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Abstract: The Rashba effect appears in the semiconductors with an inversion–asymmetric structure
and strong spin-orbit coupling, which splits the spin-degenerated band into two sub-bands with
opposite spin states. The Rashba effect can not only be used to regulate carrier relaxations, thereby
improving the performance of photoelectric devices, but also used to expand the applications of
semiconductors in spintronics. In this mini-review, recent research progress on the Rashba effect
of two-dimensional (2D) organic–inorganic hybrid perovskites is summarized. The origin and
magnitude of Rashba spin splitting, layer-dependent Rashba band splitting of 2D perovskites, the
Rashba effect in 2D perovskite quantum dots, a 2D/3D perovskite composite, and 2D-perovskites-
based van der Waals heterostructures are discussed. Moreover, applications of the 2D Rashba effect
in circularly polarized light detection are reviewed. Finally, future research to modulate the Rashba
strength in 2D perovskites is prospected, which is conceived to promote the optoelectronic and
spintronic applications of 2D perovskites.

Keywords: Rashba effect; photoluminescence; 2D perovskites; optoelectronics and spintronics

1. Introduction

Organic–inorganic hybrid lead halide perovskites (OILHPs) have attracted significant
interest in the past years due to their outstanding performance as solar absorbers in
photovoltaics [1–5]. The long carrier lifetime of photogenerated carriers is a crucial factor for
excellent optoelectronic performance [6]. An extraordinarily long carrier lifetime (τ ≥ 1 µs)
and a substantial carrier diffusion length (LD ≥ 5 µm) have been measured in polycrystalline
perovskite thin films with moderate mobility (µ ≈ 1–100 cm2 V−1 s−1), which is drastically
lower than that of other conventional semiconductors, such as GaAs (µ ≈ 500 cm2 V−1 s−1).
However, the physical mechanism behind the long carrier lifetime is still elusive [7–11].
The mainstream investigation attributes it to the low trap density [12,13], which may lead
to a significant suppression in nonradiative recombination, thus greatly prolonging the
carrier’s lifetime. However, further research has found that, in perovskites with relatively
high defect density, the carrier lifetime does not significantly decrease [14]. Therefore,
the correlation between carrier lifetime and defect density in perovskite is not definite.
Currently, other models, such as high defect tolerance [15–17], photon recycling [18,19],
weak electron–phonon coupling [20–23], the presence of ferroelectric domains [24,25], the
formation of polarons, and the screening of band-edge charges [26], have been proposed
to rationalize the long carrier lifetime of perovskites. However, after years of laborious
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exploration, there are still some inherent limitations and inconsistencies in the above-
mentioned models.

Among them, the Rashba effect is also considered to be one of the most essential
reasons for the long carrier lifetime [27–29]. The Rashba effect was proposed in the 1950s,
which reveals spin splitting in noncentrosymmetric semiconductors [30,31]. For ordinary
semiconductors, the dispersion of the conduction band minimum (CBM) electrons and
valence band maximum (CBM) holes can be described as a spin-degenerate parabolic
energy band,

E(k) = ℏ2k2/2m∗ (1)

where k is the electron wavevector, h̄ is the reduced Planck constant, and m* is the effective
mass of electrons (or holes). However, if the semiconductor lacks inversion symmetry, and
meanwhile there is strong spin-orbit coupling, an effective magnetic field Ω(k) appears
(Figure 1a), which lifts the degeneracy of the carrier spin states within each band [32]. Thus,
when the Rashba effect occurs, the spin-degenerate band splits into two spin-polarized
sub-bands deviating from the symmetric center of the Brillouin zone (Figure 1b,c).

E±(k) = ℏ2k2/2m∗ ± αR|k| (2)

αR is the Rashba splitting constant.

αR =
2ER
kR

(3)

Figure 1c shows that the Rashba effect has two important characteristics, namely,
energy band splitting and in-plane spin splitting. ER and kR are the energy difference and
momentum offset between the vertex of the energy curve and the k origin at the high-
symmetry point, respectively. The strength of the Rashba effect is usually characterized by
the Rashba constant αR.

Due to the different orbital compositions of the conduction band and valence band,
the splitting degrees of the CBM and VBM are not equal. Therefore, the splitting will
make the carrier recombination in perovskite exhibit features similar to indirect bandgap,
thereby reducing the carrier recombination rate. In addition, because the conduction band
and valence band have opposite spin helicity, carrier recombination is spin forbidden,
which further reduces the electron-hole recombination rate. Optical selection rules for
interband transitions at the band gap are plotted in Figure 1d. The Rashba effect not only
provides a possible explanation for the long carrier lifetime in perovskites but also enables
effective control and manipulation of the polarized spins in spintronic devices. Apart
from the research on conventional optoelectronics areas, such as solar cells, LEDs, and
photodetectors [33–36], one of the exciting research directions on lead halide perovskites
would be spintronics-related technology.
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Figure 1. (a) Effective magnetic field Ω(k) induced by the Rashba effect showing the variation of the
direction at a fixed value of |k|. (b) Energies of the spin eigenstates as a function of the in-plane wave
vector. (c) The electron dispersion relation shows a doubly degenerate parabolic band at k = 0 subject
to Rashba spin splitting, fostering two parabolic bands with opposite spins (arrows). (d) Optical
selection rules for interband transitions at the band gap.
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The Rashba effect is considered one of the most essential reasons for the long carrier
lifetime of OILHPs. Moreover, the photoelectronic properties of OILHPs that can be
regulated by the magnitude of the Rashba effect. Thus, the Rashba effect in 2D OILHPs has
attracted increasing research interest. In this mini-review, the recent research progress on
the Rashba effect in 2D perovskites is summarized. Several important aspects of the Rashba
effect in 2D perovskites, including the origin and magnitude, layer dependence in 2D
perovskite, the Rashba effect in 2D perovskite quantum dots, 2D/3D composite, and van
der Waals heterostructures, are included. In addition, circularly polarized light-detection
applications based on the Rashba effect are discussed. Due to the limitation of scope,
this review does not include all achievements related to this topic, and only a selection
of representative examples is discussed. We hope this mini-review can further stimulate
research enthusiasm on this important topic so that more insights into the fundamental
understanding can be gained and more optoelectronic and spintronic applications can
be developed.

2. Rashba Effect in Three-Dimensional (3D) Perovskites

It is generally believed that the crystal structure of three-dimensional OILHP (such as
MAPbI3, MA = methylamine) at room temperature is a tetragonal system (or cubic system
or orthogonal system, depending on the material composition) with centrosymmetry. How-
ever, it has been found that the perovskite lattice does not have strict centrosymmetry [29].
The lead halide octahedron [MX6]4− in the perovskite lattice is slightly distorted [37], and
the organic cation A+ also has a certain orientation in a rapidly rotating state [38,39]. These
properties may disrupt the centrosymmetry of the perovskite lattice. In addition, there is
strong spin-orbit coupling due to the presence of heavy elements, such as lead, tin, and
iodine. The Rashba effect in perovskites is expected to be strong. Based on the above
reasons, many theoretical studies predict a strong Rashba effect in perovskites [37,40]. For
example, the spin-orbit coupling in MAPbI3 causes a displacement of the conduction band
energy level of more than 1 eV [41]. In addition, a few experimental studies also strongly
support the occurrence of the Rashba effect in the compound [42,43]. A significant effort
regarding the experimental observation of Rashba spin-splitting has been demonstrated by
Giovanni and co-workers through spin-dependent circularly polarized pump-probe experi-
ments [42]. Neisner et al. directly observed the split in the valence band by angle-resolved
photoemission spectroscopy measurements [43].

3. Rashba Effect in Two-Dimensional Perovskites

Two-dimensional OILHPs are commonly known as the Ruddlesden–Popper (RP)
phase [44–51] and the Dion–Jacobson (DJ) phase [52]. Taking RP-phase 2D perovskite
as an example, its general chemical structure is (RNH3)2An−1MnX3n−1 (n = 1, 2, 3, 4. . .),
where RNH3 is usually an organic group of aliphatic or aromatic alkylammonium, such as
2-phenylethylammonium (PEA) and n-butylammonium (n-BA), A is a monovalent organic
cation, such as CH3NH3

+ (abbreviated as MA+) and HC(NH2)2
+ (abbreviated as FA+),

and M is a divalent metal cation, mainly referring to lead Pb, X is a halide anion. The
large organic cations (RNH3

+) separate the layers of the inorganic Pb-I network. And n
represents the number of inorganic [MX6]4− octahedral structures in each period. The 2D
OILHPs have attracted increasing research interest due to their special multi-quantum-well
structures and excellent structural stability under ambient conditions [53,54].

Bychkov and Rashba proposed that the Rashba effect also appears in two-dimensional
(2D) electron gas systems [55]. Thus, the Rashba effect has been extensively investigated in
various 2D material systems, including III−V semiconductor heterostructures and topo-
logical insulators Bi2Se3 over the past few decades [56–58]. Nevertheless, Rashba splitting
energy in these 2D structures is typically smaller than 10 meV, limiting the performance
of spintronic devices based on these 2D materials [56–58]. The Rashba effect in 2D per-
ovskites has also attracted extensive research attention. Density functional theory (DFT)
calculation is an important tool for defining and demonstrating the existence of Rashba
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splitting, as well as quantifying the structural symmetry, rotation, and distortion. For
example, Zhai et al. showed the existence of Rashba splitting in the plane perpendicular to
the 2D layer of (C6H5C2H4NH3)2PbI4 based on the DFT calculations using local density
approximation (LDA) in the form of ultrasoft pseudopotentials [59]. In more detail, the
first-principles DFT calculations show that the breaking of inversion symmetry is caused
by the displacement of the Pb atom from the octahedra center, which leads to the Rashba
splitting. At temperatures below 110 K, the absorption spectrum in the photon energy
range of 2.45 to 2.65 eV shows two step-like absorption edges, which are assigned as the 1s
and 2s exciton energy at 2.38 and 2.53 eV, respectively (Figure 2a). Considering the band
edge of (C6H5C2H4NH3)2PbI4 at 2.57 eV (Figure 2b), 1s and 2s exciton binding energies
are about 190 ± 4 meV and 45 ± 8 meV, respectively. The energy differences between
δEac and δEbc scales with V2/3 indicate a Frank–Keldysh-type oscillatory feature at the
continuum band edge (Figure 2c). From the electroabsorption spectrum and photoinduced
absorption spectra of excitons and free carriers, they obtained a giant Rashba splitting in
2D (C6H5C2H4NH3)2PbI4 thin film, with energy splitting of (40 ± 5) meV and a Rashba
constant of (1.6 ± 0.1) eV·Å (Figure 2d) [59].
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Figure 2. (a) Absorption spectra of (C6H5C2H4NH3)2PbI4 film at various temperatures, which
contains 1s and 2s exciton (labeled as E1s and E2s, respectively) and an interband (IB) transition.
(b) Electroabsorption spectra of (C6H5C2H4NH3)2PbI4 thin film measured at 45 K at various applied
to electric fields. (c) Energy differences δEac and δEbc plotted versus V2/3. (d) Energy levels of the
excitons and interband transition (IB) with respect to the ground state (GS) [59]. Reproduced with
permission under Creative Common CC-BY 4.0 license.

In addition, Todd et al. investigated carrier dynamics in 2D (BA)2MAPb2I7 thin film
by time-resolved circular dichroism techniques [60]. They revealed the presence of a
Rashba spin splitting via the dominance of processional spin relaxation induced by the
Rashba effective magnetic field. The Rashba spin-splitting magnitude was extracted from
simulations of the measured spin dynamics incorporating longitudinal optical-phonon
and electron–electron scattering, yielding a value of 10 meV at an electron energy of
50 meV above the band gap, which is twenty times larger than that in GaAs quantum wells.
Moreover, a Rashba splitting of 85 meV with a Rashba coefficient αR of 2.6 eV Å was ob-
served in an emergent 2D DJ phase (AMP)PbI4 (AMP = 4-(aminomethyl)piperidinium) [61].
Jana et al. introduced a structural chirality transfer across the organic–inorganic interface
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in 2D perovskites using appropriate chiral organic cations [62]. The chiral spacer cations
and their asymmetric hydrogen-bonding interactions with lead bromide-based layers
cause symmetry-breaking helical distortions in the inorganic layers. The first-principles
calculation predicts a substantial bulk of the Rashba–Dresselhaus spin-splitting in the
inorganic-derived conduction band with opposite spin textures between R- and S-hybrids
due to the broken inversion symmetry and strong spin-orbit coupling. The chirality transfer
from one structural unit to another represents a promising approach to breaking symmetry
that modulates the Rashba effect for spintronics and related applications. These findings
indicated that 2D hybrid perovskites have great potential for applications in spintronics.

3.1. Origin and Magnitude of Rashba Spin Splitting in 2D RP Perovskites

Rashba spin splitting has been observed in multiple 2D OILHPs, yet with a significant
variance in the magnitude of spin splitting [58–61]. However, the origin of the giant Rashba
splitting remains elusive. The crucial role of the orientation of the organic cation in the
2D RP perovskite was explored by Kagdada et al. Their DFT calculation results revealed
that the MA cation rotation imposes structural distortion in the inorganic PbI6 layer, which
then varies the structure and value of the electronic bandgap, charge density, and optical
absorption. The strong spin–orbit coupling leads to a wide range of Rashba splitting
parameters from 0.04 to 0.278 eV Å. The simulated optical absorption spectra showed that
absorption edges for the different orientations of the MA molecule are not the same [63].

In addition, Zhou et al. obtained (AMP)PbI4 DJ phase crystals by an economical
aqueous method. They clarified the origin of the giant Rashba effect by temperature-
and polarization-dependent photoluminescence (PL) results [64]. The strong temperature-
dependent PL helicity indicates the thermally assisted structural distortion as the main
origin of the Rashba effect, suggesting that valley polarization still preserves at high
temperatures. The Rashba effect was further confirmed by the circular photogalvanic effect
near the indirect bandgap (Figure 3).
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Figure 3. (a) Schematic illustration of the experimental setup for measurement of photogalvanic
current. The φ indicates the angle between the fast axis of the quarter-wave plate (QWP) and
the incident light polarization. The θ indicates the incident angle of excitation light. (b) Room
temperature photogalvanic current of (AMP)PbI4 versus QWP rotation angle φ, measured at θ = 60◦

and excited via a 556 nm continuous laser [64]. Reproduced with permission. Copyright 2021,
American Chemical Society.

In addition, organic–inorganic hybrid halide perovskites are susceptible to dynamic
instabilities known as octahedral tilt, which involves a rigid rotation of the inorganic
octahedral cages and can occur along any of the three Cartesian directions in the crystal
with either in-phase or out-of-phase ordering [65]. While the phase transitions related
to octahedral tilt have been thoroughly examined in 3D hybrid halide perovskites, their
influence on hybrid 2D perovskites remains not fully comprehended. To gain insight
into this puzzle, Shao et al. utilized scanning tunneling microscopy to directly visualize
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the surface octahedral tilt in freshly exfoliated 2D RP perovskites across the homologous
series [66]. The steric hindrance imposed by long organic cations is unlocked by exfoliation.
The experimentally determined octahedral tilts from 2D RP-phase perovskites of n = 1
to n = 4 align closely with the out-of-plane surface octahedral tilts predicted by DFT
calculations. The out-of-plane octahedral tilt of the exfoliated surface is correlated to the
redshifted emission peak alongside the primary exciton in the PL spectra. Therefore, the
Rashba spin splitting is attributed to the octahedral tilt [66].

3.2. Layer-Dependent Rashba Band Splitting in 2D Perovskites

It is very significant to reveal the impacts of surface termination and the number of
inorganic layers on the amplitude of Rashba band splitting so as to enhance the under-
standing of the origin and extent of Rashba spin splitting in 2D RP-phase perovskites.
Thus, research efforts were devoted to the layer-dependent Rashba band splitting in 2D
perovskites. Singh et al. investigated Rashba spin splitting in 2D RP (BA)2(MA)n−1PbnI3n+1
with both centrosymmetric (n = 1) and noncentrosymmetric (n = 2 and 3) structures, using
first-principle calculations, polarization, and temperature-dependent PL spectroscopy [67].
They revealed the n-dependent Rashba spin splitting in 2D RP perovskites. When n = 1,
a single metal halide octahedral layer is sandwiched between long BA+ organic cations,
Rashba spin splitting is the largest. As n increases, the Rashba spin splitting decreases. The
large Rashba effect observed in the 2D RP perovskite of an n = 1 structure is attributed to
the local distortion of the PbI6 octahedron at the surface [67].

By using a combination of DFT calculations and time-resolved PL spectroscopy,
Yin et al. compared the Rashba band splitting of the prototype 3D MAPbI3 and the 2D RP
perovskites [68]. They demonstrated that significant structural distortions associated with
different surface terminations are responsible for the observed Rashba effect in 2D OILHPs.
Interestingly, their calculation results indicated that the intrinsic Rashba splitting occurs in
the perovskite crystals with an even number of inorganic layers (n = 2), in consistency with
their longer PL lifetimes and ground-state bleaching recovery lifetimes. Whereas, when the
number of inorganic layers is odd (n = 1 and n = 3), the Rashba effect of 2D RP perovskites
absences (Figure 4). These findings elucidate the significant impact of the number of inor-
ganic layers on the electronic properties of 2D perovskites, suggesting the controlling of
the n value in 2D RP perovskites to design Rahsba effects for spintronic applications.
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In addition, Liu investigated the thickness-dependent structural distortion along with
the Rashba splitting energy by using the DFT calculation [69]. Three types of OILHPs
were compared to explore the effect of halogens and organic ligands. As the thickness
increases, the structural distortion degree decreases. The Rashba splitting magnitude
follows the same tendency. The 2D MAPbI3 is less sensitive to thickness change compared
to the 2D MAPbBr3 or the 2D MAPbCl3. Furthermore, ligands and their orientations
have dramatically different impacts on the Rashba splitting. The PEA ligands enhance the
Rashba splitting magnitude, while the BA ligands have the converse effect. The partial
charge-density analysis shows that the band edges are contributed to by a charge density
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at a specific layer in the structure. Thus, they concluded that the Rashba effect is layer
dependent in 2D HOIPs [69].

3.3. Rashba Effect in 2D Perovskite Quantum Dots

Because of the quantum confinement effect, the quantum dot usually shows fast
radiative recombination, large exciton binding energies [70], and giant oscillator transition
strengths [71]. Most theoretical descriptions of the Rashba effect on exciton fine structures
were conducted in the weak-confinement regime, in which the exciton Bohr radius, rB,
is much smaller than the typical size of the nanocrystals. The Rashba effect was treated
perturbatively, which is a valid approach, assuming αk ≪ ℏ2k2

2m∗ , where αe and αh are the
Rashba coefficients in the conduction and valence bands, respectively, k is the typical
quasi-momentum of exciton center-of-mass (COM) motion, and m∗ is the effective mass
of the COM motion. The momentum is k ∼ 1/R for an exciton confined in an NC with
size R, so the perturbative approach is valid when α ≪ ℏ2/2m∗R. This condition is clearly
not satisfied in a large NC (R ≫ ℏ2/2m∗α) or in NCs with enormously large Rashba
coefficients. Thus, the Rashba effect in 2D perovskite quantum dots is elusive. To explore
this question, Swift et al. constructed an effective mass model of excitons in 2D perovskite
quantum dots, which covers the full range of NC sizes and Rashba strengths [72]. The fine
structure and oscillator transition strengths of Rashba excitons confined in a 2D cylindrical
quantum dot are quite unusual. One notable aspect of the energy-level structure is the
proliferation of dark exciton states. These dark states in large quantum dots are also likely
to be thermally populated even at quite low temperatures, reducing the radiative decay
rate and, consequently, the PL quantum yield of these structures.

3.4. Rashba Effect in 2D/3D Composite Perovskite Films

Compared with common 2D perovskite, the 2D/3D composite perovskite may have a
variety of gains, such as significant interface asymmetry and an effective energy-transfer
process. On the one hand, the interface asymmetry can enhance the band splitting. On
the other hand, energy transfer can be used to improve the photoresponse. These two
effects make 2D/3D composite perovskite promising for opto-spintronic applications. The
recent development of chiral 2D/three-dimensional (3D) composite perovskites offers a
new opportunity to engineer the Rashba effect. Li et al. synthesized one pair of chiral
2D/3D composite perovskite [73]. The optical properties were studied by polarization-
dependent femtosecond transient absorption (fs-TA) spectroscopy, which revealed that the
chiral properties of organic cations were successfully transferred to the achiral part. The
Rashba effect is significantly enhanced in the 2D/3D composite structures. The spintronic
relaxation along with the Rashba effect in the 2D/3D composite structures will inspire the
further development of the next generation of opto-spintronic devices.

3.5. Rashba Effect of Van Der Waals Heterostructures Based on 2D Perovskites

The van der Waals heterostructures based on different 2D materials enable innovative
device engineering. A variety of van der Waals heterostructures have been developed based
on 2D perovskites for optoelectronic applications. Thus, it is very significant to investigate
the Rashba effect in van der Waals heterostructures. Singh et al. integrate an RP-phase
2D perovskites monolayer with another important family of 2D excitonic semiconductors,
i.e., transition-metal dichalcogenides (TMDs) [67]. A combined effect of Rashba spin
splitting in 2D RP perovskites and the strong spin–valley physics of monolayer TMDs
can give rise to effective spin–valley polarization in the heterostructures using circularly
polarized light (CPL) excitation. Thus, the 2D RP perovskite/TMD heterostructure provides
an attractive material combination for investigating valleytronic phenomena, as it reduces
fabrication complexity and sample-to-sample variance. Different 2D RP perovskites (n = 1
and 2) and monolayer WSe2s were coupled to form 2D vdW heterostructures. Robust
interlayer excitons (IXs) in staggered type-II band-aligned heterostructures were observed
(Figure 5). These IXs are strongly valley-polarized with exciton lifetimes longer than
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the intralayer excitons in the constituent monolayer TMDs, suggesting the spin–valley-
dependent optical selection rules to the IXs. This research broadens the scope for exploring
spin–valley physics in heterogeneous stacks of 2D semiconductors. They also investigated
a 2DRP-(n = 1)/MoS2 heterostructure with a broken type-III band alignment. In contrast,
there is no interlayer charge transfer, thus the 2DRP/MoS2 heterostructure does not show
any IX emission.
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3.6. Applications of 2D Rashba Effect in Circularly Polarized Light Detection

CPL is a special light beam, which consists of two spiral modes called chirality or hand-
edness. Based on the rotation of the field vector, the CPL can either rotate counterclockwise
(left handed, σ+) or clockwise (right handed, σ−) when observed from the direction opposite
to the wave’s propagation. Direct detection of CPL is a challenging task due to limited mate-
rials and ambiguous structure–property relationships that lead to low distinguishability of
the light helicities. On the one hand, the circular photogalvanic effect is considered the most
important experiment that confirms the presence of the Rashba effect in semiconductors.
The circular photogalvanic effect has been demonstrated in a variety of materials with
the Rashba effect, such as GaAs/AlGaAs multi-quantum wells, the polar semiconductor
BiTeI, 2D transition-metal dichalcogenides, and topological insulators [74–77]. On the other
hand, the Rashba effect in 2D perovskites provides new opportunities for dealing with the
challenge of CPL detection.

Chiral 2D perovskites have been recently explored as the responsive component for the
direct detection of CPL [78–84]. For example, Wang et al. inserted chiral organic ligands into
the organic layers of 2D perovskites to obtain chiral (R-MBA)2PbI4 and (S-MBA)2PbI4. The
in-plane photocurrent response generated by the CPL excitation of planar photoconductive
devices shows a typical response of the chirality-induced circular photogalvanic effect that
originates from the Rashba splitting in the electronic bands of these compounds, demon-
strating the potential applications of chiral 2D perovskites in optoelectronic devices that are
sensitive to the light helicity [85]. Similarly, Fan et al. report direct CPL detection by using
a pair of 2D chiral perovskite ferroelectrics, (R/S-3AMP)PbBr4 (3AMP = 3-(aminomethyl)-
piperidine divalent cation) [86]. These 2D perovskites undergo a phase transition at 420 K
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that is a combination of order–disorder and displacive ferroelectric transition. DFT calcula-
tions and circularly polarized light-excited PL measurements have confirmed the presence
of the Rashba effect in these 2D chiral perovskites (Figure 6a–d). This effect results in spin
selectivity, which can modulate the behavior of photogenerated charge carriers during
transitions, recombination, and transfers. Single-crystal-based devices have been shown to
directly detect CPL at 430 nm, with an on–off ratio of current higher than 1.7 × 103 and
anisotropy factors of responsivity larger than 0.20 (Figure 6e). The enhanced CPL detection
is attributed to the Rashba effect, which has a large Rashba coefficient of 0.93 eV·Å.

Nanomaterials 2024, 14, x FOR PEER REVIEW 9 of 13 
 

 

photoconductive devices shows a typical response of the chirality-induced circular pho-
togalvanic effect that originates from the Rashba splitting in the electronic bands of these 
compounds, demonstrating the potential applications of chiral 2D perovskites in optoe-
lectronic devices that are sensitive to the light helicity [85]. Similarly, Fan et al. report di-
rect CPL detection by using a pair of 2D chiral perovskite ferroelectrics, (R/S-3AMP)PbBr4 
(3AMP = 3-(aminomethyl)-piperidine divalent cation) [86]. These 2D perovskites undergo 
a phase transition at 420 K that is a combination of order–disorder and displacive ferroe-
lectric transition. DFT calculations and circularly polarized light-excited PL measure-
ments have confirmed the presence of the Rashba effect in these 2D chiral perovskites 
(Figure 6a–d). This effect results in spin selectivity, which can modulate the behavior of 
photogenerated charge carriers during transitions, recombination, and transfers. Single-
crystal-based devices have been shown to directly detect CPL at 430 nm, with an on–off 
ratio of current higher than 1.7 × 103 and anisotropy factors of responsivity larger than 0.20 
(Figure 6e). The enhanced CPL detection is attributed to the Rashba effect, which has a 
large Rashba coefficient of 0.93 eV·Å. 

 
Figure 6. (a) Crystal structures of (S-3AMP)PbBr4 (1S) and (R-3AMP)PbBr4 (1R) in the ordered fer-
roelectric phase (FEP). (b) Rashba splitting band structure of 1R. (c,d) CPLEPL spectra of 1R (c) and 
1S (d) upon L-CPL (σ+) and R-CPL (σ−) excitation at 395 nm. (e) Photocurrent differences upon L- 
and R-CPL irradiation at 430 nm [86]. Reproduced with permission. Copyright 2022, Wiley-VCH. 

4. Conclusions and Outlook 
In summary, this mini-review focuses on the Rashba effect in 2D perovskites. Recent 

research progress on the origin and extent of Rashba spin splitting, layer-dependent 
Rashba band splitting of 2D perovskites, the Rashba effect on 2D perovskite quantum 
dots, the Rashba effect in 2D/3D composite perovskite, and the Rashba effect in van der 
Waals heterostructures based on 2D perovskites are reviewed. In addition, applications of 
the 2D Rashba effect in circularly polarized light detection are included in this review. 

Despite considerable reports on Rashba effects in 2D perovskites, the origin of 
Rashba spin splitting in 2D perovskites is still under debate. Future research efforts to 
investigate the impacts of the surface termination, the number of inorganic layers, the 
structure of organic spacers, the planar sizes, and the distortion of inorganic octahedrons 
on the magnitude of Rashba band splitting will not only gain more insight into the origin 
of Rashba effect in 2D perovskites but also inspire approaches to modulate the Rashba 
spin splitting. In addition, the relationship between charge-carrier dynamics and the 
Rashba effect in 2D perovskites is still to be established, so that the photoelectronic 

Figure 6. (a) Crystal structures of (S-3AMP)PbBr4 (1S) and (R-3AMP)PbBr4 (1R) in the ordered
ferroelectric phase (FEP). (b) Rashba splitting band structure of 1R. (c,d) CPLEPL spectra of 1R (c)
and 1S (d) upon L-CPL (σ+) and R-CPL (σ−) excitation at 395 nm. (e) Photocurrent differences upon
L- and R-CPL irradiation at 430 nm [86]. Reproduced with permission. Copyright 2022, Wiley-VCH.

4. Conclusions and Outlook

In summary, this mini-review focuses on the Rashba effect in 2D perovskites. Recent
research progress on the origin and extent of Rashba spin splitting, layer-dependent Rashba
band splitting of 2D perovskites, the Rashba effect on 2D perovskite quantum dots, the
Rashba effect in 2D/3D composite perovskite, and the Rashba effect in van der Waals
heterostructures based on 2D perovskites are reviewed. In addition, applications of the 2D
Rashba effect in circularly polarized light detection are included in this review.

Despite considerable reports on Rashba effects in 2D perovskites, the origin of Rashba
spin splitting in 2D perovskites is still under debate. Future research efforts to investigate
the impacts of the surface termination, the number of inorganic layers, the structure
of organic spacers, the planar sizes, and the distortion of inorganic octahedrons on the
magnitude of Rashba band splitting will not only gain more insight into the origin of
Rashba effect in 2D perovskites but also inspire approaches to modulate the Rashba spin
splitting. In addition, the relationship between charge-carrier dynamics and the Rashba
effect in 2D perovskites is still to be established, so that the photoelectronic properties and
photophysics of 2D perovskites can be effectively controlled by modulating the Rashba
magnitude. Apart from the research on conventional optoelectronics areas, such as solar
cells, LEDs, and photodetectors, one of the exciting research interests on 2D perovskites
will be focused on spintronics-related technology. However, the current related research is
still insufficient. In other words, there is plenty of room to design new spintronic devices
based on 2D perovskites.
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