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Abstract: The main objective of this study was to determine the variation in the properties of
cadmium telluride (CdTe) thin films deposited on a p-type Si substrate by the radio frequency
magnetron sputtering technique at four different working powers (70 W, 80 W, 90 W, and 100 W). The
substrate temperature, working pressure, and deposition time during the deposition process were
kept constant at 220 ◦C, 0.46 Pa, and 30 min, respectively. To study the structural, morphological,
and optical properties of the CdTe films grown under the mentioned experimental conditions, X-
ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and
optical spectroscopy were used. For a better analysis of the films’ structural and optical properties, a
group of films were deposited onto optical glass substrates under similar deposition conditions. The
electrical characterisation of Ag/CdTe/Al “sandwich” structures was also performed using current–
voltage characteristics in the dark at different temperatures. The electrical measurements allowed
the identification of charge transport mechanisms through the structure. New relevant information
released by the present study points towards 90 W RF power as the optimum for obtaining a high
crystallinity of ~1 µm nanostructured thin films deposited onto p-Si and optical glass substrates
with optical and electrical properties that are suitable for use as absorber layers. The obtained high-
quality CdTe nanostructured thin films are perfectly suitable for use as absorbers in CdTe thin-film
photovoltaic cells.

Keywords: cadmium telluride (CdTe) thin films; RF–magnetron sputtering (RF–MS); physical properties;
current–voltage measurements

1. Introduction

The best way to solve the problems of energy shortage and providing cleaner energy
sources is given by photovoltaic (PV) technology. Among the AII-BVI binary semiconduct-
ing compounds, CdTe is one of the most promising PV materials that can be used especially
for applications in the field of thin-film solar cells, recording impressive conversion effi-
ciencies of >22% [1–3].

There is a growing interest in the research community and industry in reaching effi-
ciency limits approaching 28%, similar to GaAs solar cells, which have a similar bandgap
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and more or less the same cost [4,5]. Several material factors currently limit device efficien-
cies such as carrier recombination in bulk [6], grain boundaries, and interfaces. Several
studies show that reducing carrier recombination with the contact layers at the CdTe inter-
face may allow an increase in the device’s performance exceeding 25% efficiency [7]. To
achieve 25% efficiency and >1 V for open-circuit voltage (Voc), research and development
are needed to increase the minority carrier lifetime beyond 100 ns, to reduce the grain
boundary and interface recombination, and to tailor band diagrams at the front and back
interfaces [8]. Back contact optimisation also represents a potential solution to improve
device’s efficiencies [9–11].

This material is highly attractive due to its following properties: CdTe is the second
lowest-cost material after Si in the world of photovoltaic market and it has high absorption
coefficient values (104–105 cm−1) with a direct band gap of 1.45 eV at room temperature
(300 K), close to the ideal band gap for absorbing the maximum amount of the solar
spectrum using one band gap p-n junction [12–15].

Various deposition techniques were used to prepare CdTe thin films, such as physical
vapour deposition (PVD) [16], sputtering [17], vacuum evaporation [14,18–22], spray py-
rolysis [23], pulsed laser deposition (PLD) [24–27], electrodeposition [28], molecular beam
epitaxy (MBE) [29], close spaced sublimation (CSS) [30,31], etc. Many researchers have
focused on using deposition techniques that are simple and less costly, and that can provide
stability and good efficiency [32]. Among the fabrication methods, PVD techniques appear
to be more popular due to its high deposition rate, low cost of operation, and low material
consumption. It has been observed that TVE (thermal vacuum evaporation) is a suitable
technique to be used for the deposition of CdTe nanostructured thin films; one remarkable
example would be the results reported by O. Toma et al. in their study on the optical,
morphological, and electrical properties of CdTe nanostructured thin films deposited by
thermal vacuum evaporation [14]. The foremost deposition methods that are currently used
commercially on a large scale are vapor-phase transport deposition, CSS, and sputtering [8].
CdTe thin-film solar cell absorber layer deposition generally requires raw material with
99.999% (5 N) CdTe purity. The CdTe films grown by different deposition processes can
be a p- or n-type with a small degree of Cd or Te deficiency. The CdTe films deposited
by magnetron sputtering usually have better grain distribution uniformity and a denser
Cd-rich surface. Compared with other deposition methods, the deposition temperature
in magnetron sputtering is lower, and it leads to a smaller grain size and higher surface
densities. Overall, anion doping is more powerful in a cation-rich setting. In contrast, an
anion-rich environment is more favorable for cation doping. It was also observed that
the carrier lifetime of CdTe grown in a Cd-rich environment is usually higher than that
in a Te-rich environment [33]. Inevitably, many defects are introduced during the CdTe
deposition process, such as intrinsic, impurity and electronic defects. Intrinsic defects cause
not only crystalline lattice distortion but also changes in the electrical properties of the
material. Understanding the fundamental properties of the materials and the optimisation
of growth conditions are essential for obtaining devices with good performance.

The aim of the present work is to improve the quality of CdTe thin films by using
RF–magnetron sputtering (RF–MS) as a reliable deposition method, in which one has
the ability to control the deposition parameters more easily. This study’s purpose was
to investigate the influence of RF power on the physical properties of thin CdTe films
deposited on two types of substrates: optical glass and p-type Si. For this study, four
different powers of 70 W, 80 W, 90 W, and 100 W have been selected.

The results from investigations employing techniques like GIXRD (grazing incidence
X-ray diffraction), SEM (scanning electron microscopy), AFM (atomic force microscopy),
UV–VIS (ultraviolet–visible) spectroscopy, and I–V characteristics highlight the significant
potential of these nanostructured thin films to serve as absorbent layers in ultra-thin-
film solar cells. This work’s results add important experimental information to existing
studies regarding the optimisation of the properties of CdTe material in the RF magnetron
sputtering growth process that, up to now, proved to be one of the most suitable techniques
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for achieving CdTe thin-film layers that can be used as absorber layers in real-life, large-
scale applications. Even though the literature on CdTe deposition is extensive, there are only
a few studies discussing significant growth parameters and demonstrating reproducibility.
Therefore, this study adds value to the existing international database on this specific
subject. New relevant information released by the present study points towards 90 W
RF plasma power as an optimum for obtaining a high crystallinity of ~1um thin films
deposited onto p-Si and optical glass substrates with optical and electrical properties that
make them suitable for use as absorber layers.

2. Materials and Methods

In this paper, CdTe nanostructured thin films were deposited by the RF–magnetron
sputtering technique at an RF generator frequency fixed at 13.56 MHz [34–37]. The mag-
netron sputtering equipment was purchased from Tectra GmbH (Frankfurt, Germany),
accommodating one sputtering gun and with capabilities of both radio-frequency (RF)
and direct-current (DC) deposition modes. The CdTe targets were purchased from FHR
Anlagenbau GmbH (Ottendorf-Okrilla, Germany) with their geometrical features being
50.8 mm in diameter and 3 mm in thickness. The purity of CdTe targets was 99.99%. The
CdTe nanostructured thin films were sputtered on p-type Si (doped with Br) substrates
purchased from Siegert Wafer GmbH (Aachen, Germany). The p-Si substrates used have
a resistivity of 5 mΩ/sq. and (111) crystalline orientation. The second type of substrate
used for deposition of CdTe films was optical glass substrates purchased from Merck
KGaA (Darmstadt, Germany). Substrates were heated at a temperature of 220 ◦C during
depositions. The substrates were ultrasonically cleaned in acetone, isopropyl alcohol, and
deionised water for 15 min and dried over nitrogen flow. As sputtering gas, pure Ar was
used and the chamber pressure was maintained at 0.46 Pa during the deposition process.
To remove eventual impurities, the CdTe target was pre-sputtered for 10–15 min. The most
important parameters used for the deposition of CdTe nanostructured thin films were as
follows: a target-to-substrate distance of 9 cm, RF power ranging from 70 W to 100 W,
and a deposition time of 30 min. Thus, films with different thicknesses were obtained.
Subsequently, the RF-sputtered CdTe nanostructured thin films were subjected to a thermal
treatment under nitrogen gas flow using an oven from Nabertherm GmbH (Lilienthal,
Germany). The prepared films were thermally treated at 450 ◦C with a 5 ◦C/min heating
rate, and were kept on a bearing level for 30 min.

The structural properties of the fabricated samples were investigated by GIXRD with
a diffractometer from Bruker (Ettlingen, Germany), model D8 Discover (using CuKα

radiation at λ = 1.54 Å). All the GIXRD measurements were performed at an angle of 2◦.
The scattered intensity was scanned in the 2θ range between 20◦ and 60◦ with a step size of
0.02◦/s at room temperature. The topography of the surface of fabricated CdTe samples was
analysed by AFM, in non-contact mode, using an AFM microscope from A.P.E. Research
(Trieste, Italy), model A 110-SGS. At the same time, based on the results obtained from AFM,
the distribution of the peaks over the investigated surfaces was analysed using computed
values for root mean square, skewness, and kurtosis parameters using the Gwyddion
software package (version 2.52, Brno, Czechia). Morphological investigations of CdTe
nanostructured thin films were performed by scanning electron microscopy (SEM) using a
Tescan Vega XMU-II (Brno, Czechia) instrument, operating at an accelerating voltage of
30 kV and a working distance (WD) of about 7 mm in high vacuum. From the cross-section
SEM images, the thicknesses and surface uniformities of all the samples were estimated.

The optical investigations were made using a spectrophotometer from PerkinElmer
(Waltham, MA, USA), model Lambda 750 UV/VIS/NIR. The optical transmission and
optical absorption of the CdTe films were determined in the wavelength region between
400 nm and 1800 nm, in air and at room temperature. Thicknesses of CdTe films were
computed from optical transmission data. Additionally, current–voltage characteristics of
the Ag/CdTe/Al structure at different temperatures were used to investigate the electrical
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properties. These were recorded using a computer-controlled experimental setup from
Keithley (Beaverton, OR, USA).

By investigating the structural, morphological, and optical properties, it was observed
that the CdTe sample deposited at 90 W is the most suitable for use as an absorber layer.
Thus, the sample obtained through sputtering at 90 W onto an optical glass substrate was
coated with a thin layer of silver (Ag) that was thermally evaporated in vacuum using
an evaporation equipment, model AV 500 FAN (Bucharest, Romania), with the Ag layer
serving as the back electrode. For the top contact, the aluminium (Al) fabricated via VTE
was used to close the “sandwich” structure Ag/CdTe/Al. The latter was employed for
electrical characterisation of the CdTe semiconducting thin film. Both electrical contacts
were evaporated at 0.1 × 10−3 mbar working pressure for 1 min and, afterwards, the
structure was subjected to thermal treatment for 10 min at 100 ◦C.

The experimental set-up consisted of a source meter from Keithley (Beaverton, OR,
USA), model DM-2400, and a homemade heater for the sample holder [38]. The tempera-
tures of the samples were measured using a thermocouple K-type chromel-alumel (with
25 ◦C/mV) placed on the sample. Figure 1 presents the schematic representation of the
Ag/CdTe/Al structure.

Nanomaterials 2024, 14, x FOR PEER REVIEW 4 of 22 
 

 

nm and 1800 nm, in air and at room temperature. Thicknesses of CdTe films were com-
puted from optical transmission data. Additionally, current–voltage characteristics of the 
Ag/CdTe/Al structure at different temperatures were used to investigate the electrical 
properties. These were recorded using a computer-controlled experimental setup from 
Keithley (Beaverton, OR, USA). 

By investigating the structural, morphological, and optical properties, it was ob-
served that the CdTe sample deposited at 90 W is the most suitable for use as an absorber 
layer. Thus, the sample obtained through sputtering at 90 W onto an optical glass sub-
strate was coated with a thin layer of silver (Ag) that was thermally evaporated in vacuum 
using an evaporation equipment, model AV 500 FAN (Bucharest, Romania), with the Ag 
layer serving as the back electrode. For the top contact, the aluminium (Al) fabricated via 
VTE was used to close the “sandwich” structure Ag/CdTe/Al. The latter was employed 
for electrical characterisation of the CdTe semiconducting thin film. Both electrical con-
tacts were evaporated at 0.1 × 10−3 mbar working pressure for 1 min and, afterwards, the 
structure was subjected to thermal treatment for 10 min at 100°C. 

The experimental set-up consisted of a source meter from Keithley (Beaverton, OR, 
USA), model DM-2400, and a homemade heater for the sample holder [38]. The tempera-
tures of the samples were measured using a thermocouple K-type chromel-alumel (with 
25°C/mV) placed on the sample. Figure 1 presents the schematic representation of the 
Ag/CdTe/Al structure. 

 
Figure 1. Schematic representation of the Ag/CdTe/Al “sandwich” structure. 

3. Results 
3.1. Structural Analysis by XRD 

As mentioned above, the structural properties of CdTe nanostructured thin films 
were, at first, analysed by using grazing incidence X-ray diffraction. All of the GIXRD 
measurements were performed at an angle of 2°. The scattered intensity was scanned in 
the 2θ range between 20° and 60° with a step size of 0.02°/s at room temperature. Figure 
2 shows the diffraction patterns recorded in the GIXRD configuration obtained from the 
films deposited on the p-Si substrate at different RF powers of 70 W, 80 W, 90 W, and 100 
W. According to Figure 2, the films are polycrystalline and present good crystallinity. 
They are preferentially oriented with (111) crystallographic planes parallel to the surface 
(the noticeable peak being at 2θ = 23.7°). Also, the other peaks of cubic CdTe at 2θ = 39.06° 
and 2θ = 46.16° were observed, corresponding to the reflections from the (220) and (311) 
planes, respectively. 

Figure 1. Schematic representation of the Ag/CdTe/Al “sandwich” structure.

3. Results
3.1. Structural Analysis by XRD

As mentioned above, the structural properties of CdTe nanostructured thin films
were, at first, analysed by using grazing incidence X-ray diffraction. All of the GIXRD
measurements were performed at an angle of 2◦. The scattered intensity was scanned in
the 2θ range between 20◦ and 60◦ with a step size of 0.02◦/s at room temperature. Figure 2
shows the diffraction patterns recorded in the GIXRD configuration obtained from the films
deposited on the p-Si substrate at different RF powers of 70 W, 80 W, 90 W, and 100 W.
According to Figure 2, the films are polycrystalline and present good crystallinity. They
are preferentially oriented with (111) crystallographic planes parallel to the surface (the
noticeable peak being at 2θ = 23.7◦). Also, the other peaks of cubic CdTe at 2θ = 39.06◦

and 2θ = 46.16◦ were observed, corresponding to the reflections from the (220) and (311)
planes, respectively.

The predominant growth direction of CdTe nanocrystallites on the (111) plane in
GIXRD spectra may be attributed to the comparatively lower surface energy on this plane
compared to the (220) and (311) planes. This discrepancy could stem from an augmented
diffusivity of atoms in the substrate [38]. As the RF power increases, there is an observable
rise in the intensity of the (111) peak, indicating an enhancement in crystallinity within the
CdTe films. Concurrently, the peaks associated with the (220) and (311) crystalline planes
demonstrate a decrease.

The intensity of the diffraction peak corresponding to the (111) orientation increases
significantly as the RF power increases to 90 W, where this behaviour relates to better
crystallinity of the sample, decreasing at 100 W. This effect may be attributed to an improved
electron mobility promoted by the increase in the kinetic energy of the adatoms sputtered
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on the surface up to an optimum value, which is required for obtaining films with a highly
crystalline structure.
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The appearance of a small peak of CdxTeO1-x at 2θ = 22.36◦ was also noted and the
presence on the surface or in the material of these oxygen-containing compounds was
not expected, but it is due either to the fact that during the deposition process there were
oxygen atoms, or to the fact that the target is not made entirely of CdTe, containing a small
amount of oxygen.

It is already known that, due to the supplementary broadening of diffraction peaks,
GIXRD experiments are not adapted to obtain quantitative information, and, for this
reason, the microcrystalline properties of CdTe nanostructured thin films were investigated
by performing a profile analysis on the (111) reflection in Bragg–Brentano theta–theta
geometry. The experimental results and line profiles as obtained by analytical fitting using
Voigt profiles are shown in Figure 3. The parameters associated with the crystallinity quality
of CdTe nanostructured thin films, such as the crystalline coherence length (reflecting the
crystallite size) De f and mean-square strain < ε2 >

1/2 induced by mechanical stresses
developed at the microscopic level during film growth, have been determined using the
integral breadths βG and βL of the Gauss and Lorentz components of the Voigt profiles,
after correction for instrumental broadening [35,39]. The crystallite size De f and mean-

square strain < ε2 >
1/2 were calculated, considering that the first is given by the Lorentzian

integral breadth (see Debye and Scherrer’s formula), while the micro-strain distribution is
Gaussian, as follows:

De f =
0.9λ

βLcosθ
(1)

βG = 2(2π)1/2< ε2 >
1/2

tanθ (2)

The crystalline structural parameters that were determined experimentally for CdTe
nanostructured thin films are displayed in Table 1. It was expected that the average crystal-
lite size would increase when the RF-sputtering power increased for CdTe nanostructured
thin films deposited on a p-type Si substrate, but in the case of the present samples, a
random variation was observed [40].
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Figure 3. Deconvolution using Voigt profiles of the (111) diffraction peak corresponding to
(a) CdTe_70W; (b) CdTe_80W; (c) CdTe_90W; and (d) CdTe_100W deposited by RF–magnetron
sputtering on a p-Si substrate. The peak XRD profiles were recorded in Bragg–Brentano theta–theta
geometry. The experimental data have been processed with the Voigt function, and the associated
residual is shown at the bottom of each graph.

Table 1. Structural parameters of fabricated CdTe nanostructured thin films on p-type Si substrate by
RF–magnetron sputtering before the thermal treatment.

Sample Def
(111) (nm) 〈ε2〉1/2 a (Å)

CdTe_70W 66 5.1 × 10−3 6.491
CdTe_80W 58 4.7 × 10−3 6.492
CdTe_90W 89 4.5 × 10−3 6.493

CdTe_100W 68 4.5 × 10−3 6.489

The values of the lattice parameter (a) for the cubic phase range from around 6.489 to
6.493 Å are also given in Table 1. All these films show relatively low values of the lattice
strain, which suggests that the films may be subjected to tensile stress in the plane parallel
to the substrate surface. These results are a consequence of internal stress on the crystallites
and might be also due to the lattice mismatch and differences in the thermal expansion
coefficients of glass, which are as follows: ~6–7 × 10−6/K, Si ~2.6–3.3 × 10−6/K, and CdTe
~5–6 × 10−6/K, respectively [41–43]. As these nanostructured films are polycrystalline
with a thickness of hundreds of nm, the structural configurations causing intrinsic residual
stresses may also include the contribution of the microstructure, including imperfections
between the boundaries of grains and grain columns, voids between grains, and other
similar micro-scale defects in the thin film together with the atomic-level point defects,
misfits, dislocations, impurity incorporation, etc. All these structural issues are the result
of non-equilibrium growth conditions and/or the incorporation of impurities into the
growing thin-film layer. Atomic-level defects in the lattice structure and imperfections
in the microstructure can both cause elastic deformations of the thin-film material layer,
thereby resulting in intrinsic residual stress, and a trial to discriminate between each
contribution would be inaccurate.
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It can be also noticed from Table 1 that the highest mean crystallite size and lowest
lattice strain values correspond to the CdTe films sputtered at 90 W RF plasma power.

3.2. Morphological Investigation by SEM

Morphological investigations of the CdTe nanostructured thin films deposited by
RF–magnetron sputtering on p-Si substrates were also carried out in terms of SEM cross-
sectional analysis in secondary electron (SE) mode imaging. Figure 4 highlights that all
sputtered CdTe nanostructured thin films at different working RF powers are compact and
suggests quite conformal growth on the p-Si substrate.
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Figure 4. Cross-section scanning electron microscope (SEM) micrographs of the CdTe nanostructured
thin films sputtered on p-Si substrate for 30 min, at the following working RF powers: (a) 70 W;
(b) 80 W; (c) 90 W; and (d) 100 W. Corresponding estimated thickness SEM measurements for the
CdTe nanostructured thin films are indicated.

By choosing an optimal distance between the target and substrate during deposition,
the surfaces do not show damage and there are no drops formed during the sputtering
process. It is noteworthy that the samples were carefully prepared to minimise the charging
effects by dicing the CdTe-sputtered p-Si substrates and covering their section with con-
ducting carbon tape. The mean values obtained for each measured thickness are between
583 nm and 983 nm, being close to the values estimated from optical transmission spec-
troscopy data. The mean values of thickness obtained from the cross-section measurements
are given in Table 2.

Table 2. Measured mean values of thickness for CdTe nanostructured thin films deposited on p-Si
substrate estimated from cross-section SEM micrographs.

Sample Measured Thickness (nm)

CdTe_70W 583 ± 74
CdTe_80W 874 ± 22
CdTe_90W 958 ± 34
CdTe_100W 983 ± 21
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According to sputtering theory, the sputtering deposition rates of films are propor-
tional to the product of the sputtering rate of the target and the density of the Ar ions.
Therefore, the sputtering rate of the target also increases. Consequently, the growth rate of
the film and, hence, the thickness of the film, are expected to increase with the increase in
the RF power [32]. The experimental thickness data from the cross-section SEM imaging
analysis are represented in Figure 5. They show the dependence of the CdTe nanostructured
thin films’ thickness on the RF power during deposition. One can observe that the CdTe
nanostructured thin films’ thickness values tend to increase with the RF power as expected,
and this is primarily due to the increase in kinetic energy and velocity of the particles (by
scattering away from the target) leading to a higher deposition rate. A slight saturation is
observed at 90 W and 100 W and this may be associated with the excessively high energy of
the ions injected into the target, which leads to an energy and quantity loss for the Ar ions.
As has been shown in other studies, this behaviour leads to a decrease in the deposition
rate [44].
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3.3. Surface Topography Analysis by AFM

Cross-section SEM morphological investigations can be combined with the AFM
technique in order to achieve a complete view over the CdTe nanostructured thin films’
growth quality. The surface topographies of the CdTe nanostructured thin films deposited
at different RF powers were analysed by AFM in non-contact mode. Figure 6 shows the
2D and 3D AFM images of the surface topography of the CdTe nanostructured thin films
sputtered at different RF powers. The AFM scanned areas for each sample were as follows:
1 µm2 (upper row); 5 µm2 (middle row); and 10 µm2 (lower row), acquired in order to
provide insight into the films’ surface quality, at lower and larger scales, respectively. As one
can observe from the AFM images, the polycrystalline nature of the CdTe nanostructured
thin films is confirmed by the granular structure of the surface, consisting of grains with
sizes in the order of tens of nanometres. The average size of the surface grains is obviously
in agreement with the crystallites’ size variation observed from the GIXRD data analysis.
The grains present on the CdTe film obtained from the deposition at 80 W RF power show
the smallest size and the highest z-range, although the surface RMS seems to increase with
an increasing RF sputtering power. Also, it can be observed that the film grown at 100 W
RF power shows a smoother surface and a more uniform surface grain size distribution
than the film obtained from the 90 W for power growth. This observation remains valid at a
low scan size as well as at a high scan size for all CdTe nanostructured thin films (Figure 6).
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Figure 6. The 2D and corresponding 3D atomic force microscope (AFM) images of the CdTe nanostruc-
tured thin films sputtered at various RF powers for the scanned areas of 10 × 10 µm2 (a), 5 × 5 µm2 (b),
and 1 × 1 µm2 (c).

For a better understanding of the surface morphology from AFM characterisation, the
surface roughness morphology parameters, surface roughness, and statistical parameters
such as the skewness parameter (Ssk)—which is a third-order statistical parameter—were
used to describe how symmetric a statistical distribution is (one can have an almost perfect
Gaussian distribution if the statistical distributions have Ssk values close to zero) and
the kurtosis parameter (Sku)—a fourth-order statistical parameter used to describe how
sharp or how broad a statistical distribution is (one can have broader distributions if the
values are below 3 or sharp distributions in the case of values above 3) [34]—was estimated.
All these parameters were evaluated using specialised open-source software for scanning
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probe microscopy data processing (Gwyddion). As can be seen from Table 3, the root-mean
square (RMS) roughness values for all the RF-sputtered CdTe nanostructured thin films
deposited on p-Si substrates at different working powers are relatively low and increase
when the RF power increases. This behaviour was also observed in a plot of RMS roughness
as a function of the RF power (Figure 7).

Table 3. Surface morphology parameters obtained for RF-magnetron-sputtered CdTe nanostructured
thin films, where RMS represents the route mean square roughness, while Ssk and Sku denote
skewness and excess kurtosis coefficients, respectively.

Area

Sample CdTe_70W CdTe_80W CdTe_90W CdTe_100W

RMS
(nm) Ssk Sku RMS

(nm) Ssk Sku RMS
(nm) Ssk Sku RMS

(nm) Ssk Sku

1 × 1 µm2 0.622 0.145 −0.080 0.847 0.254 0.074 1.063 −0.144 −0.112 1.331 0.055 −0.399
5 × 5 µm2 0.581 0.300 0.155 0.708 0.231 0.114 0.876 0.093 0.285 1.007 0.163 0.190

10 × 10 µm2 0.521 0.171 0.109 0.598 0.137 0.056 0.664 0.009 0.223 0.739 −0.001 −0.007
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Figure 7. Root mean square (RMS) roughness as a function of the different RF powers for the
sputtered CdTe nanostructured thin films, at the three scanned areas of 10 × 10 µm2 (blue triangles),
5 × 5 µm2 (red circles), and 1 × 1 µm2 (black squares).

A negative Ssk value signifies that the surface predominantly comprises valleys,
whereas a positive skewness indicates that it consists mainly of peaks and asperities. Sku
measures the sharpness of profile peaks, with a negative Ssk indicating deeper voids on the
surface. If the excess Sku value is negative, the roughness distribution is termed platykurtic,
characterised by a thinner tail than a normal distribution. Elevated Sku values suggest a
distribution that is more peaked than normal.

As one can observe from the surface parameter estimations presented in Table 3, all
CdTe nanostructured thin films obtained using various RF sputtering powers show low
values of surface RMS, even at the smallest scan size, that remain below 1.4 nm. The RMS
variation with the different RF powers for the sputtered CdTe nanostructured thin films,
at the three scanned areas of 10 × 10 µm2 (blue triangles), 5 × 5 µm2 (red circles), and
1 × 1 µm2 (black squares), is represented in Figure 7. It is obvious that the RMS increases
with the increase in the RF power. Exploring surface parameters at the various scan sizes
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while looking at the 2D and 3D AFM images presented in Figure 6, it can be observed that,
as the scan size decreases, all the films conserve their homogeneity and the dimensional
distribution of the grain sizes as well as the topology of the peaks/valleys are quite uniform.
As can be seen from the AFM images, the best peaks/valleys distribution corresponds to
the film grown at 90 W RF power. This observation is consistent with the XRD observations.
The influence of the thickness uniformity and surface morphology of the sputtered CdTe
nanostructured thin films plays an important role in their electrical and optical properties
and, implicitly, on the PV device efficiency. A higher sputtering power is more likely
to promote increased kinetic energy of the CdTe atoms and further improvement of the
mobility and diffusion of the CdTe atoms on the substrates, leading to bigger particles with
uniform distribution on the substrate. However, a further increase in the sputtering power
to 100 W seems to lead to a more inhomogeneous grain distribution that may be attributed
to excessive sputtering power that affects the growth of the CdTe polycrystalline films on
the substrate. These observations are consistent with previous observations in studies of
CdTe growth at much lower RF sputtering powers [45]. It is worth mentioning that the
RMS values obtained for the present films are much smaller than any other values reported
in the previously mentioned studies.

3.4. Optical Characterisation by UV–VIS Spectroscopy

The optical properties of CdTe nanostructured thin films deposited on optical glass
substrates were investigated by optical transmission and absorption spectroscopy. All
the spectra were recorded at room temperature. Optical transmission spectra were taken
ranging from 400 to 1800 nm in wavelength and are presented in Figure 8. Transmission
values higher than 65% can be observed in the 800–1800 nm region, confirming excellent
transmittance properties to be employed as an absorber layer.
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Figure 8. Optical transmission spectra of CdTe nanostructured thin films deposited on optical glass
substrates.

To determine the thicknesses of the samples, Bragg’s law was used, where ni is a
function of n/λ where ni is related to the minimum and maximum conditions specific for
the interference effects that appeared in the NIR (near infrared) region, n is the refractive
index of the material (2.67 in the case of CdTe), and λ is the wavelength associated with
ni. The corresponding values for the thicknesses of each CdTe thin film are represented
in Figure 9, and a good agreement with the cross-SEM measurements of thickness is
observed. From the absorption spectra, the optical band gap values corresponding to
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the CdTe nanostructured thin films’ material were calculated. To achieve this, Tauc plots
were used, more precisely the dependence of the absorption coefficient on incident photon
energies in the case of direct band gap semiconductors near the fundamental absorption
edge, which is described by the subsequent equation:

α(hν) =
A
(
hν− Eg

)1/2

hν
(3)

where A is a constant, α is the absorption coefficient, h is the Plank’s constant, υ is the
frequency of radiation, and Eg is the optical band gap corresponding to the Γ point of the
first Brillouin zone. As one can see from Equation (3), n is an exponent that is dependent
on the transition type (in the case of CdTe nanostructured thin films, n = 1/2 because it
corresponds to a direct allowed transition).
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Figure 9. Determination of thicknesses corresponding to CdTe nanostructured thin films sputtered
onto optical glass substrates at the RF plasma power of 70 W (a), 80 W (b), 90 W (c), and 100 W (d).

The bandgap calculation was carried out by extrapolating the straight-line portion
of the (αhυ)2 vs. hυ graph on the hυ axis at α = 0, and the plots are shown in Figure 10.
The values of the Eg, determined by fitting of the experimental data with Equation (1), are
collected in Table 4.

It can be seen that the bandgap does not change significantly and remains in the range
of 1.44–1.49 eV, being extremely close to the values that were previously reported in the
literature. Moreover, as the film thickness increases, the optical band gap values of the
CdTe nanostructured thin films vary, most likely in correlation with the crystallite size, as
previously reported [14].
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Table 4. Optical band gap energies for CdTe/optical glass nanostructured thin films.

Sample Thickness (nm) Eg (eV)

CdTe_70W/optical glass 736 ± 15 1.44
CdTe_80W/optical glass 941 ± 25 1.49
CdTe_90W/optical glass 971 ± 18 1.47

CdTe_1000W/optical glass 1078 ± 28 1.49

3.5. Electrical Characterisations

The Ag/CdTe/Al “sandwich” structure fabricated with CdTe thin film deposited by
RF magnetron sputtering at a power of 90 W (deposition details are available in Section 2)
was electrically contacted to study the transport mechanism of the charge carriers into the
thin film of CdTe. The ambipolar current density–voltage (J-V) characteristic showing a
non-linear behaviour with a relatively low asymmetry, is shown in Figure 11.

To understand the charge transport mechanism through the Ag/CdTe/Al structure
and to observe the presence of different conduction mechanisms along the same type
of bias, in Figure 12, the forward bias (J-U) characteristics were plotted in a logarithmic
scale. Choosing the most experimental points from a range of voltages for the linear
regressing fit in such a way that the coefficient of regression would be higher than 0.9, two
straight lines were obtained with different slopes. As one can see, two straight lines with
different slopes emphasizing two regions were obtained, each related to a corresponding
charge transport mechanism. For the first region, at low injection levels (low applied
voltages), the slope of the linear plot is near unity (0.93); therefore, it shows a typical ohmic
conduction mechanism, assured by the equilibrium charge carriers. For the region at high
injection levels (high voltages), above the defined transition voltage (UΩ-SCLC = 0.53 V),
the slope is almost 3 (2.96), indicating a conduction mechanism based on space-charge-
limited conductivity (SCLC) in the presence of an exponential trap distribution. The latter
conduction mechanism is generally encountered in semiconducting materials with a low
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carrier mobility, thus having a high resistivity, usually AII–BVI compounds such as CdS [46],
ZnTe [37], and CdTe [14]. The fitting of experimental data was carried out following the
relationships describing these two conduction mechanisms [24,47].
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At low voltages, the charge transport mechanism is attributed to the equilibrium
charge carriers; therefore, the current density–voltage characteristic is linear and obeys
Ohm’s law:

Johmic = p0qµ
U
d

= qµNV
U
d

e−
EF−EV

kBT (4)
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where p0 is the concentration of thermally activated free charge carriers at equilibrium, q is
the elementary charge, µ is the mobility of holes, U is the applied voltage, d is the thickness
of the CdTe film, NV represents the effective density of states in the valence band (VB), EF
− EV is the separation between the equilibrium Fermi level and the VB, T is the absolute
temperature, and kB is Boltzmann’s constant. Above a specific voltage (UΩ-SCLC = 0.53 V),
there is a transition from the equation obeying an ohmic law to an equation corresponding
to SCLC in the presence of exponential trap distribution. The equation that describes the
presence of exponential traps present in the band gap of CdTe is as follows:

ρ(E) =
Nt

kBTC
e
− E

kBTC (5)

where Nt is the number of effective trap levels per volume and E represents the traps’ depth
level. The latter equation emphasises that the more the energy increases, the more the
speed of the trap density per unit energy decreases. At high applied voltages, the current
density follows the equation below.

JSCLC−exp = qµNV
ϵγ

(qNt)
γ

Uγ+1

d2γ+1 (6)

where ε is the dielectric constant of CdTe, and γ = TC/T is the ratio between the charac-
teristic temperature and the ambient temperature. One can easily observe in Figure 12
that the ohmic conduction mechanism becomes dominant between 0.15 and 0.5 V and
above the transition voltage (evaluated at 0.53 V), between 0.6 and 1.25 V, the transport
through the Ag/CdTe/Al structure is based on the SCLC in the presence of the exponential
trap distribution.

When applying a reverse bias (the third quadrant from Figure 11), the dominant
transport mechanism through the Ag/CdTe/Al structure is based on the Schottky effect at
a barrier potential. In this situation, the current density obeys the following law:

Js = A∗T2e−
Φ

kBT e
βS

√
U

kBT
√

w = Js0e
βS

√
U

kBT
√

w (7)

where A* is the Richardson constant for semiconductors (A ∗ = 4πqm∗K2

h3

)
, βS =

√
q3

4πε0εr

is the Schottky coefficient, w is the depletion region, and Φ represents the height of the
Schottky barrier. Figure 13 illustrates the logarithmic dependence of the saturation current
density on the voltage at reverse bias recorded at 316K and allows for the evaluation of
the depletion layer w, i.e., obtained as 10 nm for this temperature. In order to provide
a determination of the Schottky barrier, we have recorded four current density–voltage
characteristics at temperatures of 316K, 324K, 343K, and 364K, as displayed in Figure 14a.
Figure 14b emphasises the linear dependence of ln

(
Js0
T2

)
vs.

(
103

T

)
for all four temperatures,

thus allowing the determination of the Schottky barrier at the Al/CdTe interface, i.e., 0.47 eV,
where JS0 is the intercept of each characteristic from Figure 14a, namely the saturation
current density value at 0 V. There is indeed a difference in the experimentally computed
value of Φ (0.47 eV) at the Al/CdTe interface in comparison to the theoretical value:

χCdTe + Eg CdTe − ΦAl
∼= 3.7 eV + 1.4 eV − 4.3 eV ∼= 0.8 eV.

The inherent presence of surface states at the Al/CdTe interface that usually leads to the
increase in donor charge carriers’ concentration at the interface, which decreases the barrier
at the metal/semiconductor interface, can explain the difference in the experimental value
of the Schottky barrier evaluated at 0.47 eV in comparison to the theoretical value.
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4. Discussions

The present study reports an investigation of the RF power impact upon the mor-
phological, structural, and optical properties of sputtered CdTe nanostructured thin films.
The CdTe nanostructured thin films were prepared via the RF–MS technique by varying
the deposition power from 70 W up to 100 W. The structural investigation has revealed
that all of the samples possess good crystallinity and a preferential orientation with (111)
crystallographic planes parallel to the surface. In addition, the typical structural parameters
(crystallite size, mean-square strain, and experimental value of the lattice constant) were
determined for each fabricated sample. A tendency was observed for increases in the
crystallite size that were correlated with the increasing of the RF sputtering power, in
agreement with the few existing studies in the literature [38,48]. Moreover, all samples
showed low values of lattice strain. SEM cross-sectional investigations of the CdTe nanos-
tructured thin films allowed for the estimation of their corresponding thicknesses (583 nm
for the CdTe sputtered at 70 W, 874 nm for the sample deposited at 80 W, 958 nm for the
one at 90 W, and 983 nm for the one at 100 W) along with the general observation that all
samples exhibited a compact aspect and good conformity, also in agreement with some
previously reported studies [42,48]. The surface topography of the CdTe nanostructured
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thin films was analysed via the AFM technique and the typical surface morphology pa-
rameters RMS, Ssk, and Sku were determined in each case. As a general observation, all
nanostructured thin films sputtered at each working power presented relatively low values
of RMS, and there was a trend of linear increase in the RMS roughness parameter that was
correlated with the increases in the RF sputtering power. Previous studies report much
larger surface RMS values and larger variations in the RF plasma power [45,48]. The optical
properties of the CdTe nanostructured thin films deposited on optical glass substrates were
investigated via transmission and absorption spectroscopy. The transmission spectra of
all RF-sputtered samples show that all the films possessed more than 65% transparency
in the 800–1800 nm region; therefore, the material obtained in these specific conditions
can be successfully employed as an absorber layer in different optoelectronic structures.
Moreover, from these spectra, the optical thickness values of each CdTe thin film were also
estimated (690 nm at 70 W, 941 nm at 80 W, 971 nm at 90 W, and 1078 nm at 100 W). A
good agreement was observed with the ones determined by cross-section SEM analysis.
Using the absorption spectra corresponding to each sample, the experimental band gap
energies of the CdTe were computed by using the Tauc plot technique. The obtained
values of the band gap energy (1.44 eV for the sample sputtered at 70 W, 1.47 eV for the
one at 90 W, and 1.49 eV for the ones at 80 W and 100 W) are in line with the scientific
literature. Comparing these results with the few existing studies regarding the effects of
RF magnetron power on the properties of CdTe nanostructured thin films [38,42,45,48], in
this study with higher RF power values than the other studies, the optical transmittance of
the nanostructured thin films was higher for the respective thickness range, with a smaller
variation in the thickness and estimated bandgap values that are less dependent on the
RF magnetron power variation. This fact can be correlated with the larger crystallites in
the films used in the present study, as well as their excellent thickness uniformity and
surface morphology. The Ag/CdTe/Al “sandwich” structure was fabricated via VTE for
Ag and Al layers in order to study the electrical properties of CdTe nanostructured thin
films. The electrical investigation of the aforementioned structure consisted of recording
the J–V characteristics in the dark. At forward bias, the dominant conduction mechanisms
identified were the ohmic conduction at low injection levels (between 0.15 V and 0.5 V)
and above the transition voltage (0.56 V), the SCLC, which, in the presence of exponential
trap distribution at high injection levels (0.6–1.25 V), becomes dominant. At reverse bias,
the thermionic emission of the majority charge carriers assisted by the field at the barrier
(the Schottky mechanism) was identified as the transport mechanism. Accordingly, the
thickness of the depletion layer (~10 nm) was evaluated and, by plotting the logarithmic
dependencies for four temperatures, the Schottky barrier was found to be Φ ≈ 0.47 eV.
Therefore, the Ag/CdTe/Al structure forms an ohmic contact at the Ag/CdTe interface,
whereas at the Al/CdTe interface, there is a blocking contact. Considering the structural,
morphological, optical, and electrical properties of the sputtered CdTe nanostructured thin
films, and the impact that the varied RF power has upon them, one can conclude that,
depending on the specific role CdTe plays when integrated into a structure, the deposition
parameters, especially the deposition RF power, must be carefully chosen. The general
conclusion is that the samples prepared at 90 W seem to have the best characteristics for
use as an absorber layer due to their highest crystallinity, low lattice strain values, excellent
bulk, and surface homogeneity, and 65% optical transmittance at 880 nm. However, all the
presented CdTe films displayed characteristics that make them suitable to be integrated
into optoelectronic devices, especially in solar cells for space applications.

5. Conclusions

The aim of the present work was to improve the quality of CdTe nanostructured thin
films by using the RF magnetron sputtering (RF–MS) technique as a reliable deposition
method, with the ability to control the deposition parameters more easily. This study
focused on the investigation of the influence of RF power on the physical properties
of thin CdTe films deposited on two types of substrates: optical glass and p-type Si.
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For this study, four different powers of 70, 80, 90, and 100 W have been selected. The
results from investigations employing the techniques GIXRD, SEM, AFM, and UV–VIS
spectroscopy, and determining the I–V characteristics, show the significant potential of
these nanostructured thin films to serve as absorbent layers in ultra-thin-film solar cells. The
results of this work add important experimental information to existing studies regarding
the optimisation of the properties of CdTe material in the RF–magnetron sputtering growth
process, which, up to now, has been proven as one of the most suitable techniques for
achieving CdTe thin-film layers that can be used as absorber layers in real-life, large-scale
applications. New relevant information released by the present study points towards 90 W
RF power as the optimal power for obtaining a high crystallinity of ~1µm nanostructured
thin films on p-Si and optical glass substrates with optical and electrical properties suitable
for use as absorber layers. This study adds value to the existing international database on
the specific subject.
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