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Abstract: In recent years, the phenomenon of optical second harmonic generation (SHG) has attracted
significant attention as a pivotal nonlinear optical effect in research. Notably, in low-dimensional
materials (LDMs), SHG detection has become an instrumental tool for elucidating nonlinear optical
properties due to their pronounced second-order susceptibility and distinct electronic structure. This
review offers an exhaustive overview of the generation process and experimental configurations
for SHG in such materials. It underscores the latest advancements in harnessing SHG as a sensitive
probe for investigating the nonlinear optical attributes of these materials, with a particular focus on
its pivotal role in unveiling electronic structures, bandgap characteristics, and crystal symmetry. By
analyzing SHG signals, researchers can glean invaluable insights into the microscopic properties of
these materials. Furthermore, this paper delves into the applications of optical SHG in imaging and
time-resolved experiments. Finally, future directions and challenges toward the improvement in the
NLO in LDMs are discussed to provide an outlook in this rapidly developing field, offering crucial
perspectives for the design and optimization of pertinent devices.

Keywords: SHG; low-dimensional materials; time-resolved SHG; perovskite; nanophotonics

1. Introduction

Franken et al. first researched second harmonic generation (SHG) from crystalline
quartz in 1961, marking the inception of nonlinear optical (NLO) properties [1]. SHG
represents the fundamental nonlinear course wherein an incident wave with frequency ω
comes into contact with one nonlinear material, resulting in an emergent wave of double
frequency 2ω [2]. This distinctive phenomenon has been observed in noncentrosymmetric
media under intense light fields [3–6] and garnered significant interest in photonic and opto-
electronic device applications [7,8], materials characterization [9,10], and optical frequency
converters [11,12]. The Kurtz–Perry powder technique can evaluate second harmonic gen-
eration (SHG) intensity in pristine powder form, saving a significant amount of time and
energy in the preliminary screening of materials [13]. Notably, the commercially successful
bulk crystals such as Beta Barium Borate (BBO) and Lithium Triborate (LiB3O5), etc., can be
attributed to the exploitation of SHG. However, these conventional materials are ill-suited
for the emerging technical requirement of current and future nonlinear optics, especially
on-chip nanophotonics. To facilitate chip-scale nonlinear optics, there is a pressing need for
nanoscale materials that exhibit robust nonlinear optical responses. Consequently, there
is an immediate need for novel materials that offer large nonlinear responses in compact
sizes at a reasonable cost that are tailored for multifunctional and high-performance ap-
plications in nonlinearity. The field is currently experiencing a substantial shift due to the
identification and advancement of low-dimensional materials (LDMs).
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To date, significant efforts have been invested in enhancing the linear optical properties
of LDMs. However, research into their NLO effects remains nascent. The exploration of
NLO effects at the low-dimensional (LD) scale has provided a fresh perspective on the study
of LDM optical properties. A fundamental nonlinear optical effect, integral to a myriad
of applications, is the second-order NLO process referred to as SHG. Recently, SHG has
been identified in numerous two-dimensional (2D) layered materials. This phenomenon is
attributed to the intrinsic noncentrosymmetric structures of these materials, which exhibit
SHG effects, for example, 3R MoS2 [14], CuInP2S6, and α-In2Se3. While some centrosym-
metric 2D layered materials (e.g., 2H MoS2, 2H WS2, and graphene) are expected to have no
SHG signal because optical susceptibility tensors vanish, this phenomenon can be observed
when certain techniques are employed to transition from centrosymmetric structures to
noncentrosymmetric ones. These techniques include adjusting the number of layers [10],
introducing an external electric field [15], incorporating and tuning defects [16], as well
as artificially stacking heterostructures and homostructures. Furthermore, spontaneous
polarization has led to the reported generation of SHG in MAPbI3 single-crystal [17] and
hybrid germanium iodide perovskite [18], highlighting their potential applications for
second-order NLO. The dimension reduction endows LD perovskites with unique band
structures compared with their 3D counterparts, which is pivotal in determining their SHG
properties [19–21]. Researchers have concurrently been engaged in the development of
diverse nanomaterials exhibiting high second-order NLO properties, aiming to apply them
in chemical and biological detection, as well as in photonics [22–25]. Additionally, it has
been observed that the second-order nonlinear susceptibility of atomically LD materials
aligns with that of conventional bulk NLO materials. This alignment suggests potential for
innovative applications in optoelectronic and photonic devices. The unique combination of
unparalleled material compatibility and seamless integration, along with their varied opto-
electronic properties, positions LD SHG materials as viable candidates for nanophotonic
devices incorporated into forthcoming chips.

Several reviews have been conducted on the nonlinear optical properties of LDMs [3,4,26,27],
with a few recent papers offering in-depth discussions specifically on the SHG in 2D mate-
rials [28–30]. In this paper, we provide a thorough review of recent advancements in the
investigation of highly efficient and adjustable SHG processes in LDMs. In Section 2, the
fundamental theory bases of SHG for LDMs and the experimental method for second-order
nonlinear LDMs are succinctly introduced. In Section 3, the modulation and enhancement
of SHG response strategies and their advances in LDMs, including 2DLMs, LD perovskites,
and nanomaterials, are reviewed systematically. In Section 4, we present the development
of more multifunctional and practical LD materials in optical characterizations and appli-
cations. In Section 5, the current state and challenges of SHG for LD materials as well as
practical applications of LDMs in nonlinear integrated devices are discussed. In this review,
we offer a comprehensive overview of the topics discussed as shown in Figure 1.
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2. Theoretical Background
2.1. Basic Concept of SHG

Nonlinear optical processes can be understood by expanding the polarization P(r, t)
of the material in terms of a Taylor series relative to the incident light field E(r, t) [31].

P(r, t) = PL(r, t) + PNL(r, t)

Here PL(r, t) is the linear polarization component. When weak light propagates
through the material, the nonlinear polarization component can be neglected, and only
linear optical processes are considered.

PL(r, t) = χ(1)E(r, t)

χ(1) represents the material’s linear susceptibility, reflecting the physical processes
of the linear optical response of the medium to light (such as linear refraction and linear
absorption). Its real part represents the linear refractive index, and the imaginary part
represents the linear absorption coefficient.

PNL(r, t) is the nonlinear polarization component. When intense light propagates
through the medium (typically with E(r, t) in the range of 1015 − 1018 V/m), nonlinear
optical processes occur [31].

PNL(r, t) = P2(r, t) + P3(r, t) + . . . + Pn(r, t) = χ(2)E(r, t)2 + χ(3)E(r, t)3 + . . . + χ(n)E(r, t)n (1)

χ(2), χ(3) represent the second-order, and third-order nonlinear polarization suscepti-
bilities of the medium, respectively. Here, n signifies an integer value.

The relationship between second-order polarization and second-order response is
as follows:

P2(r, t) = χ(2)E(r, t)2 (2)

χ(2) reflects second-order nonlinear optical effects, such as difference frequency gener-
ation, second-harmonic generation [29], and so on.

From a polarization perspective, it can be understood that the incident light with a
frequency of ω interacts with the second-order polarization susceptibility of the material,
inducing polarization and resulting in a second harmonic light beam with a frequency
of 2ω [32–35]. The process of SHG can also be elucidated through the interaction of
atomic energy levels and photons: electrons absorb two photons with the same frequency,
transition to a higher energy level, and then emit a photon with a frequency of 2ω when
transitioning back down. This phenomenon is the second harmonic signal (Figure 2).
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Therefore, the calculated polarization intensity remains unchanged, leading χ(2) = 0.
That is, for materials with centrosymmetric symmetry, their second-order polarization is
zero, and thus no SHG signal is generated [36]. If a material generates the SHG signal, it
indicates that the centrosymmetric symmetry of the material is broken, such as at interfaces
and defects. Thus, the structural symmetry of a material can be characterized through the
phenomenon of second harmonic generation.

The SHG and THG signals generated by the crystal under intensive laser are also
affected by the crystal structures of the ultra-thin flakes. Additionally, for low-dimensional
materials, the linear as well as the nonlinear optical properties near the band edge are
dominated by the exciton effect. When the exciton states are involved as intermediate or
final states for the nonlinear transitions, the NLO can be enhanced dramatically. Therefore,
the enhanced excitonic effect in low-dimensional systems also strongly influences the
harmonic generation intensity [37–39]. Previous studies of 2D materials reveal that, when
the two-photon excitation energy is in resonance with the exciton energy, the SHG efficiency
is shown to increase up to three orders compared with the excitation off-resonance [37,38].

The frequency conversion efficiency of semiconductor materials’ nonlinear optical
processes exhibits a high degree of dispersion. This is because the material’s nonlinear
susceptibility varies with the incident light frequency [40,41]. Additionally, the utiliza-
tion of resonance effects can significantly enhance the interaction between light and mat-
ter in two-dimensional materials, greatly improving the efficiency of second harmonic
generation [37,42,43]. Particularly, when the incident light frequency matches the resonance
frequency of the material’s electrons or excitons, the frequency conversion is most effective,
as electron transitions occur between real electronic states. Therefore, the response of
the second-order nonlinear susceptibility is dispersive, influenced by factors such as the
distribution of electronic states, bandgap structure, and lattice symmetry.

Despite the intense experimental studies of the SHG effects in Mie-resonant nanos-
tructures, a comprehensive theory of the SHG emission from nanoparticles with nonzero
bulk nonlinearity tensor χ(2) has not been proposed yet [44]. Resonant nanoparticles can
enhance the electric field, thus improving the generation efficiency of nonlinear signals.
This is because, at the nanoscale, the nonlinearity of light is often associated with geometric
plasma resonances in plasma nanostructures. At the same time, the directivity of the second
harmonic emission can be controlled. Under the resonance excitation of a single magnetic
dipole mode, the directivity of the second harmonic emission can be controlled by rotating
the dipole moment relative to the material crystal lattice. The mechanisms in resonant
enhancement and SHG of nanoparticles are dependent on the symmetry of the crystalline
structure and polarization of the incident light.

2.2. Experiment Method

Second harmonic generation (SHG) provides a non-invasive, straightforward, and effi-
cient characterization method for determining the properties of low-dimensional materials.
It can be employed to identify characteristics [45–55], such as the layer number, crystal
lattice symmetry and orientation, twist angle, strain direction, and intensity.

The fundamental method for SHG measurement is illustrated in Figure 3a [54]. A
laser generates laser beams with a specific excitation wavelength, which are polarized after
passing through a polarizer to achieve a specific linear polarization state. Subsequently, a
dichroic mirror is used to selectively ensure that the laser beams of that wavelength only
undergo reflection and not transmission. The reflected laser beams, after passing through a
birefringent half-wave plate for rotation of linear polarization states and phase modulation,
are focused onto the sample surface by a microscope objective. During the interaction
between the sample and laser, the SHG signal is generated. The microscope objective is
utilized to effectively collect these generated SHG signals. Following this, the SHG signals
undergo further adjustment of the polarization state through a birefringent half-wave
plate. They then pass through a dichroic mirror to ensure exclusive transmission in the
optical path. Subsequently, a polarizer selectively allows the light with specific polarization
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directions to pass through, employing a spectrometer for polarization analysis. Finally, the
signals, having passed through the spectrometer, are transmitted to the detector for precise
measurement of the SHG signals [49,50,56,57]. In addition, transmission measurements are
a common approach in the study of SHG (Figure 3b) [8,45,58,59].
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intensity maps and spectral data [60]. Copyright 2023, the Authors. Advanced Optical Materials
published by Wiley-VCH GmbH. (d) Schematic diagram of the optical setup for measuring strain
effect on SHG [61]. Copyright 2018, the Authors. This article is distributed under a Creative Commons
Attribution (CC BY) license.

Researchers have initiated improvements in the experimental setup of SHG mea-
surement. Building upon the foundation of Figure 3a, Figure 3c introduces a white light
beam to enable the observation of the sample’s morphology, and two detection arms are
utilized to acquire intensity maps and spectra of second harmonic generation (SHG) [60]. In
Figure 3d, a quarter-wave plate (QWP) is employed to convert linearly polarized light from
the laser into circularly polarized light, allowing for polarization state adjustment solely by
manipulating the linear polarizer. Additionally, a strain device is positioned on the sample
stage to facilitate an in-depth exploration of the impact of stress on SHG signals [61].

3. State of the Art of LDM-Based SHG

In low-dimensional systems, strong quantum confinement leads to band gap expan-
sion and thus larger band gaps, which, in turn, affect the third-order NLO strength. The
confinement of electrons in low-dimensional systems enhances the interaction between
light and matter, resulting in more pronounced linear and nonlinear optical responses than
those of 3D bulk materials. Unlike third-order NLO, second-order processes such as SHG
necessitate a stringent crystal structure of noncentrosymmetric. Consequently, second-order
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NLO is frequently associated with ferroelectricity, pyroelectricity, and the Rashba effect.
Recently renewed interest in nanoscale SHG is demonstrated in the increasing demand
for subwavelength coherent light sources achieved by disrupting symmetry through inter-
faces [62], imperfect spheres [62], and asymmetric shapes [63]. Furthermore, nanoscale SHG
can also be realized through the utilization of noncentrosymmetric nanocrystals [64–68],
asymmetric geometric configurations [69], and the application of NLO material coating on
nanospheres [70].

3.1. 2D Materials
3.1.1. SHG in Graphene

Since the discovery of graphene by Geim et al. [71] in 2004, two-dimensional materials
have been at the forefront of research. Graphene refers to an atomic-level thin layer of
carbon atoms densely arranged in a hexagonal lattice, serving as the fundamental building
block for all other dimensions of graphite materials [72]. Due to its high mechanical
strength [73] and excellent electrical [74] and optical properties [75], graphene has emerged
as a competitive candidate material for constructing sensors, flexible devices, solar cells,
and more [76–78]. The monolayer of graphene exhibits a central symmetric structure, and
according to the dipole approximation, no second harmonic generation (SHG) response
is expected [79]. In response to this, researchers have endeavored to break the inversion
symmetry through various methods to induce SHG responses and thereby evoke novel
optical properties (Table 1).

Table 1. SHG properties of graphene.

Material SHG
Phenomena

χ(2)

(10−12m/V)

Emission
Wavelength

(nm)

Material Characteristics

Substrate Ref.Fabrication
Method

Thickness of
Sample

Investigated

Graphene

Current induced 120 3100 - 1 L - [80]

Current induced 200 370 Thermal
annealing 4 L SiC [81]

Doping 22 653 CVD 1 L Fused Silica [79]
Doping - - CVD 2 L SiO2/Si [82]

Stacking induced 90 650 Exfoliation 3 L (ABA) SiO2/Si [83]
Stacking induced - 532 Exfoliation 4 L (ABAB) SiO2/Si [54]

Twisting 424 532 Exfoliation 2 L SiO2/Si [84]
non-uniformly

straining - 517.5 Exfoliation 1 L Al2O3 [55]

For instance, external stimuli such as current and electric fields [80,81,85] can induce
SHG responses in graphene. In 2004, Chang et al. [80] induced SHG through direct
current, utilizing semiconductor Bloch equations to calculate the displacement of carrier
distribution in the Brillouin zone caused by the direct current field. They provided an
analytical expression for the nonlinear susceptibility (Figure 4a,b). Similarly, applying
an electric field perpendicular to the graphene plane disrupts the sublattice symmetry,
leading to the generation of second harmonic waves [85]. Researchers have also observed
an inversion relationship between the K and K’ valleys. Under normal incidence plane
electromagnetic wave excitation, the second harmonic signals from different valleys have
opposite phases. When the valley carrier distribution is uniform, the second harmonic
signals cancel out. However, non-uniform carrier distribution results in the generation of
second harmonic signals (Figure 4c,d) [86].
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two-photon processes, respectively [79]. The red line represents the incident fundamental frequency,
and the blue line represents the frequency doubled signal. Copyright 2019, American Physical
Society. (g) Various stacking arrangements of the graphene trilayer, including ABA (Bernal) and ABC
(rhombohedral) arrangements [83]. Copyright © 2018, the Authors, some rights reserved; exclusive
licensee American Association for the Advancement of Science. (h) Various stacking arrangements of
graphene tetra-layers, including ABAB, ABCA, and ABCB [54]. (i) Heterostructures formed by the
van der Waals (vdW) stacking of center-symmetric monolayer graphene and bilayer molybdenum
disulfide (vdWH) induced SHG [51]. The red arrow represents the incident fundamental frequency,
and the green arrow represents the frequency doubled signal. Copyright © 2023, the Authors, some
rights reserved; exclusive licensee American Association for the Advancement of Science. (j) Twisted
bilayer graphene with broken inversion symmetry [84]. Copyright 2020, Elsevier Inc. (Amsterdam,
The Netherlands) (k) Non-uniform strain in monolayer graphene-induced SHG [55]. Copyright 2023,
the Authors.
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Furthermore, doping can induce a transition in graphene’s electronic structure from
electric dipole forbidden to electric quadrupole allowed, thereby leading to intense SHG in
graphene [79,82]. This novel SHG exhibits properties of dipole response, which is attributed
to the effective inversion symmetry breaking caused by the optical coupling of photons
within the plane. Zhang et al. [82] reported that charge doping controlled by oxidation–
reduction effectively breaks the central symmetry of bilayer graphene (BLG), leading to the
generation of strong SHG (Figure 4e,f).

Different stacking configurations can also induce SHG. Shan et al. [83] investigated
the three-layer graphene stacking configurations ABA (Bernard) and ABC (rhombus)
(Figure 4g). In ABA trilayer graphene, the carbon atoms in the second layer are positioned
directly above the centers of the hexagons in the first layer, and the third layer is precisely
positioned above the first layer. In contrast, in ABC trilayer graphene, each layer of carbon
atoms is offset from the layer below by a certain distance. Therefore, ABA trilayer graphene
belongs to the D3h point group, exhibiting inversion symmetry breaking, which allows
the observation of SHG signals. On the other hand, ABC trilayer graphene retains a
centrosymmetric structure similar to monolayer graphene and does not generate second
harmonic signals. Subsequently, Zhou et al. [54] documented the examination of significant
nonlinear optical SHG in four-layer graphene stacking with ABCB configuration, while no
SHG was observed in isomers with ABAB and ABCA stacking (Figure 4h). Additionally,
researchers reported that center-symmetric two-dimensional materials, for example, van
der Waals (vdW) stacking of bilayer molybdenum disulfide (2 LM) and monolayer graphene
(1 LG), can promote substantial SHG (Figure 4i) [51,87]. This is due to the interlayer charge
transfer between 2 LM and 1 LG, as well as the unbalanced charge distribution within
2 LM, resulting in the breaking of the centrosymmetric structure.

Interestingly, Yang et al. [84] discovered that artificially twisted bilayer graphene
(tBLG) structures can also induce SHG (Figure 4j). The twisting angle between two mono-
layers in van der Waals structures provides a certain degree of freedom in controlling the
optical properties of two-dimensional materials. The interlayer twist plays a crucial role in
adjusting the bandgap and controlling the overall symmetry of the material. Determined
by the twist angle, the magnetization tensor components of tBLG’s major chirality range
from 0 to 28 × 104 pm2/V. By directly manipulating the lattice arrangement of graphene
through strain engineering, strong polarization is generated between two initially balanced
sublattices (Figure 4k). The polarization disrupts the sublattice symmetry of graphene,
achieving a pronounced second-order response [55].

3.1.2. SHG in Transition Metal Dichalcogenides (TMDs)

The family of two-dimensional materials is gradually expanding, with transition metal
dichalcogenides (TMDs) being an important category among them. TMDs are classified
as MX2-type semiconductors, where M denotes transition metal atoms including Mo or
W, and X denotes chalcogen elements such as S, Se, or Te. TMDs exhibit attractive size-
dependent electrical, mechanical, optical [88], chemical [89,90], and thermal properties,
making them highly promising in the fields of nanoelectronics, optoelectronic devices [88],
sensors [91,92], energy storage, and conversion [93].

Due to the distinct coordination layers of transition metal atoms, monolayer TMDs
typically present octahedral or trigonal prism coordination phases [29,60,94–96]. Multi-
layer TMDs give rise to diverse polymorphic structures, as each layer can adopt either
of the two coordination phases independently. Three common crystalline structures, la-
beled 1T, 2H, and 3R [97,98], are distinguished based on the number of layers in the
crystal cell and the exhibited symmetry type (Figure 5a). TMDs in the 1T phase typi-
cally exhibit a metallic nature with a triangular structure. On the other hand, 2H-phase
TMDs feature an AB stacking structure [3,46], where metal atoms and neighboring lay-
ers of dichalcogenide atoms are precisely arranged together, making it one of the most
extensively studied systems. The metallic properties of the 1T phase and the maintained
inversion symmetry in even layers of the 2H phase make these structures unfavorable
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for generating second harmonic generation. Conversely, TMDs in the 3R phase with
ABC stacking possess a non-centrosymmetric structure, and the breaking of inversion
symmetry triggers a significant effective second-order nonlinear polarization [99,100]
(Table 2).

Table 2. SHG properties of TMDs.

Material χ(2)(10−12m/V)
Emission

Wavelength (nm)

Material Characteristics

Substrate Ref.Fabrication
Method

Thickness of Sample
Investigated

MoS2 120 435 Exfoliation 1 L Quartz [101]
29.5 440 Exfoliation 3 L Quartz [101]
~105 405 Exfoliation 1 L SiO2/Si [34]
~5000 405 CVD 1 L SiO2/Si [34]

430 580 CVD 1 L SiO2/Si [102]
2 780 CVD 1 L SiO2/Si [103]

WS2 4500 415 Exfoliation 1 L SiO2/Si [41]
500 440 CVD 1 L SiO2/Si [104]
460 532 Exfoliation 1 L Quartz [105]

MoSe2 50 810 CVD 1 L SiO2/Si [106]
7800 775 Exfoliation 1 L Si waveguide [107]

WSe2 100 775 Exfoliation 1 L SiO2/Si [108]
19 775 Exfoliation 5 L SiO2/Si [108]

1000 ~443 Exfoliation 1 L SiO2/Si [59]
MoTe2 2500 775 Exfoliation 1 L SiO2/Si [109]

SHG is a simple, easy, and quick way to identify various characteristics of TMD materi-
als, such as lattice symmetry and orientation [41,46,99,101,107,110], stacking angles [36,42],
grain boundaries [103], and layer numbers [99,101,108]. In 2013, Malard et al. [101]
first revealed the fundamental symmetry and orientation of MoS2 crystals using SHG
(Figure 5b). Subsequently, Hsu et al. [32] established the relationship between second
harmonic intensity, polarization, and stacking angles, providing a detailed characteriza-
tion of grain boundaries (Figure 5c). Zhao et al. [14] investigated the layer dependency
of SHG in 3R and 2H-MoS2. Since monolayer 2H-MoS2 belongs to the D3h point group
and exhibits inversion symmetry breaking, the inversion symmetry is restored when the
number of layers increases to two in bilayer MoS2. Therefore, as the number of layers
increases, odd-numbered layers can generate SHG responses, while even-numbered layers
disappear. In the case of the 3R phase, there is a misalignment between the upper and
lower layers of MoS2, resulting in inversion symmetry breaking even in even-numbered
layers. Thus, both odd and even-numbered layers exhibit significant SHG responses
(Figure 5d).

Building upon this foundation, researchers conducted in-depth investigations into the
impact of stacking methods [53,58,104], strain [61], temperature [100], and electric fields [46]
on SHG. In 2017, Fan et al. [104] proposed a novel helical WS2 structure (Figure 5e). Re-
search has found that due to the symmetry breaking in the twisted screw structures, the
SHG intensity rapidly increases with the number of layers (Figure 5f). This is completely
different from conventional 2H-stacked transition metal dichalcogenides (TMDs), where
the SHG intensity shows an odd–even relationship with the number of layers. In 2020, a
systematic study was conducted on the robust SHG signal efficiency of helical TMDs, along
with its correlation with intrinsic band characteristics [58]. Mechanical strain can reduce
the symmetry of crystals, and even weak strains can have a significant impact on the SHG
intensity of different polarization directions. Therefore, Mennel et al. [61] experimentally
determined the second-order nonlinear optical susceptibility tensors of monolayer MoS2,
MoSe2, WS2, and WSe2 under an excitation wavelength of 800 nm(Figure 5g,h). Interest-
ingly, Khan et al. [100] discovered a temperature-dependent second harmonic generation
trend that exhibited opposite behavior between single-layer and select odd-layer (3 L, 5 L,
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7 L, etc.) TMDs. For instance, while 1 L MoSe2 displayed a substantial SHG enhancement
(25.8%) with increasing temperature, some odd-numbered layers exhibited significant
SHG suppression, with percentages of −55.2%, −31.02%, and −18.4% for the 3 L, 5 L,
and 7 L of MoSe2, respectively (Figure 5i,j). Similar trends were observed in other TMD
materials such as MoS2, WS2, and WSe2. This temperature-dependent SHG behavior can
be explained by the thermal expansion effects in monolayer and multilayer TMDs. And
Shree et al. [46] demonstrated robust and adjustable exciton-mediated harmonic signals in
2H MoS2 bilayers. This was achieved by manipulating the excitation laser energy, dielectric
environment, and applied electric field, surpassing the non-resonant harmonic signals in
monolayers (Figure 5k,l).

Furthermore, TMDs can form vertical or lateral heterostructures through vertical
stacking or lateral stitching, which can be performed on virtually any substrate, enhancing
the flexibility and operability of fabrication [111]. The van der Waals heterostructures
formed between TMDs introduce new symmetries, leading to the emergence of additional
nonlinear coefficient elements and thereby offering new possibilities for controlling nonlin-
ear optical effects. Therefore, the synthesis of such heterostructures is crucial. Alloying is
divided into direct and indirect methods, representing indispensable approaches for adjust-
ing material bandgaps by utilizing the kinetics and thermodynamics of alloy reactions to
synthesize lateral and vertical heterostructures of high-speed steels. Based on this, methods
such as edge epitaxy, photolithographic patterning [112], and electron beam epitaxy have
been derived. Hossein et al. [113] combined experimental and density functional theory
(DFT) calculations to reveal the defect-mediated mechanism of alloying in single-layer
TMD crystals, providing excellent theoretical guidance for synthesizing advanced alloys
through defect engineering. Le et al. [16] studied the effect of Se alloying on the SHG
properties in single-layer MoS2, finding that alloying MoS2 with Se can further enhance
and broaden the overall SHG efficiency.

In a study on controlling SHG in TMD heterostructures, Li et al. [114] designed a
one-dimensional heterostructure comprising TiO2 nanowires and monolayer MoS2. They
found that the SHG intensity in the overlapping region was enhanced by approximately
10 times. Additionally, the anisotropic SHG polarization patterns in the overlapping re-
gion exhibited a dependence on the stacking angle between the nanowires and MoS2
crystal orientation. This implies that SHG can be effectively controlled by changing the
polarization direction of the incident light or the stacking angle, achieving anisotropic
enhancement of SHG. Subsequently, He et al. [115] computationally investigated the
physical properties of two types of van der Waals heterostructures, MoTe2/WSe2 and
MoSe2/WSe2, using first-principles calculations. Their work provides theoretical guidance
for the application of van der Waals heterostructures in tunable nonlinear optoelectronic
devices. Zheng et al. [116] observed deformation in the polarization pattern of SHG
in MoS2/CrOCl heterostructures, indicating a change in the crystal symmetry of MoS2.
This was attributed to uniaxial strain caused by lattice mismatch, leading to the breaking
of rotational symmetry in MoS2 and consequently altering the polarization properties
of SHG.

Although current research demonstrates the significant potential of TMD heterostruc-
tures in SHG, the reliability and repeatability of their synthesis techniques still need further
improvement. A deeper understanding and precise control of the dynamics and ther-
modynamics of the synthesis are crucial for pushing TMD heterostructures toward their
fundamental limits.
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SH intensity oscillates with the number of layers [14]. Copyright 2016, CIOMP (Changchun, China).
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of the SHG intensity with increasing power density. [104]. Copyright 2017, American Chemical
Society. (g) SHG process in a strained TMD monolayer. (h) SHG measurements were performed
on MoS2, MoSe2, WS2, and WSe2 using polarization-resolved techniques, covering both minimum
and maximum applied strain levels [61]. Copyright 2018, the Authors. This article is distributed
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line). (l) A diagram illustrating a bilayer with two distinct interlayer configurations [46]. Copyright
2021, the Authors.
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3.1.3. SHG in Group IV Monochalcogenides

Currently, it has been predicted that group IV monochalcogenides, specifically GeSe,
GeS, SnSe, and SnS (denoted by MX where M = Ge, Sn and X = Se, S), will display
significant in-plane spontaneous electric polarization [117–120] and notable shift-current
response [120–122]. Moreover, with abundant reserves, low toxicity, and chemical stability,
these group IV monochalcogenides find widespread applications in diverse fields, including
optoelectronics [123,124], thermoelectrics [121,125,126], and ion batteries [127,128]. The
crystalline structure of monolayer IV-group monochalcogenides comprises two atomic
layers, exhibiting a sinusoidal pattern along the x or y direction. The original configuration
possesses four-fold rotational symmetry and four mirrors [129] (Figure 6a). The monolayer
MX is categorized under the noncentrosymmetric point group C2v (mm2), possessing up
to five distinct SHG susceptibility tensor elements. Conversely, their bulk counterparts
belong to the centrosymmetric point group D2h (mmm), resulting in no SHG response [129].
Similar to TMDs, odd layers in MX can generate SHG responses, while even layers exhibit
no SHG response.
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MX = GeS, GeSe, SnS, and SnSe with the outgoing photon frequency 2ω [130]. Copyright 2017,
IOP Publishing Ltd. (Bristol, UK) (c) The relationship between the number of layers and Raman
spectra of SnS at 3 K. (d) SHG spectra for SnS at room temperature ranging from bulk to monolayer
thicknesses [131]. Copyright 2020, the Authors. (e) SHG for the 30 nm thickness SnS film at different
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excitation wavelengths. (f) SHG power variation at excitation wavelengths from 800 to 1050 nm.
(g) SHG intensities of SnS thin films of various thicknesses and monolayer MoS2 (ML) under 900 nm
laser excitation were compared. (h) The variation in SHG intensity with thickness [57]. Copyright
2021, Wiley-VCH GmbH. (i) Low-resolution STEM image depicting the SnSe flake. The pink, blue,
and red lines represent the direction of the strongest SHG intensity on the polar plots in (k) on P1, P2,
and P3, respectively (j) SHG mapping of a SnSe flake with the incident fundamental polarization
rotated by 165◦ relative to the horizontal axis of the image. (k) SHG intensity dependence on
polarization rotation angle at P1, P2, and P3 [50]. Copyright, 2023 Wiley-VCH GmbH.

Raj Panday et al. [130], utilizing density functional methods, demonstrated that
group IV monochalcogenide compounds exhibit the largest reported effective SHG to
date. It can achieve magnitudes of up to 10 nm/V, which is approximately ten times greater
than the typical GaAs. Figure 6b presents the DFT outcomes of the imaginary and real parts
of χ2 for MX = GeS, GeSe, SnS, and SnSe. An interesting characteristic is the pronounced
in-plane anisotropy of χ2 in MX, with

∣∣∣χzyy
2

∣∣∣ typically exceeding
∣∣χzzz

2

∣∣. Higashitarumizu
et al. [131] experimentally demonstrated the in-plane ferroelectricity of micrometer-scale
monolayer SnS at room temperature. Surprisingly, below 15 layers, SnS exhibits robust
room temperature ferroelectricity, irrespective of the odd or even number of layers. This
contrasts with the conventional notion that only odd-numbered layers break centrosym-
metry to exhibit ferroelectricity (Figure 6c,d). Subsequently, Zhu et al. [57] employed
molecular beam epitaxy (MBE) to prepare a few-layer SnS. They found that the dependence
of thickness on SHG is closely related to the coherence length. Additionally, they obtained
the second-order nonlinear susceptibility of few-layer SnS. Polarization-dependent SHG
research revealed typical anisotropic patterns and was employed to ascertain the crystal
orientation of the SnS film (Figure 6e–h). Mao et al. [50], through atomic structure charac-
terization, revealed that adjacent van der Waals ferroelectric layers in SnSe exhibit both
parallel and antiparallel stacking, leading to an ordered arrangement of ferroelectric or
antiferroelectric domains. This ordered arrangement significantly contributes to the genera-
tion of second harmonic waves, enhancing the production of second harmonic generation
(SHG) through coherent enhancement effects. Remarkably, the observed SHG resulting
from this coherent enhancement is 100 times more intense than that of monolayer WS2.
Figure 6i–k illustrates the polarization angle-dependent SHG of a SnSe flake, reflecting the
combination of second harmonic fields from adjacent domains and the coherent stacking
structure perpendicular to the plane (Table 3).

Table 3. SHG properties of group IV monochalcogenides.

Material

χ(2)(10−12m/V)
(Emission Wavelength) Material Characteristics

Substrate Ref.

Experimental Simulation Fabrication Method Thickness of Sample
Investigated

GeSe 7368 (939 nm) - 1 L - [129]
500–10,000

(620–1550 nm) - 1 L - [130]

GeS 200–8000
(443–1550 nm) - 1 L - [130]

SnSe 200–10,000
(620–1550 nm) - 1 L - [130]

SnS 550–7800
(550–1550 nm) - 1 L - [130]

1.37 (450 nm) MBE ~30 nm MgO [57]

3.1.4. SHG in Group III–VI

Materials from the III–VI groups, (i.e., GaSe, GaS, GaTe, and InSe) have attracted
widespread attention because of their unique structures and outstanding optical and
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electronic properties [132]. Both InSe and GaSe exhibit second harmonic generation (SHG)
signals [133,134], making them extensively used in saturable absorption devices in ultrafast
photonics [135–137]. Additionally, they possess two-photon-excited fluorescence (TPEF)
characteristics. GaTe crystals, owing to their superior bandgap (1.7 eV at 300K) and high
atomic weight, are considered ideal window materials for radiation detectors [138,139].
GaS, with its wider bandgap, holds potential for applications in photodetectors, flexible
electronic devices, solar energy conversion, and nonlinear optics [140–142] (Table 4).

Table 4. SHG properties of groups III–VI.

Material χ(2)(10−12m/V)
Emission

Wavelength (nm)

Material Characteristics

Substrate Ref.
Fabrication Method Thickness of Sample

Investigated

GaSe 2400 605 CVD 1 L Fused silica [143]
1700 675 CVD 1 L Fused silica [143]
700 800 CVD 1 L Fused silica [143]
30 400 Exfoliation 2 L SiO2/Si [144]
18 780 Exfoliation Bulk Si [145]

GaS 47.98 440 Exfoliation 3 L Quartz [146]
GaTe 1.15 780 Exfoliation 14 nm SiO2/Si [147]
InSe 639 400 PVD 1 L SiO2/Si [148]

13 400 Exfoliation Bulk SiO2/Si [133]

Researchers explored the symmetry and orientation of monolayer GaSe by examining
the polarization-dependent second harmonic generation (SHG) intensity. They found that
for bilayer GaSe, SHG strongly depends on the stacking mode: the AA stacking mode
(ε-phase) breaks inversion symmetry, leading to SHG signals, while the AB stacking mode
(β-phase) does not generate SHG signals (Figure 7a) [143]. Additionally, ε-GaSe exhibits
observable frequency-doubling effects in both odd and even layers of nanosheets. The
SHG response of GaSe with a thickness less than 5 L shows a nearly cubic dependence
on the number of layers, while for thicknesses exceeding 5 L, it demonstrates a quadratic
dependence (Figure 7b,c) [144,145].

Like ε-GaSe, GaTe, as a non-centrosymmetric two-dimensional layered material, can
generate SHG response regardless of thickness. When excited by a 1560-nanometer
femtosecond fiber laser, the SHG signal of GaTe strongly depends on the layer count
(Figure 4d) [147]. In contrast, the SHG signal of β-GaS is constrained by the oddness
of the layer count; odd layers of β-GaS belong to the D1

3h space group, exhibiting non-
centrosymmetric properties and thus producing SHG signals. Meanwhile, layers with
an even count are associated with the D3

3d centrosymmetric space group, resulting in the
absence of detected SHG signals (Figure 7e–g) [146].

Because of the weak vdW interlayer coupling, InSe’s crystal structure displays poly-
morphism, characterized by four distinct stacking orders (γ-, ε-, β-, and δ-phases). Re-
searchers initially investigated the dependence of second harmonic generation (SHG)
intensity on the azimuthal angle and emission power for single-layer γ-InSe and ε-InSe
(Figure 7h,i) [133,148,149]. Subsequently, they explored the functional correlation between
SHG intensity and the layer count (Figure 7j,k) [133,149]. Sun et al. simulated the SHG
signals produced by γ, ε, and δ phases of InSe under oblique incidence, experimentally
confirming the dominance of the ε-phase in the InSe crystal (Figure 7l) [150]. Additionally,
Li et al. employed first-principles calculations to examine how strain affects the SHG
sensitivity and the matching angle-resolved SHG patterns in γ-InSe. Both experimental
and computational findings suggest a decreasing trend in SHG intensity with an increase
in uniaxial strain on the InSe monolayer (Figure 7m) [151].
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sample with 3–10 L thickness. (g) The relationship between the SHG signal and the number of
layers in the ME GaS sample, with a fixed excitation wavelength of 880 nm and a pump power of
14.41 mW [146]. Copyright 2022, American Chemical Society. (h) SHG intensity dependency on
the azimuthal angle in monolayer InSe, and the six-fold rotational symmetry suggests the three-
fold symmetry in monolayer InSe [148]. Copyright 2018, IOP Publishing Ltd. (i) The dependence
of normalized SHG intensity on laser excitation power in few-layer pure ε-InSe. (j) SHG spectra
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3.2. LD Halide Perovskites

Metal halide perovskites are characterized by a chemical formula of ABX3, where A
and B denote cations of varying sizes, and X signifies halide anions. The selection of organic
and inorganic components allows for the tuning of bandgaps and the diversification of
structural forms in metal halide perovskites. In addition to their three-dimensional coun-
terparts, layered two-dimensional (2D) perovskites exhibit excellent carrier mobility and
solution processability. Consequently, they are also utilized in the fabrication of thin-film
transistors and light-emitting diodes [152]. LD halide perovskites have been synthesized by
incorporating long-chain cations, serving as a barrier between inorganic octahedral frame-
works. This approach has garnered significant interest due to its superior optical properties,
making it particularly suitable for photovoltaic and optoelectronic applications [153–156].
Specifically, the pronounced quantum confinement effect and exciton effect in LD per-
ovskites result in enhanced nonlinear optical responses compared with those observed in 3D
phases [157–159]. In recent years, there have been reports of spontaneous electric polariza-
tion effects and SHG in bulk perovskites [17,18,160–162]. The improved stability of the LD
perovskites span from 0D, 1D, and 2D in an ambient atmosphere, and the observation of this
phenomenon is scarcely evident in the majority of conventional perovskite materials, which
align with their centrosymmetric crystal space groups, extending their investigation and
application such as electro-optical and frequency doubling/mixing application in the SHG
nonlinear optical process [163–173].

Given that only non-centrosymmetric materials exhibit SHG activity, they serve as a
sensitive instrument for investigating the loss of inversion symmetry during a phase transi-
tion. In this case, the SHG signal is sufficiently evident to prove the symmetry breaking dur-
ing the phase transition. Meanwhile, Zhihua Sun et al. demonstrated symmetry breaking
from the variable-temperature SHG effects of 0D perovskite (N-methlpyrrolidinium)3Sb2Br9
(Figure 8a) [171]. Yang Hu also performed temperature-dependent SHG to analyze the
phase transition [172]. Meanwhile, Lina Li et al. investigated the hybrid ferroelectric
with uncommon 2D multilayered perovskite framework (C4H9NH3)2(CH3NH3)2Pb3Br10,
which confirmed the emergence of spontaneous polarization by SHG effects in various
temperatures (Figure 8b) [174]. These effects are comparable to other hybrid ferroelectrics,
such as (3-ammonio-pyrrolidinium)RbBr3 [175], AMX3-type hybrid perovskites [176], and
antiperovskite ferroelectric [(CH3)3NH]3(MnBr3)(MnBr4) [177]. Wei-Qiang Liao et al. re-
ported the change in SHG signal from the perovskite (benzylammonium)2PbCl4 layer,
showing almost overlapping curves in the heating and cooling runs (Figure 8c) [168]. Their
markedly decreased SHG signal indicates the phase transition at around 85 ◦C from a
low-temperature SHG active structure to a high-temperature structure. Moreover, Wen-
juan Wei et al. observed that the in-plane SHG intensity anisotropy of orthorhombic 2D
lead halide perovskite [(C6H5CH2NH3)2PbCl4] nanosheets decreased with reduced layer
thickness (Figure 8d–g) [169]. The orientations of organic components at the interface
play a pivotal role in determining their electrical properties, with a specific emphasis on
dipolar susceptibility.

Chirality pertains to the phenomenon where an entity’s mirror image cannot be su-
perimposed upon itself. This concept has been extensively investigated across a range of
cutting-edge applications. Chiral hybrid perovskites, as a novel class of chiral semiconduc-
tors, have demonstrated significant potential in the realm of nonlinear optics, particularly in
SHG [20,21,178–181]. For instance, Dongying Fu [182] and coworkers investigated the SHG-
circular dichroism (SHG-CD) effect in chiral 1D [(R/S)-3-aminopiperidine]PbI4 bulk single
crystals. The application of SHG-CD technology broadens the detection range to encompass
the near-infrared region. As shown in Figure 9a–c, upon excitation by a circularly polarized
laser, the SHG intensity from the crystal displays a pronounced polarization dependence.
This intensity is significantly influenced by the power of the irradiation. Meanwhile,
Zhao et al. designed chiral R-/S-CLPEA (CLPEA = 1-(4-chlorophenyl)ethylamine) into
bismuth-based perovskites and increased the SHG and nonlinear optical circular dichro-
ism [21]. As shown in Figure 9d–f, the positive correlation between the incident laser’s



Nanomaterials 2024, 14, 662 17 of 36

power at 800 nm and wavelength-dependent SHG effects was demonstrated. This was
achieved through the second-order NLO process, which exhibited a wide response range.
In recent years, Guo et al. unveiled the spatially correlated chirality and the SHG properties
from R- and S-β-methylphenethylammonium(butylammonium)PbBr4 (R- and S-MBPB)
2D chiral perovskites [179]. Their efficient SHG was attributed to localized out-of-plane
supramolecular orientations (Figure 9g–i).
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Figure 8. SHG variety characterization. Phase transition characterization from (a) 0D (N-
methylpyrrolidinium)3Sb2Br9 [158]. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA,
Weinheim. (b) The layer (benzylammonium)2PbCl4 [168], Copyright © 2015, the Authors and
(c) SHG intensity of (C4H9NH3)2(CH3NH3)2Pb3Br10 with different temperatures [174]. Copyright
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. (d) From left to right images are micro-
scopic graphs, height profiles, and topographies of measured (C6H5CH2NH3)2PbCl4 nanosheets
with lateral sizes of approximately 10 µm. (e) The spectra of SHG signals oriented to the c-(0◦,
above) and b-axis (90◦, below) collected from (C6H5CH2NH3)2PbCl4 nanosheets of varying thick-
ness. (f) Polar SHG intensity plots of the analyzed nanosheets. (g) Thickness dependence of
SHG intensity anisotropy (Ic-axis/Ib-axis) of measured nanosheets [169]. Copyright © 2019 American
Chemical Society.

Inspired by pioneering works of functional LD chiral bulk perovskites, Xu et al.
reported the construction of the chiral halide perovskite material and the observation
of strong SHG responses from the nanowires of this kind of perovskite material offer-
ing a new platform for future engineering of the optoelectronics of hybrid perovskite
materials [170]. The two-dimensional inorganic layer and perovskite crystal are non-
centrosymmetrically assembled into a chiral P1 space group based on an organic com-
ponent of chiral β-methylphenethylamine (MPEA), which can obtain effective SHG sig-
nals under excitation of different wavelengths (Figure 10a–c). Meanwhile, Fu et al. also
synthesized the chiral hybrid bismuth halide and acquired the SHG effect from these
grown chiral lead-free perovskite spiral microplates [180]. As shown in Figure 10d–f,
the spiral microplates synthesized for the first time exhibit a large effective second-order
NLO coefficient (deff) up to 11.9 pm V−1 and a high laser-induced damage threshold of
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up to 59.2 mJ cm−2. Yongshen Zheng et al. reported superior performances in SHG
of 1D chiral perovskites (R/S-2- methypiperidine)PbX3 (X = Cl, Br, I) microrods, in-
cluding a large SHG coefficient (≈2.84 mJ cm−2) and high polarization ratio shown in
Figure 10g–j [183].
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Figure 9. Crystal structure and second-order NLO response. (a) Crystal structure of [(R/S)-3-
aminopiperidine]PbI4 [182]. (b,c) The intensity of SHG as a function of the linear polarization angle,
which is tuned by employing a λ/2 plate. Copyright © 2021 Wiley-VCH GmbH. (d) Crystal structures
of (R-/S-CLPEA)4Bi2I10 [21]. (e,f) Power-dependent and wavelength-dependent SHG intensity of
the (S-CLPEA)4Bi2I10 crystal. The incident laser intensity was increased from 1 mw to 6 mw. The
wavelength is changed from 720 nm to 880 nm. Copyright © 2023 American Chemical Society.
(g) Crystal structures of chiral 2D R- and S- MBPB perovskites [179]. (h,i) SHG intensity variation in
R- and S- MBPB perovskites under different excitation wavelengths from 780 to 900 nm. Copyright ©
2023 American Chemical Society.

In the development of integrated nonlinear optical devices, in addition to the low-
dimensionality of materials, structural low-dimensionality, especially the array pattern-
ing, is also a key step to realize integration [170,183–187]. Long-range-ordered single
crystal arrays, when paired with perovskite materials known for their excellent non-
linear optical properties, have unique optical anisotropy and cleavage planes that are
critical to nonlinear optics, which can mitigate defects such as light scattering in the
film and intrinsic dispersion refractive index of bulk materials. The increasing demand
for integrated photonics circuits and chip nanophotonics has drawn heightened atten-
tion toward compact integrated devices [169,188]. Dong et al. and Yu et al. reported
the synthesis of new 0D and 2D double chiral non-toxic Bi-based perovskites, (R/S-
MBA)4Bi2Cl10 and (R/S-3AP)4AgBiBr12 featuring an observation of efficient SHG re-
sponses, attributable to the high crystallinity and pure crystallographic orientation mi-
crowire arrays. These arrays were assembled using capillary-bridge confined techniques as
shown in Figure 11a–f [185,186]. Moreover, Zhao et al. have documented chiral perovskite
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microwire arrays that are fabricated using solution-based processes. This unique material
exhibits reversible phase transitions between its glassy and crystalline states without any
degradation [187]. The key advantage of this approach lies in its high SHG switching
performances shown in Figure 11g–i, which enable efficient control over the generation
of second harmonic signals. Moreover, these impressive results are achieved with a small
footprint, making it feasible to integrate such switchable nonlinear devices into compact
electronic systems.
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Figure 10. Crystallographic structure diagram and SHG properties of the nanostructured chiral
hybrid perovskites. (a) Crystal structure of chiral perovskite, showing features of chiral, DMSO
embedding, and partially shared edge [170]. (b) SEM image of the (R-MPEA)1.5PbBr3.5(DMSO)0.5

nanowire. (c) NLO spectra of a (R-MPEA)1.5PbBr3.5(DMSO)0.5 nanowire pumped under different
wavelengths and normalized by the incident power. Copyright © 2018 American Chemical Soci-
ety. (d) Crystalline structure of the grown (R-MBA)4Bi2Br10 and (S-MBA)4Bi2Br10 crystals [180].
(e) SEM characterization of (R-MBA)4Bi2Br10 microplates. (f) Power-dependent SHG spectra of
the (R-MBA)4Bi2Br10 microplates (excitation wavelength: 1200 nm). Copyright © 2023 American
Chemical Society. (g) Structure of (S/R-2-MPD)PbBr3 along the crystallographic b-axis [183]. (h) TEM
image of a single (S-2-MPD)PbBr3 microrod crystal. (i) SHG intensities of (S-2-MPD)PbBr3 crys-
tal, urea, and quartz at a wavelength of 980 nm under identical test conditions. (j) SHG intensity
variation with polarization from a vertically oriented (S-2-MPD)PbBr3 crystal. Copyright © 2021
Wiley-VCH GmbH.
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Figure 11. SHG properties of single-crystalline perovskite microwire arrays. (a) Crystal structures
of the enantiomers of (R/S-MBA)4Bi2Cl10 along the a-axis [185]. (b) SEM image of (R-MBA)4Bi2Cl10

microwire arrays. Scale bar: 10 µm. (c) SHG mapping of a typical (R-MBA)4Bi2Cl10 microwire. Scale
bar: 1 µm. (d) SHG conceptual illustration of (S-3AP)4AgBiBr12 microwires [186]. The red curve is
incident wavelength and bule curve is the SHG signal. (e) SEM image of a (S-3AP)4AgBiBr12 single-
crystalline microwire. Scale bar: 5 µm. (f) Wavelength-dependent SHG intensity of (S-3AP)4AgBiBr12

microwire arrays, with wavelengths ranging from 760 to 920 nm in increments of 20 nm. Copyright ©
2022 American Chemical Society. (g) The crystal–glass phase transition process as the temperature
increased [187]. (h) SEM image of the glassy and crystalline state of (R-NPB)2PbBr4 microwire
arrays. Scale bar: 10 µm. (i) Wavelength-dependent SHG intensity of (R-NPB)2PbBr4 perovskite
microwire arrays with excitation wavelengths varying from 740 to 850 nm. Copyright © 2022, the
Authors. SmartMat published by Tianjin University and John Wiley & Sons Australia, Ltd. (Hoboken,
NJ, USA).

3.3. Nanomaterials

In recent years, nanoparticles and nanostructured materials have attracted great inter-
est due to their low-dimensional structures. Because of the quantum confinement, surface
effects, and geometric confinement of phonons that significantly differ from those of bulk
materials, they have potential applications ranging from nanoelectronics to nanophotonics.
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To date, SHG from nanoscale structures has been pivotal in various applications such
as optical communication [189], biosensing [190], bioimaging [66,191], and laser beam
control [192]. The enhancement effect of Mie resonance can be observed in several hundred
nanometer nanoparticles [193].

To enhance SHG emission, utilizing hybrid metal–dielectric nanostructures that lever-
age localized surface plasmon resonance (LSPR) is an effective method [64]. The typ-
ical nanostructure shows an increased conversion efficiency to SHG called core–shell
conversion, such as BaTiO3-Au and gold–potassium (KNbO3) core–shell nanoparticles
(Figure 12a–d) [194,195]. However, the fabrication of such core–shell nanostructures ne-
cessitates intricate chemical synthesis techniques and precise control over the ratio of two
thicknesses. Recently, Timpu et al. fabricated the hybrid metal–dielectric nanodimer, which
is composed of an inorganic perovskite nanoparticle of barium titanate (BaTiO3) and a
metallic gold (Au) nanoparticle that was shown to enhance SHG because of the LSPR of
the gold nanoparticles from the BaTiO3 nanoparticle [196] (Figure 12e,f). They observed an
average SHG enhancement of 15-fold triggered by the gold nanoparticles.
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Figure 12. Enhancement and tunability of SHG nanostructures. (a,b) Principle and tunable plasmonic
SHG of nanocavities [194]. Solid curves represent radiation power in second-harmonic frequency
normalized to the maximum radiation power among the three examples. Dotted curves represent
the factor of SHG enhancement compared to the core. Copyright © 2010 American Physical Society.
(c,d) Considered geometry upon excitation TM polarization and the SHG enhancement of a core–
shell Au-KNbO3 nanowire [195]. (e,f) Schematic process flow and wavelength-dependence SHG
signal from BaTiO3-Au nanodimers [196]. The circle marks the position of a single Au nanoparticle
and the same position after the BaTiO3 nanoparticle was added. Copyright © 2017 American
Chemical Society.

The same two-photon transitions, which can excite completely different optical proper-
ties, are involved in the new mechanism of SHG using isolated nanoparticles as the excited
object [64]. Nanoparticles possessing significant photoluminescence activity demonstrate a
high sensitivity to the polarization of light excitation and are not susceptible to scintillation,
which is a crucial characteristic for the development of innovative microscopes [197–199].
Recently, nonlinear optical studies at the single nanoparticle level have been performed
based on new inorganic SHG-active nanoparticles. Mugnier et al. investigated Fe(IO3)3
nanocrystal by polarization-sensitive SHG microscopy and determined the relative values
of the elements to realize the orientation of individual particles in the sample obtained by
optical methods [65]. This is an exceptionally appealing probe for SHG microscopy, and
the orientation of each nanocrystal opens the way for a multitude of applications. As the
surface-to-volume ratio escalates, surface SHG becomes increasingly dominant. In relation
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to nanoparticles, bulk SHG can be disregarded due to the high surface-to-volume ratio.
Le and his coworkers show that a single KTiOPO4 (KTP) nanocrystal is an appealing mate-
rial for SHG [197]. A single nano-KTP generates a fully stable, flicker-free SH signal that can
be readily detected in a photon counting system under femtosecond excitation and ambient
conditions. The study demonstrates that these single nanocrystals can be characterized
in situ by determining their orientation relative to the optical observation axis along all
three axes.

4. Perspective for LDM-Based SHG
4.1. SHG Imaging

Although TEM is one of the most powerful techniques for characterizing LDMs, it
is challenging or even impossible to study thick nanostructures on nonconductive sub-
strates. Due to the unique polarization characteristics of SHG microscopy, it can be a
common technique for studying interface properties, biological imaging, and probing of
noncentrosymmetric materials. The SHG-based techniques have been applied to detect
semiconductor nanowires with different compositions and nanoscale morphologies. More
importantly, polarization-resolved SHG microscopy has been demonstrated as an effective
all-optical detection method for in situ measurements due to the polarization sensitivity of
SHG to the excitation field without damaging the sample.

In 2020, Matthew et al. investigated the differences in SHG between susceptibility
sensors of β and γ glycine microneedles. This was achieved by polarization-dependent
SHG transmission microscopy [200]. As shown in Figure 13a,b, the quantitative framework
presented in this study introduces a novel analytical method for the extraction of sensitivity
tensor values from β and γ glycine microneedles. This analytical model is integrated with
polarization-resolved SHG transmission microscopy, a technique extensively employed
in quantitative SHG for material characterization and diagnostic imaging. Bautista et al.
proposed an imaging method utilizing SHG accompanied by cylindrical vector beams,
demonstrating exceptional sensitivity to the three-dimensional orientation and nanoscale
morphology of metallic nano-objects [201]. As shown in Figure 13c–f, this technique offers
contrast for structural features that are insoluble with linear methods or conventional states
of polarization. It demonstrates significant potential for straightforward and cost-effective
far-field optical imaging in plasmonics.
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Figure 13. SHG images of the polarization-sensitive technique. Polarization-sensitive SHG properties
(total SHG, P component, S component, and optical microscopy images) of γ (a) and β (b) glycine
microneedles [200]. The black arrow indicates the incident beam polarization direction and the
dashed white box outlines the integration area. Copyright © 2020 Wiley-VCH GmbH. (c) SEM images
of gold nanobump array from the top, panel, and oblique sides. (d–f) SHG images of experiments
using gold nanobumps under a focused linear pump, azimuthal pump, and radial pump (down) [201].
Copyright © 2012 American Chemical Society.
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As shown in Figure 14a,b, the SHG micro area images of R-MBPB thin films exhibited
a significant position-dependent SHG intensity. Given that SHG exhibits high sensitiv-
ity to structural symmetry, this pronounced position-dependent SHG intensity is likely
attributable to the polycrystalline structural characteristics. The obviously different SHG re-
sponse from LCP and RCP incident lasers demonstrate R- and S-MBPB chirality properties.
Similarly, Liangliang Zhao [181] and his coworkers employed a custom-built apparatus,
equipped with a confocal laser scanning microscope, to investigate the SHG properties
of (R-MPEA)2SnBr6 as shown in Figure 14c. The resultant mapping image from the SHG
signal clearly delineates the structure of this compound, thereby indicating its SHG activity
as a chiral material. The polycrystalline film’s SHG signals can be significantly affected
by various factors. These include the thickness of the film, the size and orientations of the
grains, and the surface characteristics of the film itself (Figure 14d) [202]. The relationship
between the SHG intensity and film thickness (L) for chiral films, taking into account both
the attenuation of the NLO signal and phase mismatch in the computation of Maxwell’s
nonlinear equation, can be articulated as follows:

I2(L) ∝
(

e−α2L − 2e−
α2 L

2 cos
(

∆k(2)
)
+ 1

)
e−α2L (6)

where α2 represents the absorption coefficient of the 2-fold frequency signal, while ∆k(2)

denotes the wavevector mismatch between the 2-fold frequency wave with the pump
wave. They also conducted a scan of the NLO signal from a specific thick (R-MBA)BiI4 film.
Upon comparing the SHG mapping with the optical image, it was observed that the SHG
intensity changes in correlation with fluctuations in the thickness of the (R-MBA)BiI4 film.
The images from the SHG and THG mappings continue to exhibit synchronous intensity
variations (Figure 14e,f).
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Copyright © 2023 American Chemical Society. (c) Scanned mapping image of (R-MPEA)2SnBr6

crystal [181]. Copyright © 2021, the Authors. Advanced Photonics Research published by Wiley-
VCH GmbH. (d) The SHG images of the (R-MBA)4Bi2Br10 microplate at 600 nm under RCP and
LCP excitation [180]. Copyright © 2023 American Chemical Society. (e) The second-order NLO
microscopic measurement setup [20]. (f) The optical image, SHG mapping image, and THG mapping
image (exciting wavelength is 1200 nm) of (R-MBA)BiI4 film under consistent conditions. Copyright
© 2021 American Chemical Society.

The SHG exhibits sensitivity to the spectral phase of a laser pulse. It has been exten-
sively utilized for femtosecond pulse characterization. Furthermore, the SH has found
applications in both pulse characterization and compression through the implementation
of the multiphoton intrapulse interference phase scan (MIIPS) technique. Acanto et al.
utilized the nanometer source for SHG, which acquired phase information derived from a
signal originating from an ultra-narrow nanometric volume, produced by single nonlinear
nanoparticles (NPs), as opposed to bulk crystals. The conditions for SH phase matching
of the NPs do not apply because of the smaller size compared with the excitation wave-
length [197]. Thus, efficient SHG can be obtained over a wide wavelength range without
any specific tuning size of the NPs or change in the orientation with respect to incident
light. The total SH signal is increased by more than an order of magnitude for SH from
a single BaTiO3 NP excited by a compression pulse [192]. Fluorescence microscopy, a
prevalent technique in biological imaging, is adept at probing subcellular components and
dynamic processes. When nanoparticles undergo two-photon excitation, they generate SH
radiation. This process not only expedites the identification of suitable fluorescent markers
or probe recognition but also enhances convenience (Figure 15d). To date, multicolor
imaging has predominantly been confined to the utilization of fluorescent markers and
remains unexplored in the context of SH NPs. The study further illustrated that resonant
plasmonic nanoparticles (RPNPs) can generate distinct colors within the SH spectrum, even
when utilizing an identical excitation laser. This capability could potentially facilitate mul-
ticolor SH imaging and exploit a unique opportunity to differentiate between two different
RPNPs based on their SH spectra (Figure 15e) [203]. Furthermore, Abdallah et al. [204]
performed a comprehensive examination of individual nanorods using a nonlinear optical
microscope based on SHG. The excitation of these nanorods, with their diverse orienta-
tions, was facilitated by a tightly focused laser beam that was either linearly or radially
polarized. This investigation unveiled a pronounced sensitivity of the SHG response to
the orientation of these nanorods for these polarizations. As shown in Figure 15f, the
periodicity of the SHG intensity distribution as a function of polarization confirms the im-
portance of vector beams for enhancing the SHG signal and elucidating the image pattern
recorded by nanostructures. This suggests that the orientation of anisotropic nanomaterials
can be reliably determined using different polarization states of the incident beam in an
SHG microscope.
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Figure 15. SH images on a single nanoparticle under femtosecond pulse. (a–c) SEM image, SH
image, and the sample area after pulse compression image from the investigated area of a BaTiO3

nanoparticle sample. Red arrows indicate small NPs (with an average dimension of 125 nm) that
are distinctly observable only post-pulse compression [192]. (d) SH spectra of the selected NP, as
measured for different compensation masks during multiphoton intrapulse interference phase scan
optimization. Copyright © 2014, the Authors. (e) SEM images and two-color SH image of an array
of gold NPs of different lengths along with higher resolution SEM images of the individual 100 nm
and 130 nm RPNPs [203]. Rights managed by AIP Publishing. (f) Experimental far-field SHG images
from an array of vertical NRs (positioned at 0◦ orientation relative to the substrate normal) using a
tightly focused incident beam employing linear y-polarized (y-LP), radially polarized, azimuthally
polarized, and corresponding experimental conditions [204]. Copyright © 2016, the Authors.

The chiral metamaterial reflector is based on the integration of a nonlinear material
with a designed plasma structure that strongly absorbs a circularly polarized wave of a
spin state and has two key features, namely, chiral selective absorption and polarization
preservation after reflection. And reflect circularly polarized waves of opposite spin in
a way that preserves circular polarization [205]. Chiral resonance enhances the light–
matter interaction under circular polarization excitation, greatly improving the ability of
metamaterials to generate chiral selective signals and optical imaging in the nonlinear
range. The addition of second harmonics is used to enhance the contrast of nonlinear
images. Similarly, with the enhancement of the second harmonic on the metal Au surface,
the incident circularly polarized light passes through to obtain a residual right-polarized
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light image without a geometric phase and a left-circularly polarized beam image with a
geometric phase [206].

4.2. Time-Resolved SHG

Although previous studies of time-resolved optically pumped probes have investi-
gated carrier relaxation under low optical excitation conditions, the electron dynamics of
low-dimensional systems have not been studied in states related to amplitude, temper-
ature, or electron excitation conditions, and the structural dynamics need further study.
Mannebach et al. present the first measurements of the time-dependent structural and
electronic response of 2D MoS2 using SHG [207]. It can be associated with the extreme
electronic temperatures induced without modification of the unit cell structure from the
large amplitude increases in SHG occurring on a few picoseconds time scales. Moreover,
Taghinejad et al. reported the ultrafast modulation of second-order optical nonlinearities in
a monolayer TMD film via the optical tuning of the photocarrier density through a set of
transient linear and nonlinear characterizations [208]. The production of photoelectrons
greatly reduces the possibility of interband electron transitions near highly symmetric K/K′

points in momentum space, reduces the efficiency of nonlinear frequency doubling when
light interacts with excited monolayer crystals, and optically tunes the intensity of SHG
signals emitted from TMDs.

Time-resolved second harmonic generation (SHG) is also a powerful tool to provide
information on the process of electron/hole transfer from the interface to the conduction
band. Tisdale et al. investigated the effect of thermal electron transport properties based
on the size, shape, and material of the nanocrystals and the influence of the band struc-
ture on the surface of nanocrystals on the transport of hot electrons using time-resolved
SHG [209]. Additionally, breaking the inversion symmetry through hot-electron dynamics
can be leveraged to address the critical need for all-optical control of SHG in nanopho-
tonics [210]. Furthermore, Wang et al. revealed a dominant role of the dark excitons to
enhance SHG [205]. The amplitude and sign of the SHG modulation can be adjusted over a
broad spectral range with different carrier dynamics.

Heterostructures of LDMs have unveiled intriguing properties, thereby stimulating
both fundamental and applied research within the realms of optoelectronics and valleytron-
ics applications. The influence of stacking on ultrafast charge transfer upon photoexcitation
and interlayer recombination should be substantial. Accordingly, a distinct difference in
exciton recombination has been noted between coherent and random stacking MoS2/WS2
heterostructures [211]. However, comprehensive measurements of the MoS2/WSe2 het-
erostructures reveal a significant variation in charge recombination lifetime across samples.
Nevertheless, no discernible correlation with torsion angle has been observed [212]. Be-
cause of the ultrafast charge transfer within a few hundred femtoseconds even tens of
femtoseconds, a novel experimental approach for examining charge transfer at the interface
of LDM heterostructures interface has been proposed. This method involves the use of
time-resolved optical SHG. In the prevalent linear pump–probe configuration, the transient
response measured is a composite of both monolayer and heterostructure contributions.
Moreover, the occurrence of charge transfer can be bidirectional simultaneously, contingent
upon the excitation energy. Therefore, the tunable energy of the photon from the pump
pulse and the polarization of the probe pulse allow resonant excitation of one of two mate-
rials and optionally detect the charge transfer in alternate directions [47]. By integrating
polarization and time-resolved measurements, we can perform highly accurate and system-
atic analyses. This approach allows us to correlate the observed transient changes in the
SH response with the inherent structure.

5. Summary and Outlook

In conclusion, SHG serves as a robust, versatile, and straightforward method for un-
veiling the physical characteristics of low-dimensional materials. Leveraging its profound
sensitivity to both spatial inversion and time-reversal symmetry, herein we systematically
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reviewed SHG properties and applications in three kinds of low-dimensional materials,
i.e., 2D materials, low-dimensional perovskite, and nanomaterials. We also elaborated the
research process on SHG microscopy and time-resolved SHG of LDMs, focusing on two
key aspects: symmetry breaking and enhancement of light–matter interaction. Neverthe-
less, the accurate identification of homo- and heterostructures in LDM systems remains a
formidable challenge, particularly when considering systems with fully controlled sym-
metry breaking at arbitrary angles over expansive areas. Research into NLO properties
based on LDMs remains in its early stages, presenting both potential opportunities and
challenges. Owing to their robust quantum confinement and excitonic effects, LDMs have
become a central focus of nonlinear media research. It is anticipated that with increased
investment and effort, further advancements will be realized. Especially, in the context
of 2D materials and layered halide perovskites, it is observed that by employing defect
engineering and using organic ligands as spacer molecules, the assembly of metal halide
octahedra can be alternately controlled. This control over the assembly process allows for
the attainment of robust second-order NLO properties, which can be fine-tuned through
structural modifications.

Nevertheless, many challenges of LD SHG materials still exist. First, the material
synthesis process for SHG enhancement is still a challenge. Advances in nanofabrication
have offered a new class of composite media, creating core–shell nanostructures and
metamaterials whose SHG properties are determined by the shape and arrangement of
their component [213,214]. And the origins of second harmonics warrant comprehensive
analysis. While the well-established inherent lattice asymmetry is a primary contributor
to second harmonic generation, it is important to note that surface/grain boundary and
thermal lattice fluctuations can also disrupt symmetry, leading to pronounced second
harmonic effects. Furthermore, the relative spatial and temporal inversion symmetries can
be manipulated by controlling the electric and magnetic fields. This manipulation allows for
the modulation or even enhancement of the SHG response of the LDMs. Additionally, the
SHG signal can be activated and deactivated by a gate. This feature significantly broadens
the versatility of contemporary photonic systems. Moreover, precisely regulated resonant
wavelength limits two aspects, which are the resonance coupling SHG response based on
excitons and the exciton–polariton resonance effect of LDMs, respectively. This limitation
consequently restricts their practical applications. Despite significant advancements in the
modulation and enhancement of SHG for LDMs, ample opportunities remain for further
exploration. The investigation into the formation of magnetic ordering, magnetic domains,
and ultrafast magnetic dynamics using SHG remains in its nascent stage.

Secondly, the detection of transient hole transport in perovskites has been achieved for
the first time. This was accomplished through the direct detection of transient electric field
migration using time-resolved micro-optical second harmonic generation (TRM-SHG) [161].
The TRM-SHG technique was utilized to examine the impact of traps on transient carrier
motion. By analyzing the peak of the transient electric field distribution, we were able
to separately estimate trap density and dynamic carrier mobility. Alexandra reported a
time-resolved, phase-sensitive second harmonic generation (SHG) method to investigate
the excited state dynamics of interfacial species [215]. The primary characteristics of this
technique include its superior phase stability and sensitivity, coupled with relatively brief
data acquisition periods. Optical SHG is also a reliable, non-destructive, and contactless
technique for probing charge densities of the semiconductor/dielectric interface [216].
This optical method provides a new method for simple and effective measurement that
can be used to characterize semiconductor interfaces in detail and to simulate experi-
mental data using numerical solvers to extract the electronic properties of semiconductor
interfaces. The method offers several benefits, including its sensitivity to crystal sym-
metry, non-contact nature, non-invasive approach, lack of fabrication requirements, and
straightforward operation.

Thirdly, while this review primarily concentrates on the experimental process and
application aspects of SHG research in LDMs, it is also beneficial for researchers to explore
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the theoretical modeling of SHG in LDMs. Furthermore, the emergence of 2D perovskite
heterostructures provides a novel avenue for enhancing performance. The theoretical
support of SHG of LD perovskite heterojunction is more significant to establishing a
tunable barrier for charge carrier transport and the optimization of the photogate effect
to improve performance. Comprehensively including the significant substrate effect in
the modeling of SHG in LDMs is also a problem that needs to be solved. The significance
of interfaces and substrates naturally amplifies atomic thin crystals. In the future, it is
imperative to appropriately model and explore photon boundary conditions, mechanical
strain, charge transfer, and other interface factors.

In conclusion, the future prospects for second harmonic generation in low-dimensional
materials appear to be promising. This holds significant potential for advancing SHG
techniques and corresponding subsequent applications, thereby compelling us to invest
substantial resources toward both experimental research and practical implementation.
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