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Abstract: Resistive random-access memory (RRAM) is a crucial element for next-generation large-
scale memory arrays, analogue neuromorphic computing and energy-efficient System-on-Chip
applications. For these applications, RRAM elements are arranged into Crossbar arrays, where
rectifying selector devices are required for correct read operation of the memory cells. One of the key
advantages of RRAM is its high scalability due to the filamentary mechanism of resistive switching,
as the cell conductivity is not dependent on the cell area. Thus, a selector device becomes a limiting
factor in Crossbar arrays in terms of scalability, as its area exceeds the minimal possible area of an
RRAM cell. We propose a tunnel diode selector, which is self-aligned with an RRAM cell and, thus,
occupies the same area. In this study, we address the theoretical and modeling aspects of creating a
self-aligned selector with optimal parameters to avoid any deterioration of RRAM cell performance.
We investigate the possibilities of using a tunnel diode based on single- and double-layer dielectrics
and determine their optimal physical properties to be used in an HfOx-based RRAM Crossbar array.

Keywords: analog neural networks; crossbar; dielectric layers; memristor circuits; resistive RAM;
selectors

1. Introduction

Resistive random-access memory (RRAM) is a promising candidate for advanced non-
volatile memory due to its scalability, high write and erase speeds, low power consumption
and simple design [1–3]. Owing to its outstanding properties, RRAM is not only considered
as the standout candidate for emerging memory technologies [4] but also offers significant
advantages for neuromorphic computing [5,6].

An RRAM cell is a simple two-terminal memory device. The memory effect is based
on the reversible transition from a high-resistance state (HRS) to a low-resistance state
(LRS) and back when the polarity of the applied voltage is changed. These resistive state
transitions can be achieved by formation/growth and disruption of a conductive filament
(CF) through an insulating layer, in particular through a transition metal oxide [7].

Metal-oxide-based RRAM demonstrates excellent scaling potential down to <10 nm [8].
The scalability of an RRAM cell down to a size of a few nanometers [9] is possible due to the
filamentary nature [7] of resistive switching for a variety of metal oxides, including hafnium
oxide [7,10], titanium oxide [11,12], tantalum oxide [13,14], zirconium dioxide [15,16] and
other metal-based oxides. A nano-size conductive filament, which controls switching
from HRS to LRS, makes the cell conductivity insensitive to cell size [17], thus providing
potential strong memory cell scalability.

Crossbar RRAM arrays are crucial for creating the next generation of large memory ar-
rays, Crossbar arrays for matrix multiplication and analogue neuromorphic networks [18,19].
However, in Crossbar structures, an additional selector device is required to eliminate
sneak path currents and provide accurate read and write operations [20–24]. There are a
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variety of selector devices, including transistors [25], tunnel diodes [21,26,27], varistors [28],
mixed-conductivity devices (MIEC) [29], punchthrough diodes [30], electromechanical
diodes [31] and Zener diodes [32]. However, all these options share one common issue:
their area is larger than that of a memory cell. Unlike RRAM, a selector’s conductivity
depends on its area, thus making the selector a limiting factor in large Crossbar RRAM
array scaling. A promising class of selectors allowing for a progressive increase in memory
array capacity is the metal–insulator–metal (MIM) structure, which is self-aligned with a
memory cell [21,27,33]. This particular type of selector is a tunnel diode with a single-layer
or a double-layer dielectric. The area of the selector device is equal to the area of the
memory cell in a 1S1R structure (Figure 1). This design has a clear advantage: among
all possible options, it is a self-aligned selector that has the smallest area. Therefore, a
self-aligned selector allows one to achieve the highest storage density in a memory array.
The other options such as MOSFETs require additional power and space on the chip. The
vertical Gate-All-Around nano-pillar transistor that was proposed in [34] allows one to
achieve a 4F2 footprint (where F is a minimum cell feature size); however, this compact
1T-1R architecture is significantly more complex for fabrication, as compared to a simple
MIM architecture.
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Figure 1. Three-electrode RRAM Crossbar with self-aligned selectors. Area of selector is equal to area
of RRAM cell.

The development of self-aligned selectors is underway in several research groups [21,27,33],
with an emphasis on empirical research. Our approach is based on theoretical calculations
of the current–voltage characteristics of numerous insulating films as a function of their
thickness, composition, band gap width and dielectric constant. We theoretically determine
an optimal bilayer structure and the geometry of a selector device. This study presents
theoretical calculations of conductivity in selector MIM structures with single-layer and
double-layer dielectrics. Based on the electrical properties of the hafnium oxide-based
RRAM cell, we determine optimal configurations of a self-aligned selector for a Crossbar
structure with high storage density.

2. Materials and Methods

A self-aligned selector must have a number of important properties:

(1) The current–voltage characteristics are diode-like [22], without hysteresis during
forward and reverse voltage sweep; i.e., the selector material should be free of shallow
and deep traps, which are able to capture and hold negative charge.

(2) Selector resistance at a programming voltage (typically of 0.5 V to 1 V) should be in a
range of 102 to 104 Ω, depending on the memory cell resistance in its low-resistance
state (LRS) [23].

(3) Selector resistance at a reading voltage (typically 0.1 V) should be in a range of 104 to
106 Ω, depending on the memory cell resistance in its high-resistance state (HRS) [24].
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These requirements are based on the resistive switching characteristics of hafnium-
oxide-based RRAM published in [7,10], as well as on our own experimentally measured
resistive switching characteristics of the 1 transistor-1 resistor (1T1R) structures with a 10 nm
thick HfOx film and TaN metal electrodes [35]. The HRS and LRS currents are extracted
from the current–voltage characteristics of the RRAM elements (Figure 2a), measured at
various values of the compliance current (Icompl) and controlled by the integrated field-
effect transistor during the transition from HRS to LRS (Set). Both LRS and HRS currents
increase with an increasing Icompl value. The LRS resistance as a function of the compliance
current is presented in Figure 2b. The data for hafnium-oxide-based RRAM reported
in [7,10] are also presented in Figure 2b for comparison. Thus, the data in Figure 2b define
the current operation field for the selector to be used for hafnium-oxide-based RRAM. It
should be noted that operation fields for other transition metal oxides are quite similar to
that of hafnium oxide due to the filamentary nature of their resistive switching.
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In addition to the compliance current that affects the HRS current, the maximum
voltage used during the transition from LRS to HRS (Reset) can also control the HRS
current. The switching characteristics obtained on the same device but with various values
of the maximum Reset voltage are presented in Figure 3a. The dependence of the HRS
current measured at a reading voltage of 0.1 V on the maximum Reset voltage is shown in
Figure 3b.

During a programming step, the selector must not interfere with the transition of the
memory cell to a low-resistance state. This implies that resistance is to be lower than the
resistance of a memory cell at Set voltage. At the same time, during the reading operation,
spontaneous switching of the cell from the high-resistance state (HRS) should not occur.
The selector, in this case, should work as a reverse-biased diode, the resistance of which
should be much greater than the resistance of the memory cell in the high-resistance state.

A physical model describing the conductivity in nanoscale dielectric structures is
required to create an optimal self-aligned selector. The conductivity mechanism of selector
based on MIM structure depends on the type of dielectric, its thickness and bandgap
width. It can utilize Poole–Frenkel conductivity, Fowler–Nordheim tunneling [36], di-
rect tunneling and trap-assisted tunneling [37]. It was demonstrated in [36] that several
mechanisms can work simultaneously, e.g., the Poole–Frenkel and Fowler–Nordheim
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conductivity. The conductivity model can also vary depending on the magnitude of
the voltage applied to the dielectric [36]. However, in most single-layer dielectrics with
nanometer-scale thicknesses and voltages in the order of 1 V (typical writing voltage in
RRAM), the main mechanism of conductivity derived by the Wentzel–Kramers–Brillouin
(WKB) approximation [38] is a form of direct tunneling through a rectangular potential
barrier (Figure 4, Equations (1) and (2)), which, at high voltages, smoothly transforms into
Fowler–Nordheim tunneling (Equation (3)) [38]. This model is confirmed by both theoreti-
cal [39] and experimental [21,40] studies. Some additional possible conduction mechanisms,
such as trap-assisted tunneling and Poole–Frenkel conduction, are out of the scope of this
work, as they could be related to specific dielectric materials with electron traps, such as
Al2O3 [36].
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The potential barrier that exists between an electrode and a dielectric layer has two
important parameters: the width, which equals the thickness of a corresponding dielectric
layer, and height, that, in terms of energy, is equal to the difference between electron
affinity of dielectric and work function of the electrode. In this study, we consider only the
structures with metal electrodes made of the same material.

In case of a single-layer dielectric and for low voltages (V < φ), the WKB approxima-
tion [38] yields classical equation of direct tunneling:

J = J0

((
φ − eV

2

)
× exp

(
−A

√
φ − eV

2

)
−
(

φ +
eV
2

)
× exp

(
−A

√
φ +

eV
2

))
(1)

where J is current density, φ is potential barrier height, e is electron charge, V is applied
voltage and J0 and A are the following constants [38]:

J0 =
e

2πhd2 ; A =
4πd

√
2m

h
(2)

where e is electron charge, h is Planck’s constant, d is dielectric thickness and m is electron’s
effective mass.

For higher voltages (V > φ), the potential barrier shape is changed from rectangular
to triangular [38], and the effective width of the barrier is reduced. In this case, the WKB
approximation yields

J =
2.2e3F2

8πhφ

(
exp

(
− 8π

2.96heF

√
2mφ3

)
−
(

1 +
2eV
φ

)
exp

(
− 8π

2.96heF

√
2mφ3

(
1 +

2eV
φ

)))
(3)

where electric F is field in dielectric. This equation describes the Fowler–Nordheim tunneling.
We used the WKB approximation to calculate conductivity of the step-shaped barriers

in double-layer dielectric structures. Based on Simmons’ research [38], we calculated
the direct tunneling equation for a bilayer structure with a step-shaped potential barrier
(Figure 5).
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In case of potential barrier that consists of several dielectric layers, the total tunneling
probability is equal to product of tunneling probabilities through each layer. According to
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WKB approximation, the tunneling probability through i-th layer is identical to the case of
single arbitrary-shaped barrier [38]:

Pi = exp

−2

√
2mi
ℏ2

xi∫
xi−1

√
Ui(x)− Edx

 (4)

where xi−1 and xi are the boundaries of i-th layer, Ui is the shape of i-th barrier as a function
of x, mi is electron’s effective mass in i-th layer and E is kinetic energy of incident electron.
In our case of rectangular potential barrier,

Ui(x) = φi −
eVix

di
(5)

where Vi is voltage drop in i-th layer, di is respective layer’s thickness and φi is the bottom
energy of conduction band of i-th dielectric (Figure 6).
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Vi/di in Equation (5) is equal to electric field Di in i-th layer and can be calculated as

Di =
Vi
di

=
V

εi ∗ ∑i
j=1 dj/ε j

(6)

where εi is dielectric constant of i-th layer. Substituting (5) and (6) into (4) yields

Pi = exp

−4εi

√
2m∗

i
ℏ2 × ∑i

j=1(dj/ε j)

3eV

{
(Ui − eVi − E)3/2 − (Ui − eVi+1 − E)3/2

} (7)

where mi is electron effective mass in the i-th dielectric layer, Vi is voltage drop in the i-th
layer, V is applied voltage, dj is thickness of each dielectric, εj is dielectric constant of a
respective layer and E is kinetic energy of incident electron. Equation (7) is valid under
the assumption that all dielectric layers are homogenous—the dielectric constant εj of j-th
layer is the same across the bulk of the layer. The tunneling probabilities Pi depend on the
voltage drop across each layer, the material’s dielectric constant and thickness of the layer:

P(E) = ∏i Pi, (8)
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The total tunnel current density through the cell is determined by the difference
(Equation (9)) between the forward flux (Equation (10)) caused by diffusion and the back-
ward voltage-driven drift of electrons (Equation (11)).

Jtotal = J f orward − Jbackward, (9)

J f orward = − me
2π2ℏ3

0∫
E f

P(E)EdE (10)

Jbackward = − me
2π2ℏ3

0∫
E f

P(E)(E + eV)dE (11)

This method can be used for all types of multilayer tunnel structures, regardless of
number of dielectric layers and with arbitrary dielectric parameters, assuming that all
dielectrics are homogenous. However, Equation (7) gives a correct result only for voltages
lower than the height of potential barrier (Ui > eVi). For higher voltages, the conductivity
is dominated by the highest barrier in multilayer structure, and in this case, one should
use Equation (3). In case of a single-layer rectangular barrier, the integration of (9) yields
the well-known Simmons Formula (1) [38]. We neglected the effect of the image forces
occurring in potential barrier for the sake of simplifying the calculations.

3. Results
3.1. Single-Layer Selector

We simulated the I-V characteristics for dozens of single-layer dielectric structures with
various electrode and dielectric materials. The best structures that meet the abovementioned
requirements are presented in Figure 7. To verify the correctness of the employed model, we
calculated the conductivity of the MIM selector based on the 2 nm thick Ta2O5 used in [21].
Figure 8 presents the experimentally measured [21] and calculated I-V characteristics of
the ultra-thin tantalum-oxide-based selector. The comparison reveals good agreement for
the measured and calculated currents in the −2 V to 2 V voltage range that covers the
operating range for the selector.
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with a barrier height of 0.9 eV.

According to the above-mentioned requirements for the selector, the steeper I-V curve
results in better performance of the MIM selector. In Figure 8, the red dashed line represents
the I-V characteristic of an optimal MIM selector with a minimal possible non-linearity
and the current density in its open state. The stronger the current dependence on voltage
and the higher the current density, the better the performance of the selector, and its size
can be scaled down. We found that the desired characteristics of a selector are determined
by the optimal values of height and width of a potential barrier between the electrode
and dielectric (Figure 9a,b). Figure 9a shows the dependence of I-V curve non-linearity
on the barrier’s height, while the thickness of the dielectric is fixed at 2 nm. The non-
linearity of the I-V curve drops exponentially with an increase in barrier height. The
thickness of the potential barrier affects the non-linearity in an opposite way. Figure 9b
shows the dependence of I-V curve non-linearity on the barrier’s width (barrier height
is fixed at 0.9 eV); an increase in dielectric layer thickness results in better non-linearity,
which increases exponentially with barrier thickness. Therefore, a lower and thicker barrier
results in a steeper I-V curve for selectors with a single-layer dielectric. In this case, the
layer thickness cannot exceed 3 nm; otherwise, the current flowing through the selector
in series with an RRAM cell is insufficient for the correct operation of the memory cell.
The optimal barrier height for a 2 to 3 nm thick dielectric is found to be 0.3 to 0.5 eV.
The materials presented in Figure 6 are the most satisfactory dielectrics to be used for
self-aligned selectors.
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3.2. Double-Layer Selector

Adding a second dielectric layer makes further I-V curve modulation possible, i.e.,
increasing its non-linearity without a decrease in conductivity. The barrier becomes step-
shaped, with a narrow-band dielectric acting as a lower step and a wide-band dielectric
acting as a higher step. By varying the height and width of each step, one can control
both the I-V curve steepness and current density independently. We studied how both
parameters depend on the barrier geometry (Figures 10–13).
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The dependence of the I-V curve on the barrier geometry presented in Figures 10–13
reveals clear trends for the I-V curve non-linearity and the current density at 1 V (a typical
write voltage for RRAM cell). The non-linearity of the I-V characteristics depends primarily
on the narrow-band dielectric width and the height of its potential barrier. The non-linearity
increases rapidly with an increasing barrier thickness for both positive and negative biases
(Figure 14a), while the non-linearity dependence on the barrier height is sensitive to the
voltage polarity (Figure 14b). The non-linearity dependence on the width and height of a
wide-band dielectric is not so strong, as compared to the effect of a narrow-band dielectric
(Figure 15a,b).

The current density depends on the thickness and barrier height of both dielectric
layers. The current density increases with decreasing layer thickness (Figure 16a) and
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reducing barrier height (Figure 16b). The key factors controlling the current density are
wide-band dielectric thickness (Figure 16a) and narrow-band dielectric barrier height
(Figure 16b). However, an increasing dielectric thickness and barrier height result in
decreasing current density. This, in turn, negatively affects selector scalability, as the selector
with a lower conductivity requires a larger area to be effective for the write operation.
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4. Discussion

As shown above, the main mechanism of conductivity for thin dielectrics in a low elec-
tric field is direct tunneling through a rectangular potential barrier. In this case, the current
flowing through the dielectric layer can be described by the WKB approximation [38]. At
a higher voltage, when the shape of a potential barrier becomes triangle-like, the conduc-
tivity is followed by the Fowler–Nordheim tunneling mechanism. The feasibility of this
approach is verified by calculating the I-V characteristics for the 2 nm thick Ta2O5 layer
and comparison with the experimental results obtained in [21]. The calculations performed
for a variety of sub-3 nm thick single-layer dielectrics demonstrated that some of them can
be used for self-aligned selectors (Figure 7).



Nanomaterials 2024, 14, 668 13 of 16

We developed a compact analytical model of conductivity in multilayer tunnel barriers
and utilized it to study the switching operation of a self-aligned selector with a double-layer
tunnel barrier. The observed I-V curve dependencies on the thickness and barrier heights
of dielectrics for double-layer barriers are critical for the determination of the optimal
structure of an MIIM-diode selector. By increasing the number of dielectric layers and their
thickness, the selector non-linearity is enhanced at the cost of current density. Therefore,
an optimal balance between non-linearity and conductivity is of the greatest importance.
We also emphasize that the parameters of a self-aligned selector to be employed in RRAM
Crossbars strongly depend on the parameters of the RRAM cell connected in series to
a selector. The most critical parameter of an RRAM cell is its resistances in the on and
off states, which can be controlled by either the maximum current during forming or Set
operation (Figure 2) and/or the maximum voltage during Reset (Figure 3). Furthermore,
RRAM resistance depends on the materials used for RRAM cells and the thickness of
the corresponding switching layer. The parameters of an optimal selector we propose in
this work are developed on the basis of our previous study [35] on HfOx-based bipolar
RRAM cells with a 10 nm HfOx layer and TaN electrodes. The selector allowing a RRAM
cell to operate during bipolar resistive switching consists of 1.5 nm layers of Ta2O5 and
Ga2O3 sandwiched between Ti electrodes (Figure 17). The barrier heights in this structure
are 0.05 eV and 0.6 eV, respectively. Because of its asymmetric structure and optimized
thickness and barrier height for each dielectric layer, it has 10-times higher non-linearity for
the I-V curve compared to the best single-layer selectors, as well as 10-times higher current
density in the open state (Figure 17).
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selectors.

The advantages of a selector with double-layer dielectric allows for scaling the cell in a
Crossbar HfOx-based RRAM array down to 10−3 µm2 (Figure 18). In Figure 18, the red line
represents the resistance of the above-mentioned selector with double-layer dielectric in
the high-resistance state at a voltage equal to 0.1 V, and the black line is the resistance of the
same selector in the low-resistance state at a voltage equal to 1 V. The operating range of the
selector with an area of 10−3 µm2 covers the entire operation range of RRAM cells paired to
the selector. Thus, it becomes theoretically possible to create a gigabit-scale memory array
in an area of 1 cm2, which is impossible when using a selector with a single-layer dielectric.
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5. Summary and Conclusions

The strong scalability of an RRAM cell due to the filamentary mechanism of resistive
switching is the key advantage for the development of a high-density Crossbar memory
array. A selector device that is self-aligned with a memory cell makes Crossbar array
scalability possible. In this work, we addressed the theoretical and modeling aspects
of creating a self-aligned tunnel diode-based selector with optimal parameters to avoid
impacts on the resistive switching of an HfOx-based RRAM cell. The applicability of both
single- and double-layer dielectrics for self-aligned selectors was demonstrated along with
the determination of their optimal physical properties. Aside from RRAM crossbars, the
MIIM diode optimization method we propose is equally applicable for optical rectification
purposes in renewable energy applications, where both high non-linearity and high current
density are required [40], as well as for other THz devices and prospective tunnel diodes.

However, the primary field where our findings are useful is the self-aligned selector
technology for RRAM Crossbars, because for each type of RRAM cell, an individual selector
is designed based on the cell’s electrical properties. The non-volatile resistance switching
phenomenon has been reported for a variety of oxides and metal electrode materials [4].
High-density arrays made on both types of RRAM devices with conductive filaments,
i.e., oxygen vacancies’ filament-based RRAM [7,10–12,16] and metal ion-based RRAM (or
conductive bridge random-access memory) [14,41,42], require a proper selector to eliminate
the sneaking current issue while not interfering with the RRAM cell performance.

Thus, our work can be used as a template for other researchers seeking to create RRAM
memory arrays with low power consumption and high storage density. These devices are
crucial for next-generation computers and the creation of analog neuromorphic networks.
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