are
resistant to salinity, temperature, and shear [8]. However, their main disadvantage is their
high susceptibility to biodegradation and oxidation [9,10].
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Nanopolymer flooding has gained attention in the last decade because nanoparticles
(NPs) can improve polymers’ thermal, chemical, and mechanical stability [11–17]. In
addition, NPs have shown the ability to enhance oil recovery by changing the wettability
of porous media and reducing the oil–water interfacial tension [18–25]. Two methods are
used to incorporate NPs in polymers: (I) the NPs can be dispersed in the polymer solution,
and (II) the polymer chains can be covalently bonded to the NPs’ surface. In method I,
the NP–polymer interaction occurs through hydrogen bonding, electrostatic binding, ion
binding, or hydrophobic forces. In method II, the polymer grafting can be accomplished
by covalently attaching a preformed polymer to the NP surface (grafting to) or by in situ
polymerization of monomers on the NP surface (grafting from) [26]. The “grafting to”
technique is experimentally simple because functional groups of the polymer chains, such
as thiol or carboxylic acid, can react directly with NPs or with coupling agents on the NPs’
surface (e.g., silane, titanate, and zirconate) [27]. The most used coupling agents are the
silanes with an RSiX3 structure, where X denotes the hydrolyzable groups that react with
the -OH groups on the NP surface. R corresponds to the nonhydrolyzable organic group,
which reacts with the polymer.

Our previous work [28] assessed the effect of the preparation method and the three
nanoparticles, namely SiO2, Al2O3, and TiO2, on the viscosity and stability of scleroglucan
(SG) nanofluids. According to the results, incorporating all NPs improved the viscosifying
power of the SG solution due to the formation of NP–SG three-dimensional structures.
However, not all nanofluids exhibited colloidal stability. For this reason, in this study, two
carboxymethyl-scleroglucan/SiO2 nanohybrids were synthesized using the “grafting to”
technique. The detailed synthesis of the carboxymethyl-scleroglucan used in this work
(Figure 1) has been previously reported by the authors [29]. An O-alkylation reaction
was performed to insert the monochloroacetic acid hydrophilic group (structure in blue
color in Figure 1) in the SG (structure in black color in Figure 1), specifically into the SG’s
anhydroglucose units (AGUs). Two carboxymethyl derivatives of SG (CMS) with different
degrees of substitution (0.22 for CMS-A and 0.44 for CMS-B) were obtained by changing the
amount of sodium bicarbonate used in the reaction. The amide bond formation between
the amino-functionalized nanosilica and both carboxymethyl-scleroglucans was mediated
by a carbodiimide.
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These hybrid materials provide access to highly reactive groups that lead to the prepa-
ration of amides of different kinds by direct condensation of existing carboxyl groups [30].
New materials are obtained by transforming the base biopolymer with inorganic materials
containing amine-selective groups [31]. Carbodiimide-mediated couplings are commonly
used to prepare amides [32,33]. However, in some cases, adding DMAP to the reaction
mixture in conjunction with DMAP improves the coupling efficiency. It is more beneficial
for those steps involving steric hindrance between the reaction partners. This was the case
with a highly branched polymer and a functionalized nanoparticle.
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Different characterization techniques were employed to evaluate nanohybrids’ mor-
phological and structural properties (NH-A and NH-B). Finally, the viscosity and thermal
stability of both CMS and nanohybrids were compared to determine the effect of the degree
of substitution and nano silica content on these properties. To our knowledge, no investiga-
tions in the literature report hybrid materials with the same properties as those described
in this study.

2. Materials and Methods
2.1. Materials

The carboxymethyl derivatives of SG, namely CMS-A and CMS-B, were synthesized
as described in previous reports [29]. The chemicals employed for synthesizing the nanohy-
brids NH-A and NH-B were N,N′-Dicyclohexylcarbodiimide (DCC, PM: 206.33 g/mol,
≤100%, Sigma-Aldrich, St. Louis, MO, USA), 4-(Dimethylamino)-pyridine (DMAP, PM:
122.17 g/mol, ≤100%, Sigma-Aldrich, USA), tetrahydrofuran (THF, PM: 72.11 g/mol,
≤100%, Supelco®, Bellefonte, PA, USA), and 2-propanol (CH3CH(OH)CH3, PM:
60.1 g/mol, ≤100%, Supelco®, USA). The amino-functionalized nanoparticles used were sili-
con oxide coated by (3-Aminopropyl)triethoxysilane (SiO2 APTES, 99+%, 20 nm,
120 m2/g, amphiphilic) manufactured by Nanostructured & Amorphous Materials, Inc.
(Los Alamos, NM, USA).

2.2. Amidation Reaction

The amidation reaction was conducted following the method proposed by Valeur-
Bradley [34] and Moraillon et al. [35]. First, 1 g of N,N′-dicyclohexylcarbodiimide (DCC)
was dissolved in 10 mL of tetrahydrofuran (THF), and the solution was stirred in a beaker
for 10 min at 400 rpm. Then, 1 g of CMS-A or CMS-B was added to the solution. The sample
was mixed for 10 min at 400 rpm and 30 ◦C. In another beaker, 0.59 g of 4-(dimethylamino)-
pyridine (DMAP) was dissolved in 10 mL of THF by stirring the sample for 10 min at
400 rpm. Then, 0.1 g of SiO2 APTES NPs was slowly added to the solution. Finally, both
solutions were mixed using an IKA magnetic stirrer and a Teflon-coated magnet (IKA™,
Shanghai, China). This reaction lasted 48 h at 400 rpm and 30 ◦C. The solid was precipitated
and washed with THF and isopropanol to remove the unreacted reagents (3 times × 20 mL
of each solvent). According to Meiser et al. [36], the nanohybrids were dried under reduced
pressure in a rotary evaporator at 0 mBar. In total, 2.22 g and 2.48 g of NH-A (from
CMS-A) and NH-B (from CMS-B) powder were obtained, respectively. Figure 2 shows the
sequential procedure for synthesizing the nanohybrids where (A) the pyridyl nitrogen of a
single DMAP molecule (structure in red color in Figure 2A) attacks the electrode center of
the carboxymethyl carbonyl. Subsequently, this electronic delocalization involves (B) the
successive reaction of the carboxylate substituents with the DCC (structure in purple color
in Figure 2B). Then, by electronic rearrangements, (C) the DMAP catalyst is regenerated,
and (D) the O-acyl urea is formed. This intermediate can generate several products; one of
them is N-acylurea, which is limited or restricted by the presence of the successive step.
This step occurs by directly coupling with the amine of the functionalized nanoparticle
(structure in gray color in Figure 2D) to generate (E) a second intermediate [35]. The
second intermediate eliminates a by-product formed of dicyclohexylurea (DCU), which
was eliminated by washing the sample [37]. Finally, (F) the NH-A or NH-B nanohybrids
are obtained [26,33,36–39].
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2.3. NH-A and NH-B Characterization

A Bruker Tensor 27 FTIR spectrophotometer (Alpha, Bruker, Billerica, MA, USA) was
used to characterize the structure of all samples. Spectra were obtained in the wavenumber
range of 4000–600 cm−1 using an attenuated total reflection platinum cell (ATR). The data
were analyzed using Bruker OPUS 7.5 software.

The simultaneous thermogravimetry–differential scanning calorimetry (STA/TG-DSC)
analysis of the nanohybrids was performed by using a Thermal Analysis System TGA/DSC
3+ (STA, Mettler Toledo, Urdorf, Switzerland). The STA curves were analyzed using STARe

software (version 16.00). For each sample, 5 mg was heated from 30 to 1000 ◦C at a heating
rate of 5 ◦C/min under a nitrogen atmosphere.

Scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS) were
used to examine the morphology and elemental composition of the nanohybrids. SEM
analysis was performed in a Scios2 scanning electron microscope equipped with a Bruker
QUANTAX 200 Energy Dispersive X-ray Spectrometer with XFlash® 5010 detector (EDS,
Bruker, BER, Germany) with a resolution of 129 eV. EDS spectra were collected using a
working distance of 10 mm and an accelerating voltage of 15 kV for 3 min live time. An
energy-dispersive spectroscope (EDAX Apolo X, Ametek, Inc., Berwyn, PA, USA) with a
resolution of 126.1 eV was used to determine the elemental composition of the nanohybrids.

Transmission electron microscopy (TEM) was performed to determine the size, shape,
and structure of both nanohybrids by using a transmission electron microscope (Tecnai
F20 Super Twin TMP, Hillsboro, OR, USA) equipped with Gatan US 1000XP-P camera
(Pleasanton, CA, USA). TEM samples were prepared by placing a drop of the nanohybrids
dispersed in ethanol (200–250 µg/mL) onto a 200-mesh lacey copper TEM grid (400C-
FC, Electron Microscopy Sciences, Hatfield, PA, USA) and allowing it to dry at room
temperature for 1–2 h. The images were processed in ImageJ software 1.54d (National
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Institutes of Health, Bethesda, MD, USA) to analyze the particle size distribution. For each
sample, over 20 measurements were performed to obtain better statistics.

A D-8 Advance A25 X-ray diffractometer (D8 Advance, Bruker, MA, USA) was used
to record X-ray diffraction (XRD) patterns, using a Cu Kα anode operating at 40 kV and
40 mA. The diffraction patterns were acquired at 25 ◦C across an angular range spanning
from 2◦ to 70◦. To conduct the measurements, the samples were pressed between two glass
slides on a flat sheet.

Inductively coupled plasma atomic emission spectroscopy (ICP-OES, Optima 8300
ICP-OES Spectrometer, Perkin Elmer, Waltham, MA, USA) was used to determine silicon
in the nanomaterials. The measurements were performed at 251.611 nm. The spectral
intensity corresponds to the mean of triplicate measurements.

X-ray photoelectron spectroscopy (XPS) was performed in an X-ray photoelectron spec-
trometer with a PHOIBOS 150 1D-DLD analyzer (NAP-XPS, SPECS Group, Berlin, Ger-
many) using a monochromatic Al-Kα source (1486.7 eV, 13 kV). High-resolution spectra
were acquired using a pass energy of 20 eV and a 0.1 eV step. General spectra were
obtained using a pass energy of 86.5 eV and 1 eV step. For the high-resolution spectra,
20 measurement cycles were performed, and for the general spectra, 5 cycles were performed.
Charge compensation was employed during data collection (3 eV, 20 µA electrons). The sam-
ples were mounted on stainless steel metal holders using copper conductive tape. CasaXPS
software (version 2.3.25) was used to fit the XPS spectra (Casa Software Ltd., Teignmouth, UK)
using the SPECS Prodigy-ACenteno library with the response sensitivity factor established
by the manufacturer. A Shirley background was employed. The binding energy scale was
calibrated based on the hydrocarbon C 1s peak at 284.8 eV (C-(C, H) component).

The hydrodynamic size of the nanohybrid solutions was measured using a Zetasizer
Nano ZS 90 (Malvern Instruments Ltd., Malvern, UK). The reported values of the measure-
ments at 25 ◦C correspond to the root-mean-square deviation of triplicate measurements.

The viscosities of the nanohybrids and carboxymethyl-scleroglucans solutions were mea-
sured in a DV3T viscometer (Brookfield Ametek, Middleborough, MA, USA) at 30 ◦C and
7.3 s−1. The accuracy of the reported value remained at ±1 according to a standard reference.

2.4. SG and Nanohybrid Solution Preparation

All solutions were prepared at 1000 ppm as proposed by Abraham and Sumner [37]
and Castro et al. [38]. The desired amount of SG, CMS-A, CMS-B, NH-A, or NH-B powder
was added to deionized water (DIW) under mechanical stirring (500 rpm). Afterwards,
each solution was heated at 40 ◦C and stirred at 800 rpm for 10 min. Lastly, each solution
was mixed at 20,000 rpm for 5 min with a T 25 Digital Ultra-Turrax (IKA™, China).

3. Results and Discussion
3.1. NH-A and NH-B Characterization
3.1.1. ATR-FTIR Results

Figure 3 presents the IR spectra of the amino-functionalized silica nanoparticles
(SiO2_APTES_120). Figure 4 shows the IR spectra of the CMS-A and NH-A, and
Figure 5 displays the IR spectra of the CMS-B and NH-B. A peak with low intensity
is detected at 1600 cm−1 in the CMS-A and CMS-B spectra, corresponding to the bending
vibration of the OH groups [29,40,41] due to the vibrational stretching of the carboxyl
functional group or carboxy group (-COOH). This peak was transformed for the NH-A
and NH-B in two new signals as a doublet with intensities at 1645 cm−1 and 1560 cm−1,
corresponding to one of the signals of an amide II, the first one being attributed to the
C=O stretching vibration in combination with a -NH deformation vibration, respectively.
Around 766 cm−1 [42], the peaks of the in-plane vibrations of branched aliphatic carboxylic
acids in the fingerprint region disappeared, and the Si-C stretching signals attributed to the
-O-Si-CH2-C siloxanes of linear polymers or to SiO2 silica signals appeared [43].
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3.1.2. STA/TG-DSC Results

Figure 6 and Table 1 present the TG and DTG behavior of the SG, CMS-A, and CMS-
B [29] and compare them with the results for both nanohybrids (NH-A and NH-B) and the
nanoparticle used for their synthesis.
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NH-A 30–122 9.0 57.0 58.2 - 
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Figure 6. TG curves of SG, CMS-A, CMS-B, NH-A, and NH-B under nitrogen atmosphere.

Table 1. TG and DTG parameters.

Sample T, ◦C Weight Loss, % Endothermic
Peaks of DSC, ◦C DTG Peaks, ◦C MWLR, (% min−1)

CMS-A

30–122 7.0 62.9 58 0.80
123–230 3.0 172.0 177 1.20
231–521 65.0 240.0 298 4.31
522–999 12.0 399.8

Residue, 1000 ◦C 13.0

NH-A

30–122 9.0 57.0 58.2 -
122–400 69.0 294.0 295 1.40
401–800 7.0 - - -
801–999 6.0 821 879 -

Residue, 1000 ◦C 13.0

CMS-B

30–122 8.0 54.5 59 0.86
122–208 2.0 171.8 175 2.42
209–524 60.0 234.7 285 3.86
525–999 13.0 396.0

Residue, 1000 ◦C 17.0

NH-B

30–123 7.0 - 56 -
124–200 2.0 165 167 2.42
201–388 53.0 270 (exothermic) 276 0.9
389–800 10.0 - - -
801–999 8.0 - - -

Residue, 1000 ◦C 20.0

SiO2_APTES_120
30–139 5.0 61.0 57 0.1

139–999 5.0 767.0; 821
(exothermic) - -

Residue, 1000 ◦C 90.0
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In its first transformations, the NH-A exhibits scleroglucan-like behavior, with four
stages of weight loss. The first stage is observed below 100 ◦C and is assigned to the loss of
water. The second weight loss (above 122 ◦C with a DTG peak at 57 ◦C) can be associated
with the decomposition of the pyranose ring structure. The weight loss in this stage was
59% [44,45].

On the other hand, five stages of weight loss are observed in the NH-B. The first stage is
between 30 and 141 ◦C, ascribed to the loss of water. The second one occurred above 142–193 ◦C
with a 2% weight loss, related to the decomposition of the traces of unreacted carboxylic acid
groups [46]. The third stage is observed between 201 ◦C and 388 ◦C, with a 53% weight loss,
and it is related to the decomposition of the carboxylate and amide groups [47]. The four stages
occurred between 389 ◦C and 800 ◦C with a 10% weight loss, corresponding to the breakdown
of the C-C bonds within the biopolymer. The last stage, with 8% weight loss, was observed
from 801 to 999 ◦C and was attributed to the product residue. The NH-B is more stable than the
NH-A due to its higher silica nanoparticle content.

Finally, the nanoparticles’ thermogram revealed two weight loss stages with 5% weight
loss each. The first occurred up to 139 ◦C, corresponding to the adsorbed water. The second
drop (139–900 ◦C) is attributed to the decomposition of the aminopropyl groups. Finally,
90% of the residue of the inorganic material (silica) remained.

3.1.3. SEM-EDS Analysis

Micrographs were obtained using the backscattered electron detector (BSE). Figure 7
shows the SEM micrographs of CMS-A and CMS-B. According to Castro et al. [29], the
CMS-A (Figure 7a) has a less fragmented fibrillar structure than CMS-B (Figure 7b).
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Figure 7. SEM micrographs of (a) CMS-A at 1500× and (b) CMS-B at 1500×.

Contrasts can be seen that depend mainly on the average atomic number. Lighter
areas in BSE correspond to high average atomic numbers, while the dark ones belong to
low atomic numbers.

The type of EDX detector employed allows the detection of all elements of Z ≥ 5 found
in the analyzed area. The height of the peaks in the spectra can be interpreted as reflecting
the relative abundance of these elements in the evaluated part. A low-magnification image
is presented for the samples to show the general morphology; likewise, a magnification is
performed in areas of interest with their elemental composition.

Figures 8 and 9 show the SEM images of NH-A and NH-B; both nanohybrids have
compact fibril structures, suggesting that the amidation reaction altered the CMS materi-
als [33]. The changes in the surface microstructure of CMS suggest their coupling with the
nanoparticles to form the nanohybrids NH-A and NH-B. The nanohybrids’ EDS spectra
show carbon, oxygen, sodium, chlorine, and calcium content similar to carboxymethyl-
scleroglucans [29].
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Figure 9. SEM micrograph of NH-B (A) 500×, (B) 10,000×, (E) 35,000×, (A,C,D) EDS spectra.

3.1.4. TEM Analysis

Figure 10 shows representative electron microscopy images of the NH-A and NH-B
nanohybrid obtained by a one-step synthesis method. The commercial nanoparticles are
agglomerated spheres with an average size of 22 nm.

The NH-A and NH-B products’ micrographs show a bright contrast covering a large
area, attributed to the biopolymer, and a dark contrast assigned to the spherical nanoparticles.

The NH-A micrographs show spheres with an average size of 12.2 nm with diameters
between 8 nm and 18 nm. The area-average random interplanar distance between distant
spheres is 19 ± 6 nm, and 1.5 ± 0.6 nm between the closest ones. Likewise, the NH-B
presents an average size of 8.0 nm. It has an area-averaged random interplanar distance of
4.5 to 1.6 nm between all adjacent spheres.

The micrographs show the differences between both nanohybrids, showing a higher
number of nanoparticles per area on the NH-B than the NH-A. This indicates that the
degree of substitution of the CMS-A and CMS-B changes the active sites available for
the covalent bonding with the amino-functionalized nanoparticles and, for instance, the
properties of the nanohybrid synthesized.
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Figure 10. TEM images of (a–d) SiO2-APTES NPs at 19.50K×, 43.00K×, 38.00K× and 38.00K×; (e–h)
NH-A at 97.00K×, 97.00K×, 97.00K×, 285.00K×; and (i–l) NH-B at 145.00K×, respectively.

3.1.5. X-ray Diffraction (XRD) Analysis

The CMS-A, CMS-B, and SG patterns (Figure 11) were compared with crystalline
cellulose II (diffraction pattern file PDF 00-056-1717) [48]. As reported in our previous
work [29], SG, CMS-A, and CMS-B show a broad halo peak centered at 2theta value of
20◦ due to their amorphous structure [49]. A partial arrangement of the SG structure,
attributable to the amidation reaction, is observed in the peaks at 2tetha value around 30◦.

Figure 12 shows the powder patterns of the NH-A and NH-B materials and the
correlation of these materials with the reported powder pattern of the diffractogram of
crystalline cellulose II and tridymite (identified with the diffraction pattern file PDF 01-
077-8633). Differences between the 2theta values of 30–40◦ can be seen due to different
functional groups in these materials. The most intense reflection is observed near the 2theta
value of 34◦. The cellulose-type nature of the scleroglucan is observed in the NH-A and
NH-B. Likewise, the silicon dioxide from the nanoparticle is identified. SiO2 is in the form
of tridymite that crystallizes in an orthorhombic crystalline system, which coincides with
that reported by the supplier of the nanoparticles. A considerable part of these materials is
amorphous due to the amorphous nature of the biopolymer and the nanoparticle used for
their synthesis.

The differences between the CMS-A and CMS-B patterns and the NH-A and NH-B
patterns are attributed to the new functional groups incorporated into the carboxymethyl-
scleroglucans after the amidation reaction.
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3.1.6. ICP-OES Analysis

Table 2 summarizes the results for CMS-A and CMS-B and their nanohybrids. As
expected, the content of SiO2 in NH-B is higher than in NH-A due to the higher degree of
substitution and higher number of active sites available for the covalent bonding with the
amino-functionalized nanoparticles in the CMS-B. This analysis confirms the formation of
both nanohybrids.
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Table 2. Si content by ICP-OES and conversion to SiO2.

Sample Si (ppm) SiO2 (ppm)

CMS-A 0.07 0.15
NH-A 2.66 5.70
CMS-B 0.06 0.12
NH-B 2.84 6.07

3.1.7. XPS Analysis

The elemental composition of the surface of the CMS-B, NH-A, and NH-B was deter-
mined by XPS. Figure 13 shows the CMS-B spectra where the presence of C 1s (289.6 eV), O
1s (537.6 eV), Na 1s (1075.61 eV), and Cl 1s (204.6 eV) can be identified. These elements come
from synthesizing the carboxymethyl-scleroglucan with sodium bicarbonate (NaHCO3)
and monochloroacetic acid (AMCA). The peak intensity indicates a high C (70.1%) and O
(27.16%), with an O/C ratio of 0.38.
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Figure 13. XPS spectra of CMS-B.

Regarding the NH-A (Figure 14) and NH-B (Figure 15) spectra, the presence of C 1s
(286 eV), O 1s (532 eV), Na 1s (1072 eV), and Cl 1s (198 eV) persists; however, the Si 2p
(102 eV) and the N 1s (400 eV) signals appeared and are attributed to the nanoparticles
SiO2_APTES_120 and the amide bond formed in the nanohybrids. This is corroborated
by the NIST (National Institute of Standards and Technology, Gaithersburg, MD, USA)
database [50–52] and with the results from previous studies [32,33,51,52].

The deconvolution of the primary spectra in the regions of high resolution and the
central level spectra of C 1s, O 1s, Na 1s, Cl 1s, Si 2p, and N 1s for CMS-B, NH-A, and
NH-B are presented in Table 3. The XPS spectra indicate the presence of different functional
groups, such as the methyl C ring at 283 eV, the carbon bonds of the cellulosic structure
of the SG (C6H10O5) at 284 eV, the carbons and oxygens of the C-O-C glycosidic bonds at
286 eV and 530 eV, respectively, and the carbonyl group incorporated into the structure
(C-O and CO=O) at 288–289 eV [51,52]. In addition, the high-resolution XPS spectra of
O 1s exhibit the same oxygenated functional groups formed by the carboxymethylation
of scleroglucan. These groups are the ether -O*CH2C(O)- at 534 eV and the carbonyl
-OCH2C(O*)- at 532 eV functional groups. Likewise, interference persists from two addi-
tional components at 1072 eV and above 200 eV, corresponding to sodium (Na 1s) in NaCl
and chlorine (Cl 1s), respectively.
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Table 3. Values of binding energy of the main functional groups.

Energy Level Functional
Groups CMS-B NH-A NH-B NIST

Database

C 1s

C-(CH2) 283.19 283.02 283.30
C-(C) 284.60 284.60 284.60 284.60
(C)-O 285.33 285.00

(C)-O-(C) 285.87 286.01 286.00
O-(CH2) 287.00 287.07 287.00
(C)O=O 288.92 288.05 287.69 288.50
(C)=O 289.62 289.60 288–290

O 1s

C-(O)-C 530.67 530.76 530.75
C=(O) 532.03 531.95 532.38 531.5–532
C-(O) 533.19 533.16 533.83 533.00

(O)-CH2 534.15 534.1

Si 2p (Si)–O–C 103.37 102.82 102.8

Na 2s
(Na)Cl 1071.66 1071.6
(Na)Cl 1072.21 1072.2

Cl 2p Na(Cl) 198.45 198.91 198.06 200
Cl organic 200.93 200.61 199.57 198.3
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Finally, the presence of Si–O–C in the NH-A and NH-B products at 103 eV [53], which
was not identified in the CMS-B spectra, was observed. The XPS results confirm the CMS
and SiO2_APTES_120 hybridization by the presence of C 1s, O 1s, Na 1s, Cl 1s, Si 2p, and
N 1s in the regions.

3.2. NH-A and NH-B Solution Analysis
3.2.1. DLS Analysis

As presented in Figure 16, the hydrodynamic diameter (d-50) of the SG, CMS-A, and
CMS-B precursors in water were 19.4, 18.2, and 26.4 nm with a polydispersity index of
0.84, 0.73, and 0.55, respectively. This presents a significant increase in the hydrodynamic
diameter due to the carboxymethylation substitution where the structure branches (stretch-
ing) are in higher proportion in CMS B concerning scleroglucan. On the other hand, the
nanohybrid results are 50.8 nm for NH-A and 37.8 nm for NH-B, with a polydispersity
of 0.96 and 0.97, respectively, suggesting the presence of smaller aggregates than CMS
products in suspension (shrinking) and more stability with NH-A and NH-B.
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Figure 16. Average hydrodynamic diameter (d-50) of SG, CMS-A, CMS-B, NH-A, and NH-B.

3.2.2. Viscosity Measurements

The viscosity of 1000 ppm SG, CMS-A, CMS-B, NH-A, and NH-B solutions are reported
in Figure 17. Viscosity increments of 7.2% and 32.6% were observed for the NH-A and
NH-B compared to their precursors CMS-A and CMS-B, respectively, which is attributed to
the formation of an NP–biopolymer network. On the other hand, the NH-B exhibits lower
viscosity values than the NH-A due to a greater breakage of the SG triple helix caused by
the higher degree of substitution in the CMS-B. The incorporation of the nanoparticle in
the structure of the CMS-A and CMS-B cannot compensate for the breakage of the SG helix.
Still, it will probably improve the resistance of the biopolymer to microbial degradation for
EOR applications. Further studies will be performed to evaluate this effect.
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4. Conclusions

Two new nanohybrids (NH-A and NH-B) were synthesized from amide-type covalent
bonds between two carboxymethyl-scleroglucans (CMS-A and CMS-B) and commercial
amino-functionalized silica nanoparticles using N,N′-dicyclohexylcarbodiimide and 4-
dimethylaminopyridine as catalysts.

TEM, XPS, and FTIR analyses confirmed the amidation reaction. According to the SEM-
EDS analysis, NH-A and NH-B nanohybrids are heterogeneous solids with compact fibrillar
structures, suggesting that the amidation reaction altered the CMS materials. According to
the thermal analysis, the nanohybrids’ dehydroxylation temperature was reduced, but the
CMS’s thermal stability was maintained below 130 ◦C and above 300 ◦C.

In conclusion, the formation of an NP–biopolymer network increased the viscosity values
of both carboxymethyl-scleroglucans. Still, it cannot compensate for the viscosity loss of the
SG caused by the breakage of its triple helix due to the chemical modifications performed.
Additional investigations will be conducted to assess the microbial, mechanical, chemical, and
thermal degradation of both types of NH to evaluate their potential as EOR additives.
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