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Abstract: We report a new facile method for the synthesis of prolate cobalt ferrite nanoparticles
without additional stabilizers, which involves a co-precipitation reaction of Fe3+ and Co2+ ions in a
static magnetic field. The magnetic field is demonstrated to be a key factor for the 1D growth of cobalt
ferrite nanocrystals in the synthesis. Transmission electron microscopy (TEM), X-ray diffraction
(XRD), and Raman spectroscopy are applied to characterize the morphology and structure of the
obtained nanoparticles. According to TEM, they represent nanorods with a mean length of 25 nm
and a diameter of 3.4 nm that have a monocrystalline structure with characteristic plane spacing of
2.9 Å. XRD and Raman spectroscopy confirm the spinel CoFe2O4 structure of the nanorods. After
aging, the synthesized nanorods exhibit maximum saturation magnetization and coercivity equal
to 30 emu/g and 0.3 kOe, respectively. Thus, the suggested method is a simple and “green” way
to prepare CoFe2O4 nanorods with high aspect ratios and pronounced magnetic properties, which
are important for various practical applications, including biomedicine, energy storage, and the
preparation of anisotropic magnetic nanocomposites.

Keywords: anisotropy; cobalt ferrite; co-precipitation; crystal growth; magnetic field; nanorods

1. Introduction

In recent years, high attention has been attracted to the synthesis and investigation
of magnetic nanomaterials [1–3], which can be used in many areas, such as the prepa-
ration of magnetic nanocomposites and gels [4,5], soft robotics [6], energy storage de-
vices [7], green energy production [8], and various biomedical applications [9,10], including
hyperthermia [11], magnetic resonance imaging [12], the development of magnetically
responsive industrial systems [13], and so forth. For such nanomaterials, anisotropic (cylin-
drical, plate-like, etc.) magnetic nanoparticles (NPs) are of high interest [14–16] because
of their enhanced magnetic properties [17], anisotropy of magnetism, a larger area of the
locally induced magnetic field in comparison to nanospheres, etc. [10], as well as their
ability to impart anisotropy to nanocomposite materials.

Various methods for synthesis of elongated magnetic NPs have been described, in-
cluding solvothermal [18], hydrothermal [19], sol–gel [20] or co-precipitation [21] reactions,
ultrasound treatment [22], synthesis in the presence of polymers [23] or surfactants [24–26],
modification of the crystal structure of pre-synthesized rod-like particles [12], etc. In most
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of these approaches, either a template or a stabilizer is used to provide the growth of NPs
in one direction. After synthesis, the surface of NPs usually remains covered with the stabi-
lizer, which may complicate its further modification with organic or inorganic compounds.

Recently, the use of a magnetic field as a template for the 1D growth of magnetic
NPs was proposed [27–33]. For instance, a facile and “green” method for the synthesis
of elongated magnetite (Fe3O4) nanoparticles was elaborated, which consists of the co-
precipitation of Fe3+ and Fe2+ ions in a magnetic field [30,31]. This method allowed
obtaining cylindrical Fe3O4 NPs of different lengths of up to 150 nm and magnetizations of
ca. 29 emu/g. A growth mechanism was proposed, which includes the appearance of small
spherical “seed” nanoparticles at the first reaction stage, which then self-assemble into a
rod in the external magnetic field and fuse to form a cylindrical NP [32]. The magnetic field
was further applied for the synthesis of several 1D nanomaterials, mostly nanowires [33].

Most of the approaches for anisotropic NP synthesis described above are rather well
developed for iron oxides, such as magnetite or maghemite. It seems reasonable to ap-
ply this method to the preparation of other kinds of magnetic NPs; for instance, cobalt
ferrite (CoFe2O4) NPs, which are of high interest for practical applications due to high
coercivity [34] and chemical stability [35]. Current methods of the synthesis of anisotropic
cobalt ferrite NPs are rather complex and involve additional compounds [36–38]. For
instance, 25 nm × 120 nm CoFe2O4 nanorods were synthesized by a hydrothermal reac-
tion at 130 ◦C in the presence of cetyltrimethylammonium bromide [38]. Further studies
reported the hydrothermal synthesis of cobalt ferrite nanorods doped with Gd3+ ions [39]
or Pr3+ ions [40] in the absence of surfactants. Micrometer-sized cobalt ferrite rods were
obtained by thermal decomposition at 400–700 ◦C of a CoFe2(C2O4)3 precursor prepared by
a solvothermal reaction [41]. There is only one work in which small (several nm) isotropic
cobalt ferrite NPs were assembled into rod-like microaggregates during the thermal decom-
position of iron(III) and cobalt(II) acetylacetonates in oleic acid, oleylamine, and a benzyl
ether at 200 ◦C under the gradient magnetic field [42]. However, those microaggregates
did not represent single crystals but were composed of individual spherical NPs.

In this article, for the first time, we apply the synthesis in a magnetic field to prepare
single-crystal cobalt ferrite nanorods. We evidence that a static magnetic field of 0.4 T is
sufficient to obtain single-crystal NPs with a length of 25 nm and a diameter of 3.4 nm,
which exhibit stronger superparamagnetic properties than the corresponding isotropic NPs.
One can expect that such magnetic-field-assisted 1D growth may be further applied to
other magnetic metal oxides as well.

2. Materials and Methods
2.1. Materials

Iron(III) chloride hexahydrate (FeCl3·6H2O, purity > 97%) and cobalt(II) nitrate hex-
ahydrate (Co(NO3)2·6H2O, purity > 98%) were purchased from Sigma-Aldrich (Steinheim,
Germany). Sodium hydroxide (purity > 98%, residual water content < 15%) was obtained
from Acros (Geel, Belgium). All chemicals were used without further purification. The
solutions were prepared in distilled deionized water purified by the Millipore Milli-Q
system (Burlington, MA, USA).

2.2. Synthesis of NPs

Synthesis of NPs was performed by a precipitation reaction of Fe3+ and Co2+ ions in
an alkaline solution. The solution of ions with a Fe3+:Co2+ molar ratio of 2:1 was prepared
by dissolving 2 M FeCl3 and 1 M Co(NO3)2 in water at magnetic stirring. A total of 2 mL of
this solution was put into a reaction vessel kept at 70 ◦C [43] in the presence or absence of a
static magnetic field of 0.4 T created by a permanent NdFeB magnet. Then, 2.5 mL of 6.5 M
NaOH was added to the reaction medium, and the reaction was allowed to proceed for
4 h. At the end of the reaction, pH was ca. 6.3, which was measured with a MettlerToledo
SevenMulti pH meter(Columbus, OH, USA). To increase the magnetic properties, the
solution of NPs was aged at 80 ◦C. The aging time varied from 1 to 250 h. The final product



Nanomaterials 2024, 14, 541 3 of 14

was separated from the liquid by magnetic decantation and washed with distilled water.
The purification was repeated 3 times.

2.3. Transmission Electron Microscopy

For TEM and high-resolution (HR) TEM measurements, the samples were diluted
10 times with distilled water and after that sonicated for 40 min in pulse mode (5 s of pulses
followed by 5 s of rest) with a Sonics VCX 500 ultrasonicator (Newtown, CT, USA) to break
the aggregates of NPs. Then, 10 µL of the NP solution was placed onto a 140 mesh Formvar-
coated copper grid and air-dried for 3 min at 25 ◦C. TEM images were obtained using a
JEM 2100 F/Cs (Jeol, Tokyo, Japan) operated at 200 kV and equipped with a UHR pole
tip as well as a spherical aberration corrector (CEOS, Heidelberg, Germany) and an EEL
spectrometer (Gatan, Munich, Germany). The details of the measurements are described
elsewhere [44]. The electron micrographs were processed by ImageJ software version 1.54i
in order to obtain distances between the crystal planes and to plot the histograms with the
NP size distribution [45].

2.4. X-ray Diffraction

The crystal structure of the samples was determined by X-ray diffraction using a
Bruker AXS D8 DISCOVER setup with a Cu Kα (wavelength λ = 0.15418 nm) radiation at
θ-2θ geometry at room temperature. For measurements, samples were prepared by drying
the NP solution on a monocrystalline Si (111) wafer.

2.5. Raman Spectroscopy

The crystal structure and phase composition of the NPs were investigated using
a micro-Raman spectrometer LabRam HR800 (Horiba Jobin Yvon, Villeneuve d’Ascq,
France) with an ×100 magnification objective (numerical aperture of 0.9). Details of the
experimental procedures are described elsewhere [46]. Measurements were conducted
at room temperature in the air environment. A He-Ne laser with a 632.8 nm wavelength
was used to excite Raman scattering. The irradiation power density on the sample was
continuously decreased until no further changes were observed in the spectra obtained.
We found that a power of approximately 0.5 mW and a laser spot diameter of about 10 µm
were sufficient to avoid structural changes or phase degradation in the films. The spectra
were recorded in the range of 100–800 cm−1, and in our measurement conditions, the total
acquisition time to obtain a spectrum with a good signal-to-noise ratio was several hours.

2.6. X-ray Photoelectron Spectroscopy

The chemical state of the elements in NPs was analyzed by X-ray photoelectron
spectroscopy (XPS) on an Axis Ultra DLD spectrometer (Kratos Analytical, Manchester,
UK) with the monochromatic Al Kα X-ray source (1486.7 eV, 150 W) under ultra-high
vacuum conditions (10−9 mbar). Pass energies of 160 and 40 eV were used, respectively,
for survey spectra and high-resolution scans. The powder samples were fixed on a holder
using non-conductive double-sided adhesive tape. The Kratos charge neutralizer system
was used, and the spectra were charge referenced to give the lattice oxygen component in
the O1s spectra a binding energy of 530.1 eV, which is typical for iron oxides [47]. This led
to the binding energy of the C1s peak, which is characteristic of adventitious carbon (about
285.0 eV), which confirmed the reliability of the charge reference procedure.

2.7. Magnetometry

The dependencies of magnetization M vs. the applied field strength H of the NPs were
measured with a vibrating sample magnetometer, LakeShore 7407 (Westerville, OH, USA)
(VSM), at 300 K. The strength of the applied magnetic field varied from −16 to 16 kOe. The
samples were dried at room temperature and demagnetized before the measurements. The
mean values of saturation magnetization Ms and coercive force Hc were deduced from
3 different measurements.
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3. Results and Discussion

In this study, we have synthesized NPs by the co-precipitation of Fe3+ and Co2+ ions
in an alkaline medium. Under a magnetic field of 0.4 T, the elongated rod-like NPs were
obtained (Figure 1A). According to TEM data, their mean length <L> and diameter <drod>
are equal to 25 and 3.4 nm, respectively (Figure 2A,B), which corresponds to a rather high
aspect ratio of ca. 7. The nanorods co-exist with some spheres indicated by arrows in
Figure 1A. The diameter of spheres is ca. 4.7 nm, which is close to that of the nanorods
(Figure 2B,C). Previously, the co-existence of spherical NPs with nanorods, grown in the
magnetic field, was reported for systems containing magnetite Fe3O4 [30,32].
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several spheres co-existing with nanorods.
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Figure 2. Size distribution histograms of NPs obtained from TEM micrographs: length (A) and
diameter (B) of nanorods synthesized under magnetic field; diameter of spheres co-existing with
nanorods (C); diameter of NPs synthesized in the absence of magnetic field (D). The numbers
indicated in the diagrams are relative to the total number of particles analyzed (which was between
100 and 200).

The presence of a magnetic field is a principal factor in obtaining the nanorods. Indeed,
under the same conditions but in the absence of a magnetic field, there are only isotropic
spherical NPs (Figure 1B) with mean diameters of <dsph> = 5.6 nm (Figure 2D). This is
consistent with the literature data, where the size of the prepared spherical NPs in the
sub-10 nm range by the co-precipitation of Fe3+ and Co2+ was reported to be dependent on
the reaction conditions, e.g., temperature [43,48].

The crystal structure of the synthesized NPs was investigated by TEM. It was shown
that the nanorods obtained under a magnetic field are single crystalline (Figure 3A), and
the {220} crystallographic planes of cobalt ferrite [49] with a characteristic plane spacing of
2.9 Å can be identified at the micrograph. Isotropic NPs co-existing with nanorods are also
single crystals, and {311} planes with spacings of 2.5 Å [50] are seen (Figure 3B). The energy
dispersive X-ray (EDX) spectrum shows that the ratio of Fe to Co atoms in the synthesized
NPs is close to 2 (Figure 3C), which corresponds to that in the CoFe2O4 phase (C and Cu
peaks at the EDX spectrum arise due to the substrate used in TEM measurements). Thus,
HR TEM results show that the co-precipitation of Fe3+ and Co2+ ions in the magnetic field
results in obtaining cobalt ferrite single nanocrystals. Note that NPs synthesized in the
absence of a magnetic field are also single crystalline (Figure 3D).
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Figure 3. (A,B) HR TEM micrographs of NPs synthesized under a magnetic field of 0.4 T:
(A)—nanorod; (B)—sphere; (C) energy-dispersive X-ray (EDX) spectrum for the sample synthe-
sized under a magnetic field; (D) HR TEM micrograph of an NP synthesized in the absence of a
magnetic field; (E) energy-dispersive X-ray (EDX) spectrum for the sample synthesized in the absence
of a magnetic field. In the HR TEM pictures, crystallographic planes and plane spacing distances of
cobalt ferrite are identified.

In order to identify the phase composition of the synthesized NPs, XRD (Figure 4)
and Raman spectroscopy (Figure 5) were employed. The XRD pattern of the NPs synthe-
sized in the magnetic field (Figure 4b) is consistent with a powder diffraction pattern of
a Co3−xFexO4 spinel structure (Figure 4c), which was calculated using Profex 5.2.7 soft-
ware [51] based on a crystal structure from Ref. [52] with a lattice constant of a = 8.36 Å.
This lattice constant confirms the composition with x ≈ 2 (for pure CoFe2O4, a = 8.381 Å,
for pure Co2FeO4, a = 8.242 Å) [52], proving the formation of the CoFe2O4 inverse spinel.
Isotropic particles prepared without a magnetic field produce a much weaker pattern with
broader lines (Figure 4a), which is due to the small size of NPs. However, the most intensive
(311) spinel reflection at 2θ ≈ 35.5◦ is also detected. A slight shift of the diffraction peak to
lower angles is observed for the spheres (synthesized without magnetic field) compared to
the rods (obtained in magnetic field). This may be due to a change in composition [52] or to
structural strains in the samples [53]. We believe that the shifts of XRD peaks are due to
the minor changes in the elemental composition of the crystals, which is confirmed by XPS
data (presented below) showing that cobalt ferrite spheres have a slightly higher content of
iron than nanorods (note that the EDX data in Figure 3 show the same trend—the atomic
ratio Fe:Co is 2.06 for rods and 2.31 for spheres). A higher amount of iron increases the
lattice constant, so XRD peaks shift to lower 2θ values.
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The Raman spectrum of rod-like NPs (Figure 5a) is in perfect agreement with that
reported for CoFe2O4 nanoparticles in the literature [54] (Figure 5b). The peaks at 643 and
690 cm−1 correspond to the highest frequency A1g mode split into two due to cation
inversion [55,56]. These modes involve the symmetric stretching of an oxygen atom with
respect to a metal ion in a tetrahedral void. The modes below 600 cm−1 involve symmetrical
or asymmetrical bending of metal–oxygen bonding in octahedral sites. They have T2g (567,
481, and 181 cm−1) or Eg (306 cm−1) symmetries. The spectrum of NPs synthesized in
the absence of a magnetic field has broader lines, which is due to the small NP size, but
the main bands are visible and coincide with the CoFe2O4 structure. Therefore, XRD and
Raman spectroscopy confirm that the NPs synthesized both in the presence and absence of
a magnetic field have a spinel CoFe2O4 structure.

The high-resolution XPS spectra of NPs are presented in Figure 6. Overlapping with
Co LMM and Fe LMM Auger lines complicates the analysis of the Fe 2p and, especially
Co2p spectra. Both the Fe2p (Figure 6A) and Co2p (Figure 6B) spectra are virtually the same
for the rods and spheres. The Fe2p spectra (Figure 6A) show a doublet of the Fe2p3/2 and
Fe2p1/2 lines at binding energies of 711.1 and 724.6 eV with a series of shake-up satellites
separated for about 8 and 18 eV from the main lines. Both the position and the satellite
structure of the Fe2p spectra are typical for Fe3+ species in iron oxides [47,57]. The synthetic
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component proposed for Fe3+ species in [58] fits the Fe2p spectra of NPs. The Co 2p XPS
spectra of the samples demonstrate well-pronounced shake-up satellites shifted for about
6.5 eV to higher binding energies from the main Co2p3/2 and Co2p1/2 lines located at
780.5 and 796.3 eV. These spectra are typical for Co2+ species in cobalt oxides [59]. The O1s
spectra (Figure 6C), along with the lattice oxygen peak at 530.1 eV, contain two additional
peaks. The peak at 531.5 eV can be attributed to surface hydroxide and carbonate species,
while the peak at 533.5 eV can be assigned to single O−C bonds in adventitious carbon on
the surface. Such oxygen spectra are typical for the ex situ prepared metal oxide samples.
Summarizing, the XPS data confirm that both samples mainly contain Fe3+ and Co2+ species
coordinated with lattice oxygen.
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These results suggest a mechanism for the anisotropic growth of rod-like cobalt ferrite
NPs in the magnetic field (Figure 7), which is similar to the mechanism proposed earlier
for the magnetic-field-assisted synthesis of rod-like magnetite [32]. At the first stage of the
co-precipitation reaction, small isotropic “seed” NPs are formed. At this stage, most of
the OH− ions of alkali are consumed for the formation of cobalt ferrite according to the
following reaction:

Co2+ + 2Fe3+ + 8 OH− → CoFe2O4 + 4H2O (1)
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Figure 7. Schematic representation of the growth mechanism of cobalt ferrite nanorods in the presence
and absence of a magnetic field.

This induces a drop in pH from an initial value of ~14 to ~6.3, which was measured for
the syntheses carried out in the present work. CoFe2O4 has an isoelectric point of ca. 7 [60];
therefore, at pH 6.3, the “seed” NPs are only slightly positively charged. Thus, electrostatic
repulsion between the “seeds” is not strong enough to prevent self-assembly into columnar
structures due to magnetization obtained in the external magnetic field [61]. At the latter
reaction stages, the “seeds”, which are assembled together, fuse into a single-crystalline



Nanomaterials 2024, 14, 541 9 of 14

rod. The growth of rods by aggregation and the re-crystallization of primary particles
in the magnetic field was previously described for micrometer-sized rod-like magnetite
particles synthesized by co-precipitation [28]. This resembles the general features of the
nanoparticles’ growth [62]. In the absence of a magnetic field, the “seeds” do not fuse into
rods but into some larger isotropic NPs (Figure 7).

The magnetic properties of synthesized cobalt ferrite NPs were studied with mag-
netometry. In Figure 8a, the hysteresis curves, obtained from the VSM measurements
at room temperature (300 K), are depicted. The values of saturation magnetization Ms
and coercivity Hc determined from the curves (Figure 8b) are presented in Table 1. In
Figure 8a, one can see that the size of the hysteresis loop is much larger for nanorods. As a
consequence, the sample containing nanorods demonstrates significantly higher values of
Ms and Hc (Figure 8b), which indicates that nanorods possess stronger magnetic proper-
ties than isotropic NPs. The rise of saturation magnetization and coercivity with the size
of monocrystalline CoFe2O4 NPs was previously described in the literature [63]. It was
explained by increasing the size of magnetic domains where the atomic spins are aligned
along the direction of the applied magnetic field. As a result, the maximum magnetization
of the particles and the strength of the reverse external field required to demagnetize them
increased [63].

Obtained nanoparticles are single crystals (Figure 3A), and they have slightly lower but
comparable magnetic properties compared to larger polycrystalline particles [35] and bulk
CoFe2O4 [64]. An increase in the nanocrystal size induces a rise of saturation magnetization,
reaching 80 emu/g for 50 nm NPs and not increasing further up to the bulk. The coercive
force shows a non-linear dependence on the NP size. A maximum of 1.2 kOe is reached for
25 nm NPs, and it is lower for both smaller (as in this work, where it equals 0.6 kOe) and
larger NPs. For the bulk, the coercive force is only 0.06 kOe.

Table 1. Values of saturation magnetization Ms and coercivity Hc anisotropic cobalt ferrite nanorods
before and after 1 h of aging at 80 ◦C in comparison with isotropic cobalt ferrite NPs.

Ms, emu/g Hc, Oe

Isotropic CoFe2O4 NPs 0.3 111
CoFe2O4 nanorods 8.3 248

CoFe2O4 nanorods after 1 h of aging 28.5 265
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Figure 8. Magnetic hysteresis loops of isotropic cobalt ferrite NPs (violet) and anisotropic cobalt
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The solution of synthesized nanorods was aged at 80 ◦C to increase the magnetic
properties [65]. The hysteresis loop of the nanorods after aging for 1 h demonstrates a
3 times higher value of saturation magnetization Ms, than nanorods before aging (Figure 8a,
Table 1). The increase in Ms upon aging can be attributed to the increased size of the
crystallite, as was suggested by F. Huixia and co-authors [65] for aged isotropic CoFe2O4
NPs. Unlike Ms, the value of coercivity Hc of the nanorods before and after aging remains
almost the same (Table 1). Probably, the temperature of aging is not high enough to
additionally adjust the aligned atomic spins inside the rod-like particles. Longer aging up
to 250 h (Figure 9) does not affect the Ms and Hc values (see Supplementary Information for
the corresponding hysteresis loops). Therefore, 1 h of aging is enough to obtain anisotropic
CoFe2O4 NPs with maximum saturation magnetization Ms and coercivity Hc, which are
equal to 30 ± 1 emu/g and 330 ± 15 Oe, respectively.
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4. Conclusions

In this paper, it is shown, for the first time, that a static magnetic field of moderate
strength can be used as a template for the anisotropic growth of cobalt ferrite NPs, which is
one of the most attractive nanomaterials in many applications. Nanorods with an aspect
ratio of ca. 7 are synthesized by the co-precipitation of Fe3+ and Co2+ ions in alkali. They are
single crystals and co-exist with some spherical NPs. EDX, XRD, and Raman spectroscopy
confirm the formation of a CoFe2O4 spinel structure. The magnetic field is demonstrated
to be a key factor that provides anisotropic growth at the same synthesis conditions. But,
in the absence of a magnetic field, only small isotropic CoFe2O4 NPs are obtained. It was
suggested that anisotropic cobalt ferrite NP growth proceeds in two steps: (1) the formation
of “seed” NPs and (2) the self-assembly of “seeds” into columns in the magnetic field and
their fusion into single-crystal nanorods. According to VSM data, the maximum values of
saturation magnetization Ms and coercivity Hc of the nanorods are obtained after 1 h of
aging at 80 ◦C and equaled 30 emu/g and 0.33 kOe, respectively. The results of this paper
demonstrate that a facile and “green” magnetic-field-assisted synthesis of anisotropic NPs
with pronounced magnetic properties can be applied not only to magnetite but also other
metal oxides. This opens a route for simplifying the production of anisotropic magnetic
nanoparticles, which are currently synthesized mostly by rather complex methods. The
surface of the obtained nanorods is free of additional stabilizers and can be further easily
modified. Cobalt ferrite nanorods may be used in various practical applications, including
biomedicine, energy storage, green energy production, and the preparation of magnetic
nanocomposites and gels with controlled anisotropy.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/nano14060541/s1, Figure S1: hysteresis loops of cobalt ferrite nanorods
after aging for different periods of time at 80 ◦C.
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