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Material characterizations

JSM-7100F scanning electron microscope (SEM) and Titan Themis G2 60-
300 transmission electron microscopy (TEM) were utilized to characterize the
microscopic features of the samples. Additionally, the TEM is equipped with an
X-ray energy spectrum analysis system, which aids in the qualitative analysis of
material composition and distribution. The D8 Advance powder X-ray
diffractometer was used to determine the structures of the as-prepared materials
with Cu Ka. The corresponding voltage and current parameters are 20 kV and 10
A, respectively, and the test angle is 10-80<at a scan rate of 5°min~t. TGA was

performed on an STA-449F5 instrument in Argon atmosphere with a temperature



ramp of 10 °C min? to verify the thermal stability of SHC-450. Raman
spectroscopy experiments were performed on the HORIBA LabRAM HR
Evolution micro-Raman spectroscopy system with the 532 nm laser. The valence
states investigation was conducted using X-ray photoelectron spectroscopy (XPS)
with a VG Multilab 2000 system. To mitigate the interference caused by
potassium salts in the electrolyte, the electrodes were retrieved by disassembling
the cells in a glovebox, and any remaining salt residue was eliminated using DME
solvent. The BET surface area was calculated from nitrogen adsorption isotherms
collected at 77 K using a Tristar 3020 instrument. Time-of-flight secondary ion

mass spectrometry (TOF-SIMS) was conducted on PHI nano-TOF IlII.

Electrochemical measurements

The SHC-450 and HC-450 electrodes were prepared by casting a
homogeneous slurry, which was achieved by blending the active material, Ketjen
Black, and binder (sodium carboxymethyl cellulose/Styrene-Butadiene Rubber,
weight ratio of 1:1) in deionized water at a weight ratio of 7:2:1 onto a Cu foil
and then dried at 70<C for 10h. Subsequently, circular sections with a diameter
of 10 mm were excised from these desiccated electrodes, resulting in a mass
loading of 0.8-1 mg cm of active material. The 2016 coin cells were assembled
in a pure argon gas filled glovebox with both oxygen and water below 0.01 ppm.
A potassium foil was used as the counter electrode. Grade GF/D Whatman glass
microfiber filter was employed as the separator and 5 M KFSI in
1,2—dimethoxyethane (DME) was used as the electrolyte. Galvanostatic charge—
discharge measurements were performed using a multichannel battery testing
system (LAND CT2001A) in the potential range from 0.01 to 3.0 V (vs. K/K¥)
at different current densities. CVs were collected at room temperature using an
Autolab PGSTAT302N. A LAND CT2001A multichannel testing system was

used to measure the GITT curve as well. It discharged at a rate of 50 mA g for



10 minutes before relaxing in an open circuit for 30 minutes. The value of Dk+
can be calculated in below Equation
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where t is the duration of the current impulse; mg, S, Vm, and Mg denote the
mass load of the electrode material, active electrode surface area, molar volume
and molar mass of carbon, respectively. AEs is the quasi-thermodynamic
equilibrium potential difference before and after the current pulse, and AEr

represents the potential difference during the current pulse.

Figure S1. Characterization of HC-450. (a) SEM image. (b—c) TEM images at different
magnifications of HC-450. Inset of (c) is an SAED pattern; (d) C and N element mapping images of
HC-450.
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Figure S2. TOF-SIM mass spectrums of the SHC-450 sample.
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Figure S3. Nitrogen adsorption—desorption isothermal curves of SHC-450 and HC-450. (b) Pore
size distribution of SHC-450 and HC-450.
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Figure S4. High-resolution TEM image of SHC-450 discharge to 0.01 V at the initial cycle.
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Figure S5. CV curves of SHC-450 and HC-450 at a scan rate of 0.1 mV s™!
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Figure S6. (a) Charge—discharge profiles for HC-450 during cycling at current density of 0.1 A g”'. (b) The
corresponding charge and discharge voltage profiles of HC-450 at current densities from 0.1 to 2 A g

Figure S7. High-resolution SEM and TEM images of SHC-450 after 200 cycles at 0.1 A g™'.
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Figure S8. The charge—discharge profile and specific capacity for the initial cycle: (a) SHC-450 and (b)
HC-450.

Figure S9. EDS mapping of the potassiated SHC-450.
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Figure S10. GITT profiles and corresponding K* diffusion coefficients of SHC-450 and HC-450 after
the five cycles at 0.1 A g™
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Figure S11. K 2p XPS spectra of SHC-450 when discharging to 0.01 V.
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Figure S12. N 1s XPS spectra of SHC-450.

Table S1. A comparison of element contents of SHC-450 and HC-450 based on COHNS analysis.

Mass Fraction (wt%)

Samples C H 0] N S

SHC-450 55.15 2.108 12.931 7.15 20.948

HC-450 72 3.279 14.616 8.55 0.583




