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Abstract: Osteoporotic fractures are induced by osteoporosis, which may lead to the degradation
of bone tissues and microstructures and impair their healing ability. Conventional internal fixa-
tion therapies are ineffective in the treatment of osteoporotic fractures. Hence, developing tissue
engineering materials is crucial for repairing osteoporotic fractures. It has been demonstrated that
nanomaterials, particularly graphene oxide (GO), possess unique advantages in tissue engineering
due to their excellent biocompatibility, mechanical properties, and osteoinductive abilities. Based
on that, GO-nanocomposites have garnered significant attention and hold promising prospects for
bone repair applications. This paper provides a comprehensive insight into the properties of GO,
preparation methods for nanocomposites, advantages of these materials, and relevant mechanisms
for osteoporotic fracture applications.

Keywords: graphene oxide; nanomaterial; osteoporotic fractures

1. Introduction

Osteoporosis, a systemic skeletal disease, is pathologically characterized by a decrease
in bone mass and the deterioration of bone tissue microstructure. These changes result
in bone fragility and susceptibility to fractures. The disease is mainly manifested as the
degeneration of the bone mass and bone microstructures, which may exert adverse impacts
on fracture treatment [1]. Fractures resulting from osteoporosis predominantly occur in
women aged over 55 years and men over 65 years [2]. These fractures contribute to the
morbidity of other skeletal disorders, thereby increasing mortality rates and healthcare
expenditures [2]. Each year, osteoporosis affects approximately nine million people world-
wide [3], with the total healthcare costs associated with osteoporotic fractures estimated to
be around USD 4.5 billion annually [4]. Currently, osteoporotic fractures are mainly treated
using conservative methods, such as casts or orthotics, or the implantation of fixations
like screws and plates [5]. However, there are several challenges in the treatment of these
fractures [6]. Primarily, osteoporosis leads to reduced bone density and increased bone
fragility. Consequently, patients with osteoporosis often experience fractures manifested
as more and smaller fragments, leading to more complex fractures than those of healthy
bones [7]. These complex fractures require superior surgical skills for repositioning and
more effective implantation of fixations to stabilize the fracture ends. Secondly, these pa-
tients are prone to falling, which escalates over time [8]. This can be attributed to a decline

Nanomaterials 2024, 14, 553. https://doi.org/10.3390/nano14060553 https://www.mdpi.com/journal/nanomaterials

https://doi.org/10.3390/nano14060553
https://doi.org/10.3390/nano14060553
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0009-0004-9769-6610
https://orcid.org/0000-0003-4561-4172
https://orcid.org/0000-0002-5941-6452
https://doi.org/10.3390/nano14060553
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano14060553?type=check_update&version=1


Nanomaterials 2024, 14, 553 2 of 17

in balance, proprioception, and visual acuity with age. Furthermore, the weight-bearing
capacity in these patients tends to be lower compared with those with non-osteoporotic
fractures, thus resulting in higher overloading risks of internal fixation [9]. Finally, the
mechanical properties of the osteoporotic bone are compromised due to the significant loss
of bone mass, which is primarily reflected in the porous cancellous and thin cortical bone
and the poor load-bearing capacity of implants [10]. As a result, complications such as
endoprosthetic loosening, rupture, and peripheral fractures are common in osteoporotic
fractures [11]. Given these challenges, there is an urgent demand for materials that can
be employed to stabilize the fracture and promote bone production. Nanotechnology is
an interdisciplinary field involving medicine, biology, chemistry, engineering, materials
science, and physics. The advent of nanotechnology in medicine has empowered scientists
to engineer novel materials [12]. On the nano scale, materials exhibit significant alterations
in their chemical, physical, and biological properties. Nanomaterials present some unique
advantages. For instance, some nanomaterials bear structural similarities to natural bone
and possess excellent mechanical properties, such as desirable electrochemical capacity,
large specific surface area, and superior wettability. These characteristics facilitate cellular
support while regulating the proliferation, differentiation, and migration of cells, ultimately
enhancing bone repair effects [13]. Meanwhile, graphene family materials are used in
bone tissue engineering, such as in vivo mediating cellular osteogenic differentiation and
promoting bone regeneration, and can also be added as reinforcement materials in scaffolds
to enhance mechanical properties and improve physicochemical characterization [14]. As a
graphene derivative, graphene oxide (GO) can be prepared through the chemical oxida-
tion of graphite flakes in potent oxidizing agents. It is a quintessential two-dimensional
nanomaterial [15]. Owing to the unique properties of GO, GO-based nanocomposites
have garnered considerable attention in various biomedical fields, such as drug/gene
delivery, biosensing, cancer therapy, and tissue-engineered scaffolds (Figure 1) [16]. More
importantly, GO is also an excellent choice for use in bone tissue engineering due to its
remarkable specificity, chemical stability, and compatibility with biological systems [17].
In this paper, the potential and advantages of GO-based nanocomposites in osteoporotic
fractures will be systematically outlined. Additionally, some limitations in the application
of this material will be highlighted with pertinent recommendations.
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An Introduction to GO and GO-Based Nanomaterials

The preparation methods of GO are primarily divided into three categories: the Brodie
method, the Staudenmaier method, and the Hummers method [18]. However, the Stau-
denmaier method and the Brodie method have certain drawbacks. They produce harmful
gases like ClO2 and NO2 during the reaction process, require a significant amount of time,
and consume excessive raw materials when used under prolonged reaction conditions [19].
As a result, the Hummers method is generally preferred as the preparation method for
GO. The Hummers method offers several advantages compared to previous technologies.
Firstly, the reaction can be completed within a few hours. Secondly, by replacing KClO3
with KMnO4, the reaction safety is improved, and the risk of explosive ClO2 precipitation
is avoided. Thirdly, NaNO3 is used instead of HNO3, eliminating the formation of acid
mist [20]. However, the Hummers method still has some room for improvement. It often
results in excessive acid residue that is challenging to remove, and the oxidation degree
of GO may not be sufficient [21]. Consequently, many researchers have made various
improvements to the preparation of GO using the Hummers method.

As a promising material in biotechnology, GO has a structure comprising a two-
dimensional honeycomb lattice of carbon atoms and numerous oxygen-containing groups,
such as carboxyl, hydroxyl, and epoxy groups [22]. These groups are modified at the basal
surface and edges. GO not only inherits the superior mechanical properties and large spe-
cific surface area of graphene but also exhibits excellent hydrophilicity and bioactivity due
to the abundance of oxygen-containing groups on its surface [23]. Moreover, GO can be eas-
ily dispersed in water and various organic solvents, forming stable dispersions containing
one or a few layers of single-atom layer structures. These structures can self-assemble with
other materials, leveraging the amphiphilicity and layered structure of GO. Alternatively,
other materials can be introduced onto the surface of GO or between the layers. Then,
these materials grow on the GO substrate through chemical or thermal reactions, forming
uniform GO-based nanocomposites [23,24]. GO also has good antibacterial properties, and
it has been shown that it can degrade bacterial cell membranes by releasing large amounts
of adenine and proteins on the bacterial surface [25].

GO can also be chemically or physically prepared as GO derivatives (Figure 2), such
as Graphene Oxide Quantum Dots (GOQDs) or Reduced Graphene Oxide (RGO). More
specifically, GOQDs can be prepared via electrochemical oxidation [26,27], hydrothermal
treatment [28,29], and microwave-assisted reaction or via other physicochemical processes
to selectively sever the carbon–carbon bond of GO [30]; RGO can be prepared through chem-
ical vapor deposition [30–32], laser reduction, the flash lamp photothermal method [33,34],
and other methods to reduce the oxygen content of GO, with the aim of removing the
oxygen-containing groups on GO and restoring the conjugated structure [35]. These deriva-
tives not only inherit many functional properties of GO but also possess their own unique
functions, such as the tunable luminescence of GOQDs and the antioxidant capacity of
RGO [36,37]. Owing to the complexity of GO groups, GOQDs and RGO have become the
most extensively explored GO derivatives. On that basis, more GO derivatives will be
developed. GO and its derivatives can be prepared in conjunction with other materials
through physical or chemical methods to form GO-based nanocomposites with excellent
properties and broad prospects in biotechnology.
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2. The Advantages of Using GO-Based Nanomaterials in the Treatment of Osteoporotic
Fractures

GO can be combined with other materials to construct scaffolds, which can enhance
the physical and chemical properties of these scaffolds, thereby promoting their efficacy
in bone tissue repair. Furthermore, GO can be used to form coatings with other materials,
which improves the mechanical properties, antimicrobial characteristics, and osteogenic
capacity of bone implants, such as titanium alloys (Table 1). GO-based nanomaterials
exhibit outstanding mechanical properties, favorable electrical conductivity, and excep-
tional biocompatibility. These attributes make them highly promising for application in the
treatment of osteoporotic fractures.

Table 1. Use of GO-based nanomaterials for bone tissue repair.

Type Name Compose Animal
Species

Cytotoxicity
Tests Biocompatibility Conclusion Reference

Scaffold

PP/
GO@PEGDA/

CMC

GO, Pyritum,
Polydiacrylate,

Car-
boxymethyl

chitosan

SD rats with
bilateral skull
defect model

Non-toxic to
macrophages

Induced
macrophage

polarizes to M2
phenotype

It has both
immunomodulatory
and osteoinductive

properties

[38]

PLA-HT-GO
Polylactic acid,
Hardystonite,

GO
NA Non-toxic to

MG63

Enhanced the
proliferation and

adhesion of
MG63

HT-GO nanoparticles
improved the

mechanical properties
and osteoinductive

properties

[39]

Z-CS/
β-TCP/GO

GO, Maleican-
hydride,

L-cysteine,
Maleilated

chitosan

SD rats with
bilateral skull
defect model

Non-toxic to
BMSCs

Enhanced the
proliferation and

adhesion of
BMSCs

GO improved
physicochemical
properties and

osteogenic
differentiation of

rBMSCs

[40]

Alg/GO/
Ser/nHAP

Alginate, GO,
Sericin,

Nanohydrox-
yapatite

SD rats with
bilateral skull

defect

Non-toxic to
BMSCs

1. Induced
macrophage

polarizes to M2
phenotype

2. Enhanced the
proliferation and

adhesion of
BMSCS

It has both
immunomodulatory
and osteoinductive

properties

[41]

GO-PVDF GO, Polyvinyli-
dene fluoride NA

Non-toxic to
osteoprogeni-
tor D1 cells

Enhanced the
proliferation and
mineralization of
osteoprogenitor

D1 cells

Exhibits excellent
tensile and

piezoelectric properties,
high flexibility, and

good biocompatibility

[42]

RGO-CPCs
RGO, Calcium

phosphate
cements

SD rats with
bilateral skull
defect model

Slight toxicity
at 12 h and

became
marginal at

24 h to
MC3T3-E1 and

rASCs

Improved
osteogenic

differentiation of
MC3T3-E1 and

rASCs

The mechanical
properties and the

bone-inducing activity
of the rGO-CPCs were

enhanced in
comparison with CPCs

[43]

PHEMA-Gel-GO

Poly(2-
hydroxyethyl
methacrylate),
Geltain, GO

NA Non-toxic to
BMSCs

Enhanced the
proliferation and

adhesion of
BMSCs

Mechanical properties,
electroactivity, and

osteogenic
differentiation ability

can be improved
through the GO

[44]



Nanomaterials 2024, 14, 553 5 of 17

Table 1. Cont.

Type Name Compose Animal
Species

Cytotoxicity
Tests Biocompatibility Conclusion Reference

Coating

HA-GO-Ti Hydroxyapatite,
GO, Ti

SD rats with
distal femurs
defect model

Non-toxic to
BMSCs

Enhanced the
proliferation and

adhesion of
BMSCs

HA-GO nanocoating
improve the

osteogenesis of the Ti
[45]

Mg(OH)2/
GO/HA-ZQ71

Mg(OH)2, GO,
Hydroxyap-
atite, ZQ71

alloy

NA Non-toxic to
MC3T3-E1

Enhanced the
proliferation and

adhesion of
MC3T3-E1

Mg(OH)2/GO/HA
composite coating

improved the corrosion
resistance and

osteogenesis and
reduced the

degradation rate

[46]

Ag-RGO-Ti Ag, rGO, Ti NA Non-toxic to
MC3T3-E1

Enhanced the
proliferation and

adhesion of
MC3T3-E1

RGO+Ag coating
improved the

antibacterial activity
and osteogenesis of Ti

[47]

Berberine-GO-Ti Berberine, GO,
Ti

SD rats with
distal femurs
defect model

Non-toxic to
MC3T3-E1

Enhanced the
proliferation and

adhesion of
MC3T3-E1

Berberine-loaded GO
coating improved the
antibacterial activity

and osteogenesis of Ti

[48]

GO/TiO2/Ti GO, TiO2, Ti NA Non-toxic to
BMSCs

Enhanced the
adhesion of

BMSCs

The rGO/TiO2 has
good biocompatibility

and light-induced
surface potential and
could promote BMSC

osteogenic
differentiation

[49]

SPEEK-GO

GO, Poly-ether-
ether-ketone,
98% sulfuric

acid

NA Non-toxic to
MC3T3-E1

Enhanced the
proliferation and

adhesion of
MC3T3-E1

The SPEEK-GO coating
exhibits strong

antibacterial properties
and

excellent cell
compatibility

[50]

AuNPs-
PDA@PLGA/

Lys-g-GO

L-lysine
functionalized-

GO,
Polydopamine,

Au, PLGA

Rabbits with
radius defects

Non-toxic to
MC3T3-E1

Enhanced the
proliferation and

adhesion of
MC3T3-E1

Lys-g-GO nanoparticles
and AuNPs-PDA

coating enhanced the
hydrophilicity,

mechanical properties,
and antibacterial

properties, resulting in
good osteogenic

activity.

[51]

2.1. Enhancing Material Properties to Promote Bone Tissue Repair: The Potential of GO and Its
Derivatives

The mechanical properties of materials play a crucial role in providing structural sup-
port for osteoporotic fractures and significantly affect the regulation of cellular and tissue
responses [52]. The composite of GO and its derivatives with other materials such as hydro-
gels can enhance the overall mechanical properties. For instance, the compression modulus
of the Polylactic Acid/GO/Parathyroid Hormone composite scaffold, prepared by Fei et al.,
reached 2.64 MPa. This is nearly 110% higher compared with the compression modulus
(1.26 MPa) of the scaffold without GO [53]. As confirmed in some studies, enhancing the
electrical conductivity of materials can aid in bone tissue repair by inducing calcium influx
to promote osteogenic differentiation and biomineralization [54]. Therefore, integrating
materials with superior electrical conductivity is beneficial to bone tissue repair. GO, with
its excellent electrical conductivity, can be composited with other materials to significantly
enhance the osteogenic properties of the prepared material, thereby promoting the repair
of osteoporotic fractures. Chen et al. utilized electrostatic spinning technology to prepare
GO-based nanocomposites. The results demonstrate that the electrical conductivity of these
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GO-based nanocomposites improved as the proportion of GO increased, and the secretion
of alkaline phosphatase (ALP) by bone marrow mesenchymal stem cells (BMSCs) in the GO
group was significantly higher than that in the control group [42]. Calcium phosphate bone
cement (CPC), derived from animal bone sintering, has been employed for the treatment
of bone defects. However, their mechanical strength is relatively weak. To eliminate this
defect, Seonwoo et al. prepared RGO-CPC nanomaterials. The mechanical properties of
RGO-CPCs were significantly enhanced compared with those of CPCs, and both in vitro
and in vivo experiments demonstrated that RGO-CPCs exhibited favorable biocompatibil-
ity and induced osteogenesis [43]. GO and its derivatives can improve the hydrophilicity
and electrical conductivity of the material due to the abundance of oxygen-containing
groups, which can promote cell adhesion and facilitate the proliferation and differentiation
of cells. Baheti et al. deposited a hydroxyapatite/GO coating on titanium alloys. The results
show that the hydrophilicity of this coating group was significantly higher than those of the
uncoated group and the single hydroxyapatite coating group, and the adhesion and diffu-
sion ability of BMSCs were enhanced [45]. Long et al. constructed RGO/Titanium dioxide
(TiO2) nanocomposite coatings on the surface of titanium implants. The voltage-gated cal-
cium channels were activated by the surface potential under the appropriate light intensity.
The resulting light-induced surface potentials were harmless to the proliferative behavior
of cells and facilitated the adsorption of the osteogenic growth factors. Further, these
potentials exhibited osteogenic differentiation of BMSCs [49]. Tabatabaee et al. prepared
scaffolds consisting of GO with gelatin and PHEMA. The compressive modulus, electrical
conductivity, and hydrophilicity of these scaffolds increased with the addition of GO. The
compressive modulus of these scaffolds increased significantly with the addition of GO
at 0.75% w/v from 9.03 ± 0.36 MPa to 42.82 ± 1.63 MPa, while the conductivity of these
scaffolds increased significantly from 4.48 ± 0.16 (* 10−5) S/m to 1.55 (* 10−3) S/m. The hy-
drophilicity of these scaffolds also increased significantly, which enhanced their osteoblastic
ability [44]. However, osteoporosis was not modeled in the above study. Therefore, it is
necessary to further explore the role of GO-based nanomaterials in osteoporosis animal
models, as well as cellular models. In summary, the addition of GO and its derivatives
can improve the mechanical, conductive, and hydrophilic properties of these materials,
providing stable support as well as promoting the adhesion, diffusion, and osteogenic
differentiation of BMSCs. Owing to their unique characteristics, GO-based nanocomposites
are considered ideal implant materials for the treatment of osteoporotic fractures.

2.2. Harnessing Excellent Antimicrobial Properties: The Potential of GO-Based Nanomaterials

In clinical practice, the implantation of fixations in patients with fractures carries an
inherent risk of infections [55]. Such infections often lead to delayed fracture healing or
even non-union of fractures [56]. Most patients with osteoporotic fractures are the elderly.
Their immune systems, which decline with age, are associated with disturbances in the
immune microenvironment of bone tissues. This makes them more susceptible to postoper-
ative infections [57,58]. When microorganisms form mature biofilms over time, the efficacy
of antibiotics significantly decreases [59–61]. This situation can be largely mitigated by
implanting fixations with antibacterial properties [62]. Due to their robust antimicrobial
activity, GO-based nanocomposites can be employed to inhibit microbial adhesion by re-
ducing the surface free energy (SFE) and preventing microbial adhesion through oxidative
stress and photothermal (upon light activation at a specific wavelength, it converts to heat
energy, causing local high temperature. This hampers microbial metabolism and denatures
proteins/photodynamic effects (upon light activation at a specific wavelength, it gener-
ates oxygen free radicals and other free radical ions in the cell membrane. This triggers
liposome peroxidation, disrupting the membrane’s integrity and causing content leakage,
leading to microorganism inactivation) [63,64]. These mechanisms contribute to killing
microorganisms and preventing the formation of microbial films. Guo et al. deposited GO
coatings on the surface of sulfonated poly ether ether ketone (SPEEK) to form SPEEK-GO-
based nanocomposites (SPEEK-GO). These composites demonstrated strong antimicrobial
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activity and promoted the adhesion, proliferation, and osteogenic differentiation of mouse
embryonic osteoblast cells (MC3T3-E1) [50]. Han et al. prepared a berberine-loaded GO
coating (Ber&GO@Ti) on biomedical titanium surfaces. The in vitro experiments showed
that berberine exhibited low antimicrobial activity but enhanced antimicrobial activity
against Staphylococcus aureus (S. aureus) due to the synergistic effect of GO and berberine.
Furthermore, Ber&GO@Ti was biocompatible and promoted the osteogenic differentiation
of MC3T3-E1. The in vivo experiments also showed excellent antibacterial properties and
no infiltration of inflammatory cells in the surrounding tissues, such as neutrophils [48].
Fu et al. prepared gold nano-particles-poly(dopamine)-L-lysine functionalized-GO-PLGA
composite scaffolds (AuNPs-PDA@PLGA/Lys-g-GO) for bone defect repair. These com-
posite scaffolds displayed favorable mechanical strength, hydrophilicity, and antimicrobial
properties. They significantly improved the in vitro adhesion, proliferation, and osteogenic
differentiation of osteoblasts and significantly promoted new bone formation and collagen
deposition at the radial defect site in vivo, demonstrating good biocompatibility [51]. The
excellent mechanical properties, hydrophilicity, and electrical conductivity of GO-based
nanocomposites can facilitate the rehabilitation in patients with osteoporotic fractures,
while their robust antimicrobial activity can reduce the risk of infections during the rehabil-
itation process.

2.3. Promoting Bone Repair through Immune Regulation: The Potential of GO-Based Nanomaterials

Bone remodeling involves a process from bone resorption to bone formation, with
these two phases being temporally and spatially coupled. This process takes place at
the remodeling unit locus, where osteoclasts are initially recruited to resorb a significant
amount of mineralized bone. Subsequently, osteoclasts undergo apoptosis, and osteoblasts
are recruited to the site to form and mineralize new bone within the resorbed cavity [2].
In patients with osteoporosis, reduced estrogen levels, diabetes mellitus, prolonged use of
glucocorticoids, rheumatoid arthritis, and other factors can hyperactivate osteoclast bone
resorption while inhibiting osteoblast bone formation. This results in a disruption to bone
metabolism balance, namely bone resorption exceeding bone formation, leading to bone loss
and degradation of bone microstructures. Consequently, these patients become susceptible
to osteoporotic fractures [65–67]. Therefore, balancing the functions of osteoclasts and
osteoblasts is crucial in the treatment of osteoporotic fractures. Macrophages, precursor cells
of osteoclasts, can participate in bone remodeling by secreting inflammatory factors such as
tumor necrosis factor (TNF) α, interleukin (IL) 6, and IL-10. Hence, it is possible to indirectly
balance the functions of osteoclasts and osteoblasts by regulating macrophages [68–70]. As
revealed in most studies, macrophages are primarily classified into classic (M1) and atypical
(M2) macrophages within the organismal microenvironment. M1-type macrophages mainly
exhibit pro-inflammatory, antibacterial, and antigen-presenting functions, whereas M2-type
macrophages primarily inhibit inflammation and facilitate tissue repair [71]. It has been
demonstrated that GO-based nanocomposites can promote the polarization of M1 to M2
macrophages for regulating the immune microenvironment [72]. For instance, Fu et al.
developed a GO-based composite hydrogel (Alg/GO/Ser/nHAP) that fostered conducive
bone growth and bone immune microenvironment, which enhanced the osseointegration
process at the bone–implant interface by shifting the macrophage phenotype from M1
to M2 [41]. Similarly, Xue et al. found that quaternized chitosan scaffolds with GO
modification were more effective than pure quaternized chitosan scaffolds in promoting
the polarization of M2-type macrophages and osteogenesis [73]. Shi et al. developed a
GO composite hydrogel (PP/GO@PEGDA/CMC) which exhibited excellent mechanical
properties, swelling capacity, and stability and significantly promoted M2-type polarization.
This increased anti-inflammatory factors (IL-4, IL-10, and TGF-β), which in turn promoted
the proliferation and osteogenic differentiation of BMSCs in vitro. The results further verify
the anti-inflammatory effect of PP/GO@PEGDA/CMC in promoting bone regeneration in
in vivo experiments [38]. Therefore, GO-based nanocomposites can regulate the immune
microenvironment by promoting the polarization of M1 to M2-type macrophages and the
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secretion of anti-inflammatory factors, thereby promoting bone tissue repair. This presents
a promising application prospect in the treatment of osteoporotic fractures.

2.4. Enhancing the Treatment of Osteoporotic Fractures: The Role of Drugs, Cells, and miRNA
Loaded into GO-Based Nanomaterials

GO-based nanocomposites are promising carriers for drugs, stem cells, microRNAs,
and other therapeutic agents (Table 2). These nanocomposites can be employed in the
treatment of various diseases and play a significant role in tumor inhibition, angiogenesis,
bacterial growth inhibition, and tissue repair [74–76]. Therapeutic agents, such as bispho-
sphonates, parathyroid hormone, strontium, BMSCs, and microRNAs, can be utilized to
balance the functions of osteoclasts and osteoblasts, shifting from overactive bone resorp-
tion to normal bone metabolism, thus improving the microenvironment of osteoporotic
fractures [77]. However, impaired blood circulation at the lesion site, instability of microR-
NAs in serum, and their intrinsic negative charge interfering with cellular uptake may
induce insufficient drug concentrations and other challenges [78,79]. Additionally, BMSCs
often struggle to efficiently undergo osteogenic differentiation due to the lack of a suitable
microenvironment [77]. To overcome these challenges, GO-based nanocomposites can be
used as carriers to achieve effective in situ delivery, thereby improving the therapeutic
effect on osteoporotic fractures. For instance, Zeng et al. developed a controlled-release
system based on a collagen-GO sponge loaded with alendronate sodium for the treatment
of osteoporotic bone defects. This material prolonged the release of the drug, effectively
inhibited the differentiation of monocyte-macrophages to osteoclasts, reduced bone loss
in osteoporotic rats, and increased the volume of new bone at the defect site [80]. Simi-
larly, Qin et al. prepared polyethylene glycol and polyethylene imide-functionalized GO
nanocomplexes for the loading and delivery of miR-29b, which was involved in multi-
ple steps of bone formation. The nanocomplexes presented favorable biocompatibility,
microRNA loading capacity, and transfection efficiency, and the loading of miR-29b sig-
nificantly promoted the osteogenic differentiation and bone regeneration of BMSCs [81].
Furthermore, Yu et al. developed a dual-channel GO composite scaffold encapsulating
bone marrow-derived macrophages and BMSCs. In a rat cranial defect model, the scaffold
effectively promoted the M2-type polarization of macrophages in the early bone defect
microenvironment through the paracrine secretion of macrophages and BMSCs, thus avoid-
ing excessive inflammatory responses and further promoting bone repair [82]. Neurons of
the peripheral nervous system play a crucial role in regulating fracture healing by secreting
neurotransmitters involved in bone growth and repair. However, osteoporotic fractures
often struggle to achieve simultaneous nerve regeneration during the healing process, and
persistent chronic pain is often associated with poor healing outcomes [83]. To remove
this hindrance, Zhang et al. developed a GO-based hydrogel loaded with Schwann cells
and BMSCs. The in vitro experiments demonstrated that the cells loaded on the hydrogel
had high viability and good adhesion capacity. The in vivo experiments corroborated that
the hydrogel could simultaneously promote the high expression of osteogenic and neural
proteins, thus successfully promoting the synergistic regeneration of nerves and bones [84].
In summary, drugs, cells, microRNAs, and other therapeutic agents can be loaded onto
GO-based nanomaterials to play an optimal role in treatment. This further enhances the
effectiveness of GO-based nanocomposites in repairing osteoporotic fractures.
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Table 2. GO-based nanomaterials as carriers for drugs/cells/miRNA in bone tissue repair therapy.

Name Compose Animal Species Cytotoxicity
Tests Biocompatibility Conclusion Reference

PCL/GO-DEX
Polycaprolactone,

GO,
Dexamethasone

NA Non-toxic to
BMSCs

Enhanced the
proliferation

and adhesion of
BMSCs

The synergistic
effect of GO and
dexamethasone

induce
osteogenesis of

BMSCs

[85]

Aln-GO-Col Alendronate,
Collagen, GO

SDrats with
bilateral skull
defect model

Toxic to
BMSCs at

high
concentration

of GO

1. Enhanced the
proliferation

and adhesion of
BMSCs

2. Inhibited
osteoclast

differentiation

Exhibited active
anti-

osteoclastogenesis
and osteogenesis

ability

[80]

PLA/GO/
RhPTH(1-34)

Polylactide, GO,
RhPTH(1-34) NA Non-toxic to

MC3T3-E1

Enhanced the
proliferation

and adhesion of
MC3T3-E1

Mechanical
properties and

osteogenic
differentiation
ability can be

improved through
the scaffolds

[53]

miR-29b/GO-
PEG-PEI@CS

GO,
Polyethyleneglycol,
Polyethylenimine,
miR-29b, Chitosan

SD rats with
bilateral skull
defect model

Non-toxic to
BMSCs

Enhanced the
proliferation

and adhesion of
BMSCs

It can promote
bone regeneration

without
inflammatory

responses

[81]

BMSCS/SCS/
rGO/GelMA

BMSCs, SCs, rGO,
GelMA

SD rats with
bilateral skull
defect model

Non-toxic to
BMSCs and

SCs

Enhanced the
proliferation

and adhesion of
BMSCs and SCs

It can promote
synergistic

regeneration of
nerves and bone

[84]

BMSCS/BMMS/
GelMA/HAMA/

Alginate/GO

BMSCS, BMMS,
Methacrylami-
dated gelatin,
Methacrylami-

dated Hyaluronic,
Alginate

Rat
subcutaneous

transplantation
model

Non-toxic to
BMSCs

1.Induced
macrophage

polarizes to M2
phenotype

2.Enhanced the
proliferation

and adhesion of
BMSCs

The paracrine of
BMMs and BMSCs

effectively
promoted the

M2-type
polarization and

bone repair.

[82]

3. Potential Mechanisms and Related Signaling Pathways of Graphene Oxide-Based
Materials in Promoting the Repair of Osteoporotic Fractures

Due to the diversity of GO-based nanocomposites, the mechanism related to the
repair of osteoporotic fractures may vary depending on the material (Figure 3). In the
current study, the most important signaling pathways of GO-based nanocomposites to
promote bone formation include the Wnt/β-catenin, BMPR/SMAD, and MAPK signaling
pathways, and GO-based nanocomposites can regulate osteogenesis through the role of
related pathways [86].
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3.1. Common Signaling Pathways in the Promotion of Osteoporotic Fracture Repair by Graphene
Oxide-Based Nanomaterials

Tissue repair is a multifaceted physiological process that necessitates the participation
of various cell types, growth factors, cytokines, and signal transduction pathways [87]. As
a classical pathway during bone formation, the Wnt/β-catenin signaling pathway is highly
conserved throughout biological evolution and plays a pivotal role in bone regeneration.
The enhancement of bone formation and regeneration by GO may be attributed to the
activation of the Wnt/β-catenin pathway [88]. Xu et al. co-cultured BMSCs with different
concentrations of GO derivatives and GO quantum dots (GOQDs). They found that GOQDs
with a low concentration could promote the osteogenic differentiation of BMSCs through the
activation of the Wnt/β-catenin signaling pathway [89]. Yang et al. discovered that GOQDs
could also stimulate the proliferation and osteogenic differentiation of stem cells from
human exfoliated deciduous teeth (SHED) via the Wnt/β-catenin pathway. They observed
that the addition of the Wnt/β-catenin inhibitor DKK1 or the knockdown of β-catenin
significantly down-regulated the expression of osteogenic-related mRNA and proteins [90].
The ERK/MAPK pathway, which is involved in various bone signaling responses, can
up-regulate the expression of alkaline phosphatase (ALP), boost matrix mineralization,
and promote osteogenic differentiation. In recent years, the MAPK signaling pathway has
been identified as a key regulator of bone mass in osteogenic differentiation mediated by
GO-based nanocomposites [86]. Zhao et al. unraveled that graphene composites (GNS-
CaP-CS/AZ91D) could activate the ERK/MAPK signaling pathway to promote osteogenic
differentiation through the sustained release of graphene nanosheets [91]. Chen et al.
developed a strontium-GO-collagen scaffold (Sr-GO-Col) which significantly enhanced
osteogenic regeneration and angiogenesis through the synergistic activation of the MAPK
signaling pathway via GO and strontium [92]. Bone morphogenetic proteins (BMPs) are
abundant in the bone matrix, with BMP-2 being the most crucial extracellular signaling
molecule that promotes bone formation and induces osteogenic differentiation. Zhang
et al. showed that graphene oxide-copper (GO-CU) nanocomposites activated the ERK1/2
signaling pathway. This led to the up-regulated expression of hypoxia-inducible factor 1-
alpha (Hif-1α) in BMSCs, which ultimately resulted in the secretion of BMP-2, significantly
inducing osteogenic differentiation [93]. Yi He et al. prepared a magnetic GO composed of
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ferric iron tetroxide (Fe3O4) and GO. This material significantly accelerated the osteogenic
differentiation of BMSCs by activating the BMP signaling pathway and promoting the
expression of BMP-2. These experimental results suggested that GO can either promote
osteogenesis through specific signaling pathways or synergistically stimulate relevant
signaling pathways with other materials to accelerate bone tissue regeneration and resolve
osteoporotic fractures. There are extensive and complex networks of mechanisms by which
GO-based nanocomposites regulate osteogenic differentiation, with various pathways
interconnecting and interacting with each other to promote osteogenic differentiation.
Shim et al. found that polydopamine-graphene oxide (PDA/GO) composites stimulated
the osteogenic differentiation of mouse embryonic stem cells through integrin α5/β1,
MAPK, and BMPR/SMAD signaling pathways. The levels of integrins α5 and β1, as well
as bone morphogenetic protein receptor (BMPR) type I and type II, were significantly
elevated in mouse embryonic stem cells on PDA/GO composites. The expression of BMPs
phosphorylated by SMAD1/5/8 was significantly up-regulated, and the phosphorylation
of ERKs and MAPKs was also observed. After blocking integrins α5/β1, MAPK, or SMAD
signaling pathways, the osteogenic differentiation of embryonic stem cells induced by
PDA/GO was significantly reduced [94].

3.2. Mechanisms of Bone Tissue Repair Promoted by Graphene Oxide Composite-Based
Nanomaterials through Immune Regulation

Disorders of the immune system are recognized as one of the pathogenic mecha-
nisms underlying osteoporosis [95]. Upon implantation, bone biomaterials are identified
by the immune system, triggering corresponding immune responses that can influence
the efficacy of bone repair [96]. Consequently, the immunomodulatory function of bone
biomaterials warrants emphasis [97]. As a category of bone biomaterials with immunomod-
ulatory properties, GO-based nanocomposites are of particular interest. Investigating
their immunomodulatory mechanisms may provide clues for the development of bone
biomaterials with similar properties [98,99]. Su et al. confirmed that GO coatings could
modulate macrophage polarization and cytokine secretion via Toll-like receptors. Under
normal conditions, GO coatings induced a mild inflammatory response and fostered a
conducive environment for bone formation by stimulating macrophages to secrete min-
imal amounts of inflammatory factors (TNF-α and IL-6) and osteogenic factors (TGF-β1
and OSM). In contrast, under inflammatory conditions, GO coatings down-regulated the
expression of inflammatory factors in M1-type macrophages by inhibiting the excessive
secretion of inflammatory factors (TNF-α, IL-6, and IL-1β) and up-regulated the expression
of IL-1ra in M2-type macrophages, thereby mitigating the inflammatory response [100].
Zhou et al. utilized a reduced graphene oxide hydrogel (GM/Ac-CD/rGO) in a mouse
cranial defect model. They found that the hydrogel could enhance the immune microen-
vironment by neutralizing free oxygen radicals (ROS) around the cranial defect through
the electron transfer capacity of reduced GO [101]. In a study by Hang Xue et al., it was
demonstrated that quaternized chitosan-graphene oxide-polydopamine nanocomposites
(QCS-GO-PDA) significantly scavenged ROS and reduced inflammatory responses. This
was achieved by activating TGF-β/BMP2, VEGF, and other signaling pathways to promote
the polarization of M2-type macrophages and augment the immune crosstalk between
bone and angiogenesis [73]. Therefore, GO-based nanocomposites may enhance the bone
immune microenvironment by neutralizing oxygen radicals produced by inflammation.
Simultaneously, they may regulate the polarization of macrophages by activating specific
signaling pathways, such as TGF-β/BMP2 and VEGF. These properties could potentially
facilitate the repair of osteoporotic fractures.

4. Cytotoxicity of Graphene Oxide Limits Its Application in Tissue Engineering

In recent years, there has been increasing research on GO and its use in tissue engi-
neering. However, concerns about the safety of GO-based nanomaterials have also been
raised. Some studies have shown that GO itself has cytotoxic effects. It has been con-
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firmed that GO can induce immune responses and toxicity in adult zebrafish. Researchers
have suggested that GO can mediate apoptosis through the ROS/AMPK/p53 signaling
pathway, leading to inflammation and inflammatory diseases [102,103]. Despite efforts to
improve the purity of GO during synthesis, there is still some cytotoxicity associated with
impurities. This suggests that cytotoxicity is an inherent property of GO [104]. In vivo,
GO degrades and releases nanoparticles, which can cause cytotoxicity. The morphology
of GO, its chemical composition, the timing and dosage of its release, and the biological
environment all play important roles in its cytotoxic effects [105]. GO and its derivatives
have been found to down-regulate the expression of genes related to the cell membrane
and cytoskeleton, leading to disruption of cell membrane integrity and loss of normal
cellular metabolism [106]. Studies have shown that exposure to GO materials can cause
mitochondrial and plasma membrane damage in HaCaT cells, and the extent of graphene
oxidation can exacerbate cellular damage [107]. In addition, nanosheets released from high
concentrations of GO can perforate the cell membrane and accelerate cell death in A549
and Raw264.7 cells in vitro [108]. The cytotoxicity of GO limits its potential applications in
tissue engineering. However, efforts to improve the biocompatibility of GO or modify its
molecule to regulate the release of nanoparticles may help reduce its cytotoxic effects [109].
Currently, the mitigation of GO cytotoxicity in vivo is still limited, and further research is
urgently needed to advance its applications in vivo.

5. Conclusions and Perspective

Osteoporotic fractures pose a significant treatment challenge due to the individual
characteristics of patients, the properties of implant materials, and the nature of the disease
itself. Both domestic and international studies have confirmed that GO-based nanomaterials
possess excellent mechanical properties, favorable biocompatibility, and the ability to
induce osteogenesis. These advantages make them suitable for their application in the
treatment of osteoporotic fractures.

As mentioned earlier, GO-based nanocomposites have shown excellent potential for
promoting bone formation and inhibiting bone resorption. GO composite scaffolds and
coatings are commonly used for the treatment of osteoporotic fractures. These compos-
ites address the limitations of single-material scaffolds, such as poor mechanical prop-
erties, low electrical conductivity, and low antimicrobial capacity. Compared to endo-
prostheses like titanium alloys, GO composite coatings offer advantages like induced
osteogenesis and improved antimicrobial capacity, resulting in better therapeutic effects for
osteoporotic fractures.

To enhance the osteogenic effect of GO composites, researchers have developed vari-
ous engineering strategies, including drug delivery and surface modification. However,
these strategies may also have drawbacks, such as uncertain immune responses and high
production costs. GO-based nanocomposites may be recognized by the immune system
as foreign substances, triggering an immune response that could reduce their efficacy or
lead to clearance. Additionally, GO-based nanocomposites may cause toxicity or adverse
reactions, posing potential risks to the host. The development and research of GO com-
posites require additional time, expenses, and technology, which can increase production
costs. Therefore, it is crucial to consider safety, immunogenicity, stability, and production
costs when designing GO composites. Rigorous experimental and clinical studies are
necessary to evaluate their application prospects. Despite the promising potential of GO
composites in osteoporosis management, there are still challenges that need to be addressed.
Methods for preparing and testing the safety of GO composites are not fully developed. It
is important to understand how their composition and preparation processes affect their
bioactivity and stability. Furthermore, studying the function and regulatory mechanisms of
bioactive substances in GO complexes is necessary to determine how they can effectively
treat osteoporosis.

Future research should focus on exploring more efficient and stable methods for the
preparation of GO-based nanomaterials. In-depth studies on their biological mechanisms
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are needed, and clinical trials should be conducted to promote the application of GO
nanocomposites in osteoporosis treatment.
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