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Abstract: We describe the creation of a conductive microcavity based on the assembly of two pieces of
carbon nanotube buckypaper for the entrapment of two enzymes, horseradish peroxidase (HRP) and
glucose oxidase (GOx), as well as a redox mediator: 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic
acid diammonium salt (ABTS). The hollow electrode, employing GOx, HRP, and the mediator, as
an electrochemical enzyme cascade model, is utilized for glucose sensing at a potential of 50 mV
vs. Ag/AgCl. This bienzyme electrode demonstrates the ability to oxidize glucose by GOx and
subsequently convert H2O2 to water via the electrical wiring of HRP by ABTS. Different redox
mediators (ABTS, potassium hexacyanoferrate (III), and hydroquinone) are tested for HRP wiring,
with ABTS being the best candidate for the electroenzymatic reduction of H2O2. To demonstrate the
possibility to optimize the enzyme cascade configuration, the enzyme ratio is studied with 1 mg HRP
combined with variable amounts of GOx (1–4 mg) and 2 mg GOx combined with variable amounts
of HRP (0.5–2 mg). The bienzyme electrode shows continuous operational stability for over a week
and an excellent storage stability in phosphate buffer, with a decay of catalytic current by only 29%
for 1 mM glucose after 100 days.

Keywords: enzyme cascade; buckypaper; glucose oxidase; horseradish peroxidase; glucose

1. Introduction

Bioelectrodes that harness the combined capability of many oxidoreductase enzymes
at the same time to catalyze multistep reactions are important for biosensing applica-
tions [1,2] and bioconversion of energy [3,4]. Systems that integrate multiple enzymes have
been developed for biochemical analysis and for optimizing the profitability of substrate
consumption [5,6]. This is achieved by maximizing the number of electrons during the oxi-
dation or reduction of the substrate molecule. One-pot reaction based on enzyme cascades
in a single platform enables the deep oxidation of biofuels or the production of value-added
products without the need to separate intermediates [7,8]. Recently, artificial multienzyme
systems have been used to construct bioelectrodes that include an integrated one-pot cat-
alytic system [1,2,9,10]. In addition to biosensing applications, enzyme cascades enable the
full oxidation of fuels, which is essential for effective biofuel cells [3,11]. However, the opti-
mization of this type of electro-enzymatic system is difficult and time-consuming to set up.
Indeed, the association of several enzymes with different specific activities in precise ratios
is complicated to achieve. The immobilization of enzymes is critical for the advancement
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of bioelectronics, as it enhances their durability on bioelectronic interfaces, enabling their
continuous use [12–14]. To immobilize multiple enzymes, it is necessary to ensure compat-
ibility between enzymes, establish efficient electron transfers, maintain catalytic activity,
and optimize support materials. However, the immobilization step can affect the optimal
conformation of each enzyme and decrease the accessibility of the substrate to the enzymes.
The immobilization of multi-enzyme systems on electrodes has been undertaken using a
variety of methods including adsorption, covalent bonding, trapping, and cross-linking [1].
The process of enzyme immobilization presents several challenges [15], particularly the
low amount of enzymes that can be fixed. The effectiveness of immobilization can also
be limited by the availability of reactive sites on the support surface. In addition, tuning
specific ratios of enzymes on a surface can be challenging, especially when developing
biocatalytic systems that require specific ratios. In particular, the creation of a multienzyme
system requires a different grafting process for each enzyme or even trapping of enzyme
mixtures. In addition, given the limited surface area of the electrode, the immobilization of
several enzymes reacting in a cascade involves reducing the quantity of enzyme catalyzing
the first reaction. Therefore, more electrons are generated per molecule, but the initial
oxidation related to the amount of the first step enzyme will decrease. Moreover, it is
sometimes necessary to add redox mediators to electrically wire one or more enzymes to
the electrode. Taking into account the fact that the redox mediators must also be fixed,
this reduces the possibilities of enzyme grafting and above all complicates the grafting
step, which must be selective for each enzyme. In the case of enzyme trapping in materials
such as hydrogels, polymers, etc., the problem lies in the diffusion of the substrate and its
successive degradation products in the electrode biomaterial.

An original alternative involves combining the advantages of enzymes in solution,
such as accessibility and ease of modulating ratios, with the benefits of immobilization
on an electrode, particularly the requirement for a small quantity of enzyme. In nature,
enzymes are contained and concentrated within nanocompartments. Enzyme cascades
can be highly effective, achieving high reaction rates and minimizing intermediate losses.
Despite progress in the development of cascade biocatalytic systems, the realization of a
simple and rapid strategy for tuning multiple enzyme ratios within electrochemically wired
enzyme cascades has been overlooked. To the best of our knowledge, existing solutions
have yet to target such goals as creating conductive microcavities based on carbon nanotube
buckypaper for the exploitation of enzyme cascades in microvolumes. Therefore, our goal
was to create a model of a carbon nanotube-material-based electrode with a microcavity
containing enzymes, where the structure is permeable to water and enzyme substrates
but impermeable to enzymes. The design was achieved by assembling two buckypapers,
which facilitated the formation of the microcavity and the electrical connection of the
multienzymatic system.

To illustrate this new concept of electrode fabrication based on a cascade of enzymes
involving redox mediators, a widely studied model of the association of two enzymes, glu-
cose oxidase (GOx) and peroxidase (HRP), was chosen. This model system was combined
with redox mediators for the electrical wiring of the HRP (Figure 1). The modulation of the
enzyme ratio was achieved simply by depositing a controlled amount of each enzyme in
powder form in the microcavity before its closure. Using GOx and HRP as a model system,
glucose was oxidized, and the generated H2O2 was reduced by the wired HRP. In addition
to the study of different redox mediators in terms of operational stability and efficiency
to connect HRP, the ratio of the two entrapped enzymes was examined to maximize the
amplitude of the amperometric signal to glucose.
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Figure 1. Schematic representation of the bienzyme electrode’s functionality, based on two enzymes 
and a redox mediator within a buckypaper microcavity, for glucose oxidation and hydrogen perox-
ide reduction. (A) The illustration depicts the exploded three-dimensional structure showing the 
concept of the microcavity structure. The inset displays a microscopic image of the inner electrode’s 
side in contact with the enzymes and mediator. (B) The enzymatic reactions enabling the recording 
of cathodic current from the cascade electrode. 

2. Materials and Methods 
2.1. Chemicals and Reagents 

Multi-walled carbon nanotubes (MWCNTs) were obtained from Nanocyl (Sambre-
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µm, and a purity greater than 95%. GOx was obtained from Aspergillus niger (163.4 
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ethylbenzothiazoline-6-sulfonic acid diammonium salt (ABTS), hydroquinone, potassium 
hexacyanoferrate (III), glucose, H2O2, pyrogallol, and dimethylformamide (DMF) were ob-
tained from Sigma-Aldrich (Saint-Quentin-Fallavier Cedex, France). All chemicals were 
used without further purification. Sodium phosphate buffer or PB (pH 7.0) was prepared 
by mixing sodium phosphate monobasic (NaH2PO4·H2O, 42.23 mmol) and sodium phos-
phate dibasic (Na2HPO4·7H2O, 57.77 mmol), dissolving in water, diluting to 1.0 L, and 
adjusting the pH to 7.0 using a pH meter (Hach Lange GmbH, Düsseldorf, Germany) and 
a suitable acid or base solution. The buffer solution was stored at 4 °C for later use. Glucose 
solutions were kept in the refrigerator for 24 h for mutarotation. 
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Electrochemical experiments were conducted using a conventional three-electrode 
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ric measurements were conducted using a potentiostat (Princeton Applied Research PAR-
STAT-MC-PMC1000, AMETEK, Inc. (NYSE: AME)) controlled by Versastudio software, 
ver. 2.60.6. The calibration curves were obtained by increasing the substrate concentration 
stepwise under a stirring condition. 

  

Figure 1. Schematic representation of the bienzyme electrode’s functionality, based on two enzymes
and a redox mediator within a buckypaper microcavity, for glucose oxidation and hydrogen peroxide
reduction. (A) The illustration depicts the exploded three-dimensional structure showing the concept
of the microcavity structure. The inset displays a microscopic image of the inner electrode’s side
in contact with the enzymes and mediator. (B) The enzymatic reactions enabling the recording of
cathodic current from the cascade electrode.

2. Materials and Methods
2.1. Chemicals and Reagents

Multi-walled carbon nanotubes (MWCNTs) were obtained from Nanocyl (Sambreville,
Belgium). These are multi-walled tubes with a diameter of 9.5 nm, a length of 1.5 µm, and
a purity greater than 95%. GOx was obtained from Aspergillus niger (163.4 units/mg), per-
oxidase from horseradish (HRP, 200 units/mg), and 2,2′-Azino-bis(3-ethylbenzothiazoline-
6-sulfonic acid diammonium salt (ABTS), hydroquinone, potassium hexacyanoferrate
(III), glucose, H2O2, pyrogallol, and dimethylformamide (DMF) were obtained from
Sigma-Aldrich (Saint-Quentin-Fallavier Cedex, France). All chemicals were used without
further purification. Sodium phosphate buffer or PB (pH 7.0) was prepared by mixing
sodium phosphate monobasic (NaH2PO4·H2O, 42.23 mmol) and sodium phosphate dibasic
(Na2HPO4·7H2O, 57.77 mmol), dissolving in water, diluting to 1.0 L, and adjusting the pH
to 7.0 using a pH meter (Hach Lange GmbH, Düsseldorf, Germany) and a suitable acid or
base solution. The buffer solution was stored at 4 ◦C for later use. Glucose solutions were
kept in the refrigerator for 24 h for mutarotation.

2.2. Electrochemical Measurements

Electrochemical experiments were conducted using a conventional three-electrode
cell. The working electrode was a sandwich electrode made from buckypaper. A Pt wire
served as the counter electrode. The potential was measured relative to an Ag/AgCl
(saturated KCl) reference electrode. The experiments were performed at room temperature
in a cell containing 0.1 M PB (pH 7.0). Glucose or H2O2 was added into the electrolyte for
investigating the responses toward glucose or H2O2. Cyclic voltammetry and amperometric
measurements were conducted using a potentiostat (Princeton Applied Research PARSTAT-
MC-PMC1000, AMETEK, Inc. (Berwyn, PA, USA) (NYSE: AME)) controlled by Versastudio
software, ver. 2.60.6. The calibration curves were obtained by increasing the substrate
concentration stepwise under a stirring condition.
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2.3. Preparation of Buckypaper

To prepare buckypaper, a combination of vacuum filtration and ultrasonication was
used. First, 66 mg of MWCNTs was dispersed in 66 mL of DMF through vigorous mechani-
cal shaking for 5 min and ultrasonication for 90 min in an ultrasonic water bath (Bandelin
Sonorex RK100, Berlin, Germany). The dispersed MWCNTs in DMF were subsequently
vigorously shaken and transferred onto a membrane filter (Millipore polytetrafluoroethy-
lene (PTFE) filter, JHWP, 0.45 µm pore size, Merck Chimie SAS, Fontenay sous Bois, France)
by vacuum filtration (MZ 2C NT model, Vaccubrand, Wertheim, Germany). The resulting
film was then washed with DMF and water, respectively. The buckypaper was then left to
be dried with the assistance of a vacuum pump for 2 h. Finally, the buckypaper was then
dried overnight at room temperature.

2.4. Preparation of a Buckypaper-Based Sandwich Containing HRP

The MWCNT buckypaper was cut into 13 mm diameter disks and coated with carbon
paste around the circumference of the cut buckypaper to create a thin cylinder, confining
redox molecules and HRP. A flattened stainless-steel wire (150 µm thick) was attached to
the conductive carbon paste (LOCTITE EDAG 423SS E&C; Henkel France S.A.S, Boulogne-
Billancourt, France), and the electrode’s edge was sealed with a silicon insulator. HRP
powder and a redox mediator were deposited into the cavity before the two buckypaper
pieces were sealed. Three different redox molecules, namely ABTS, hexacyanoferrate (III),
and hydroquinone, were used to prepare different electrodes. Each electrode was loaded
with 1 mg of HRP and 0.5 mg of the redox mediator inside the microcavity. A cross-section
image captured by laser-assisted optical microscopy, illustrating the microcavity between
the two buckypapers of the electrode, is presented in Figure S1. Additionally, a control
electrode containing HRP but no redox mediator was prepared similarly. The electrodes
were air-dried for 6 h and then soaked in 0.1 M PB, pH 7.0 before use.

2.5. Preparation of a Buckypaper-Based Sandwich Containing Two Enzymes

A buckypaper-based sandwich containing two enzymes was prepared using the
same principle as explained in the previous subsection regarding the preparation of a
buckypaper-based sandwich containing HRP (Section 2.4). The MWCNT buckypaper
was cut into 13 mm diameter disks (Figure 2A) and coated with carbon paste on the
circumference of the buckypaper disk to form a thin cylinder for confining redox molecules
and biocatalysts (HRP together with GOx) (Figure 2B). The optimal amount of carbon paste
used was about 55 ± 12 mg to allow for good reproducibility in the sealing. A flattened
stainless-steel wire (150 µm thick) was fixed to the conductive carbon paste, and the edge
of the electrode was sealed with the silicon insulator. Enzyme powder (HRP and GOx) and
a redox mediator were deposited in the cavity before it was closed, and the electrodes were
air-dried for 6 h. The electrode was then soaked in 0.1 M PB, pH 7.0 before use.

2.6. Determination of the Presence in Solution of Enzymes Due to the Loss of Enzymes from
the Microcavity

HRP activity was determined using a UV-Visible spectrophotometric method with
pyrogallol and H2O2 as substrates, following a modified procedure [16]. The bioelectrode
containing HRP was immersed in 10 mL of stirred 0.1 M PB, pH 7.0. After 1 day and
5 days, 0.5 mL of the resulting solution was mixed with 0.5 mL of PB containing 10 mM
H2O2 and 8 mM pyrogallol. Enzymatic activity was assessed by monitoring the increase in
absorbance at 420 nm due to purpurogallin production from pyrogallol in the presence of
H2O2 and released HRP. The presence of GOx was estimated by directly measuring the
absorbance at 278 nm, characteristic of the FAD cofactor, in the incubation solution.
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3. Results and Discussion
3.1. Study of Redox Mediators for Conjugation with HRP

The combination of GOx and HRP has been widely used either to develop glucose
biosensors or to elaborate biofuel cells [17,18]. In this work, the enzyme cascade model
involved the sequential reactions of two enzymes as well as a mediated electrical connection
step of one enzyme. This model configuration was chosen to also show that the hollow
electrode could contain and retain, in addition to enzymes, electroactive organic or organo-
metallic compounds. First, GOx converts β-D-glucose to gluconolactone and produces
H2O2 which is converted to water by HRP. The latter is electrically wired to the electrode
by a redox mediator (Figure 1).

HRP has been extensively studied due to its stability and availability for the develop-
ment of biosensors and diagnostic tests [19]. In particular, HRP has been widely applied to
the development of bienzyme electrodes through its combination with other oxidase en-
zymes [1,20,21]. Thus, the catalytic activity of HRP can be converted into an electrochemical
signal by transferring electrons from the electrode to the oxidized form of HRP. However,
the direct transfer of electrons between the electrodes and the active heme group of HRP is
generally a slow process. To overcome this drawback, redox mediators are frequently used
to construct peroxidase electrodes [22,23]. Although electrodes based on carbon nanotubes
showed the possibility of establishing a direct or mediated electrical connection with the
enzyme, these configurations were based on immobilized HRPs or even on fixed redox
mediators [24]. To obtain an efficient electrical connection of peroxidases, an optimal orien-
tation of the immobilized enzyme is necessary as well as the accessibility of the immobilized
redox mediator to the active site of HRP [25]. To overcome these constraints, an alternative
is to use the mediator and HRP in solution. In this work, we, therefore, studied different
systems based on mediators and the enzyme in solution in the microcavity to determine
the most appropriate mediator to improve electron transfer.

It is important to identify a suitable redox mediator to facilitate electron communica-
tion within the nanomaterial-based microcavity. The redox mediators used in this study
include ABTS, hydroquinone, and hexacyanoferrate (III). These mediators are commonly
employed for effectively connecting peroxidases. In the microcavity of the hollow elec-
trodes, these different redox mediators were co-entrapped with HRP to investigate the
wiring effect of three redox mediators. The resulting bioelectrodes exhibited the conven-
tional electrochemical behavior expected for the entrapped redox mediators with electro-
chemically quasi-reversible systems at E1/2 = 474 mV, E1/2 = 57 mV, and E1/2 = 65 mV
vs. Ag/AgCl for ABTS, hydroquinone, and hexacyanoferrate (III), respectively. Such
mid-potential values of the redox couple peaks observed on the buckypaper sandwich
electrodes align with those reported in the literature (ABTS [26], hydroquinone [27–29], and
hexacyanoferrate (III) [30]). This confirms the penetration of water into the microcavity and
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the solubilization of redox compounds. The efficiency of the HRP wiring was investigated
by recording the amperometric current responses of these bioelectrodes at −0.20 V under
hydrodynamic conditions for successive injections of H2O2 in 0.1 M PB (pH 7.0). Figure 3
shows the linear part of the calibration curves reflecting the current-concentration response
of the bioelectrodes as a function of H2O2 concentration. The control electrode containing
only HRP and without any mediator showed quasi-insensitivity towards H2O2. These
results demonstrated that the addition of freely moving mediators played a crucial role in
facilitating the bioelectrochemical reduction of H2O2. It appears that ABTS was the most
effective mediator for connecting HRP, with the bioelectrode displaying a sensitivity of
924 ± 22 µA mM−1. This sensitivity is much higher than those recorded for hydroquinone
and hexacyanoferrate (III), namely 89 ± 4 and 108 ± 12 µA mM−1, respectively. The HRP-
based hollow electrode without the redox mediator showed the lowest cathodic responses
to increasing H2O2 concentrations, confirming the necessity of employing redox mediation
to facilitate the electrochemical reduction of H2O2 with the bioelectrocatalytic HRP system.

Nanomaterials 2024, 14, x FOR PEER REVIEW 6 of 13 
 

 

solubilization of redox compounds. The efficiency of the HRP wiring was investigated by 
recording the amperometric current responses of these bioelectrodes at −0.20 V under hy-
drodynamic conditions for successive injections of H2O2 in 0.1 M PB (pH 7.0). Figure 3 
shows the linear part of the calibration curves reflecting the current-concentration re-
sponse of the bioelectrodes as a function of H2O2 concentration. The control electrode con-
taining only HRP and without any mediator showed quasi-insensitivity towards H2O2. 
These results demonstrated that the addition of freely moving mediators played a crucial 
role in facilitating the bioelectrochemical reduction of H2O2. It appears that ABTS was the 
most effective mediator for connecting HRP, with the bioelectrode displaying a sensitivity 
of 924 ± 22 µA mM−1. This sensitivity is much higher than those recorded for hydroqui-
none and hexacyanoferrate (III), namely 89 ± 4 and 108 ± 12 µA mM−1, respectively. The 
HRP-based hollow electrode without the redox mediator showed the lowest cathodic re-
sponses to increasing H2O2 concentrations, confirming the necessity of employing redox 
mediation to facilitate the electrochemical reduction of H2O2 with the bioelectrocatalytic 
HRP system. 

 
Figure 3. Amperometric current response of HRP (1 mg)-based hollow electrodes as a function of 
H2O2 concentration. Bioelectrodes containing (a) ABTS, (b) hexacyanoferrate (III), and (c) hydroqui-
none, and (d) without redox mediator. Applied potential −0.20 V vs. Ag/AgCl in 0.1 M PB (pH 7.0). 

With the aim of developing multi-enzymatic systems involving the electrical connec-
tion of one or more enzymes by redox mediators, the efficiency of the physical trapping 
of these mediators in the microcavity was examined by cyclic voltammetry over several 
months. Figure 4 shows the cyclic voltammograms for the ABTS-containing electrode and 
the charges recorded for the three redox bioelectrodes after 3, 5, and 7 months of storage 
in PB. It appears that the intensity of the redox couples increases initially then decreases 
slightly (4 to 25%) between 3 and 7 months. Despite the porosity of the buckypapers, these 
results regarding the maintenance of high current for the redox couples confirm the effec-
tive trapping and retention of electroactive compounds within the microcavity generated 
within high-surface-area nanomaterials over the long term. In addition, the electrochemi-
cal behavior of the different redox electrodes containing HRP has been characterized in 
the presence and absence of H2O2. Surprisingly, in the presence of H2O2, a catalytic current 
due to the electroenzymatic reduction of H2O2 is still present at 0 V for the three redox 
electrodes containing HRP after 7 months. Three such HRP-based electrodes contain dif-
ferent redox molecules: ABTS, hexacyanoferrate (III), and hydroquinone. The absolute 
values of the cathodic current intensity, obtained by subtracting the current in the absence 
of glucose during cyclic voltammetry scans after 3, 5, and 7 months with hydroquinone, 
were 231 ± 15 µA, 318 ± 22 µA, and 337 ± 10 µA, respectively. For hexacyanoferrate (III), 
under identical conditions, the absolute current values of the bioelectrocatalytic response 
after 3, 5, and 7 months were 181 ± 7 µA, 254 ± 8 µA, and 184 ± 6 µA, respectively. The 
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H2O2 concentration. Bioelectrodes containing (a) ABTS, (b) hexacyanoferrate (III), and (c) hydro-
quinone, and (d) without redox mediator. Applied potential −0.20 V vs. Ag/AgCl in 0.1 M PB
(pH 7.0).

With the aim of developing multi-enzymatic systems involving the electrical connec-
tion of one or more enzymes by redox mediators, the efficiency of the physical trapping
of these mediators in the microcavity was examined by cyclic voltammetry over several
months. Figure 4 shows the cyclic voltammograms for the ABTS-containing electrode and
the charges recorded for the three redox bioelectrodes after 3, 5, and 7 months of storage
in PB. It appears that the intensity of the redox couples increases initially then decreases
slightly (4 to 25%) between 3 and 7 months. Despite the porosity of the buckypapers, these
results regarding the maintenance of high current for the redox couples confirm the effec-
tive trapping and retention of electroactive compounds within the microcavity generated
within high-surface-area nanomaterials over the long term. In addition, the electrochemical
behavior of the different redox electrodes containing HRP has been characterized in the
presence and absence of H2O2. Surprisingly, in the presence of H2O2, a catalytic current
due to the electroenzymatic reduction of H2O2 is still present at 0 V for the three redox
electrodes containing HRP after 7 months. Three such HRP-based electrodes contain dif-
ferent redox molecules: ABTS, hexacyanoferrate (III), and hydroquinone. The absolute
values of the cathodic current intensity, obtained by subtracting the current in the absence
of glucose during cyclic voltammetry scans after 3, 5, and 7 months with hydroquinone,
were 231 ± 15 µA, 318 ± 22 µA, and 337 ± 10 µA, respectively. For hexacyanoferrate (III),
under identical conditions, the absolute current values of the bioelectrocatalytic response
after 3, 5, and 7 months were 181 ± 7 µA, 254 ± 8 µA, and 184 ± 6 µA, respectively. The
highest catalytic current after 7 months (≈528 ± 10 µA) was recorded with ABTS, corrob-
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orating the better electrical connection of HRP by ABTS. This also shows that enzymatic
activity can be observed after 7 months of storage in a buffer for this confined enzyme.
It should be noted that a slight positive shift in the onset potential of H2O2 reduction
appeared with storage time in PB. Taking into account that HRP and ABTS are in powder
form, this phenomenon may be ascribed to the slow penetration of water inside the cavity.
As a result, initially, the two components are not completely dissolved which could increase
the steric hindrances and/or the resistance in the electrolytic solution. The ABTS redox
system would, therefore, be less reversible and less intense initially than after several
months of immersion in PB.
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Figure 4. (A) Cyclic voltammograms (5 mV s−1) of a HRP-based bioelectrode with ABTS in the
presence (solid line) and absence (dashed line) of 4 mM H2O2 recorded in 0.1 M PB at pH 7.0:
bioelectrode stored in PB for (a) 1 day, (b) 3, (c) 5, and (d) 7 months. (B) Percentage evolution of the
charge (pic integration) over a 3-, 5- and 7-month storage for HRP-based bioelectrodes containing:
(e) hexacyanoferrate (III), (f) hydroquinone, and (g) ABTS.

3.2. Determination of Optimal Ratio for Two Enzymes

Two sheets of freestanding buckypapers were assembled to form a conductive plat-
form immobilizing HRP, GOx, and ABTS (as a redox mediator). The optimal ratio of the
two enzymes is one of the most important parameters in the performance of the bioelec-
trode. First, GOx catalyzes glucose oxidation to produce inside the buckypaper microcavity
gluconolactone and H2O2 which is further reduced by HRP. The oxidized form of HRP
is then reduced by ABTS, thus generating a cathodic current which can be proportional
to the glucose concentration in the buffer solution. Therefore, the effect of varying the
ratio of HRP/GOx on the performance of the biosensor was investigated by recording the
reduction current of ABTS·+ at 50 mV vs. Ag/AgCl as a function of glucose concentration.
To assess the impact of different amounts of GOx on the electrochemical performance of
the bioelectrodes while maintaining a fixed amount of HRP (1 mg), amperometric analysis
was performed with glucose concentrations ranging from 30 µM to 20 mM (Figure 5). It
appears that an increase in the GOx amount from 1 to 2 mg resulted in higher sensitivity
and maximum current (Imax) due to the faster rate of H2O2 production, which would imply
that the bioelectrode response is limited by GOx activity. However, increasing the amount
of GOx from 2 to 3 mg and 4 mg induces a slight decrease in sensitivity associated with
a marked decrease in maximum current. The increase in the quantity of GOx leads to a
greater production of H2O2 which inhibits the activity of HRP and consequently decreases
the maximum current [31].
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Figure 5. (A) Absolute value of the amperometric current response of hollow electrode containing
1 mg HRP and (a) 1, (b) 2, (c) 3, and (d) 4 mg of GOx to glucose concentration; inset linear part of
the calibration curves for glucose at bioelectrodes containing different amounts of GOx (1–4 mg).
(B) Effect of the GOx loading on the maximum current response and glucose sensitivity of the
bienzyme electrodes. Error bars represent data variability for three repetitive measurements of the
calibration curve for the same bioelectrode. Applied potential 50 mV vs. Ag/AgCl; air-saturated in
0.1 M PB (pH 7.0).

Therefore, for a fixed quantity of 1 mg HRP, equivalent to 200 HRP units (or 200 µmole
ABTS/min), the optimal amount of GOx to achieve both maximum sensitivity and maxi-
mum current is 2 mg, corresponding to 327 µmole glucose/min, theoretically necessitating
654 units of HRP. Consequently, this indicates that the optimal GOx-to-HRP weight and
unit ratios are 2:1 and 3.6:1, respectively. This phenomenon could suggest a rapid loss of
H2O2 by diffusion towards the outside of the microcavity.

To evaluate the retention of both enzymes within the microcavity of the optimized
bioelectrode configuration, we investigated the potential release of enzymes from the
trapped microcavity, where the bioelectrode was incubated in a 0.1 M PB (pH 7.0) for
durations of 1 day and 5 days. The release of HRP was monitored by assessing its enzymatic
activity via absorbance measurements at 420 nm, which indicates purpurogallin production
from pyrogallol in the presence of H2O2. The absence of spectrometric evolution confirms
the effective retention of the trapped enzyme molecules in the microcavity. Given the
smaller molecular size of HRP (44 kDa [32]) compared to GOx (160 kDa [33]), it is difficult
for the latter to diffuse through the buckypapers. Additionally, direct spectrometric analysis
of the incubation solution after 5 days revealed no absorbance at 278 nm, a characteristic of
the FAD cofactor of GOx [34], thus confirming the retention of this enzyme.

Moreover, the effect of varying amounts of HRP on the performance of bioelectrodes
containing a fixed amount of 2 mg of GOx was also investigated (Figure 6). For 0.5 mg
HRP, the response of the bioelectrode is limited by the activity of HRP and its inhibition by
H2O2. Increasing the amount of HRP from 0.5 mg to 1 and then 1.5 mg leads to a marked
improvement in the sensitivity and Imax of the bienzymatic system. On the other hand,
the increase in HRP to 2 mg induces a decrease in sensitivity and Imax, corroborating the
optimum value of the GOx/HRP ratio by weight between 2:1 and 1.33:1. To validate the
cascade operation of the two enzymes, a control experiment was carried out with a hollow
electrode containing 2 mg of GOx and 1 mg of ABTS and without HRP. As expected, the
resulting bioelectrode provided no response to glucose at 50 mV vs. Ag/AgCl, supporting
the need to have the association of HRP and GOx for glucose sensing.
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Figure 6. (A) Absolute value of the amperometric current response of hollow electrode containing
2 mg GOx and (a) 0.5, (b) 1, (c) 1.5, and (d) 2 mg of HRP to glucose; inset linear response region of
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(B) Influence of the HRP amount on the maximum current response and glucose sensitivity of the
bienzyme electrodes. Applied potential 50 mV vs. Ag/AgCl; air-saturated in 0.1 M PB (pH 7).
Experimental conditions as in Figure 5.

The reproducibility of the bioelectrode elaboration based on 1 mg HRP and 2 mg GOx
was evaluated from the maximum current values in the presence of glucose with three
different electrodes. The resulting relative standard deviation (RSD) to Imax determination
was 8%.

3.3. Stability Assessment of GOx, HRP, and ABTS-Based Bioelectrodes

To assess the operational stability of the bioelectrode based on GOx, HRP, and ABTS,
a potentiostatic test was carried out at 50 mV vs. Ag/AgCl in glucose solution. The
electrochemical cell was connected to peristaltic pumps to provide a constant flow of
20 mM glucose in 0.1 M PB (pH 7.0) at a rate of 4 mL/h (Figure 7A). After an initial decrease
in the signal of approximately 6 µA/h for 48 h, a quasi-stabilization of the cathodic current
is recorded between 48 and 196 h, the decrease being only 0.5 µA/h. At 192 h, the reduction
current value dropped to 63 µA, or 16% of its initial value. To confirm the origin of the
residual cathodic current after 165 h, the glucose solution was replaced by a buffer without
glucose. The removal of glucose led to a drastic drop in the catalytic current from 71 to
15 µA. After 2 h, the reintroduction of 20 mM of glucose induced the restoration of the
catalytic current (69 µA), illustrating the continuous operation of the bienzymatic cascade
(Figure 7B). This observation also confirms that the bioelectrocatalytic cathodic current
arises from the enzymes trapped within the microcavity and not from enzymes released
into the analysis solution.

The storage stability of the GOx/HRP bienzymatic electrode was also evaluated in
0.1 M PB, pH 7.0, at 4 ◦C, over a period of 100 days by periodically measuring its current
response to 1 and 20 mM glucose. It appears that the current response for 1 and 20 mM
glucose retains 71% and 39% of its initial value, respectively, after 100 days of storage in
0.1 M PB (Figure 8). The difference in stability observed for glucose concentrations of 1 and
20 mM may be ascribed to an inhibition process or a denaturation of the HRP protein by
the production of a higher H2O2 concentration at 20 mM glucose.

To investigate the nanomaterial’s morphology, the surface of the buckypaper was
characterized immediately after the filtration step in the buckypaper synthesis process. It
was observed that the side in contact with the PTFE filter appeared smoother and more
regular compared to the side in contact with the solution to be filtered (Figure S2A,B).
The rougher side of the two buckypapers was used to form the interior of the cavity,
while the smoother side was positioned on the exterior. The evolution of the buckypaper
surface inside the cavity, which contained enzymes (2 mg GOx and 1 mg HRP), was also
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investigated after 9 months of immersion in 0.1 M PB (pH 7.0). Upon opening the cavity, the
interior surface of the buckypaper appeared almost identical to the initial surface. However,
in terms of the external surface, prolonged contact with water slightly increased surface
roughness (Figure S2(A’,B’)). This evidence supports the robustness of the lab-made carbon-
nanotube buckypaper in retaining the microstructural features critical for the long-term
stability of the cascade system within the microcavity.
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Figure 7. (A) Schematic representation of the electrochemical cell connected to two peristaltic pumps
providing a constant flow of 20 mM glucose in 0.1 M PB, pH 7.0 at a rate of 4 mL/h. (B) Amperometric
current response of hollow electrode containing 1 mg ABTS, 1 mg HRP, and 2 mg of GOx to 20 mM
glucose; inset bioelectrode response in presence and absence of glucose. Experimental conditions as
in Figure 5.
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ABTS, 1 mg HRP and 2 mg of GOx to (a) 1 and (b) 20 mM glucose as a function of time. Bioelectrode
stored in 0.1 M PB, pH. 7.0. Experimental conditions as in Figure 5.

4. Conclusions

We have described an original concept for the fast elaboration of enzyme cascade
reactions in the confined space of hollow planar electrodes based on the assembly of two
buckypapers. The complexity of optimizing a multienzyme system illustrates the interest
in being able to easily modulate the ratio of enzymes simply by changing the masses of
trapped enzymes. In addition to the easy modulation of enzyme ratios, we have also
demonstrated the possibility of trapping with enzymes a redox mediator, ensuring the
electrical connection of an enzyme. Following this strategy, the immobilization of HRP
and GOx in a buckypaper microcavity, along with a redox mediator (i.e., ABTS), led to an
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efficient bioelectrode for glucose sensing at 50 mV vs. Ag/AgCl. The bienzyme electrode
demonstrated continuous operation for over a week and excellent storage stability, retaining
71% of its initial sensitivity even after 100 days. It is expected that such construction and
fast optimization of multienzyme electrochemical systems based on hollow electrodes will
be useful for the development of biosensors and biofuel cells.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/nano14060545/s1. Figure S1. Cross-section laser-assisted optical microscopy
showcasing the microcavity in between the two buckypapers of the electrode, Figure S2. A and B
SEM images depict the electrodes after the buckypaper preparation. (A’ and B’) show the electrodes
after 9 months of immersion in 0.1 M PB (pH 7). In (A and A’), the inner side of the surface that
contacts enzymes and the mediator is represented, whereas (B and B’) display the outer side of the
surface that does not come into contact with enzymes or mediators.
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