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Abstract: To search for nano-drug preparations with high efficiency in tumor treatment, we evaluated
the drug-loading capacity and cell-uptake toxicity of three kinds of nanoparticles (NPs). Pullulan was
grafted with ethylenediamine and hydrophobic groups to form hydrophobic cholesterol-modified
amino-pullulan (CHAP) conjugates. Fourier transform infrared spectroscopy and nuclear magnetic
resonance were used to identify the CHAP structure and calculate the degree of substitution of the
cholesterol group. We compared three types of NPs with close cholesterol hydrophobic properties:
CHAP, cholesterol-modified pullulan (CHP), and cholesterol-modified carboxylethylpullulan (CHCP),
with the degree of substitution of cholesterol of 2.92%, 3.11%, and 3.46%, respectively. As compared
with the two other NPs, CHAP NPs were larger, 263.9 nm, and had a positive surface charge of
7.22 mV by dynamic light-scattering measurement. CHAP NPs showed low drug-loading capacity,
12.3%, and encapsulation efficiency of 70.8%, which depended on NP hydrophobicity and was affected
by surface charge. The drug release amounts of all NPs increased in the acid media, with CHAP
NPs showing drug-release sensitivity with acid change. Cytotoxicity of HeLa cells was highest with
mitoxantrone-loaded CHAP NPs on MTT assay. CHAP NPs may have potential as a high-efficiency
drug carrier for tumor treatment.

Keywords: amino pullulan; degree of substitution; surface charge; drug release; cytotoxicity

1. Introduction

The low organizational specificity and severe toxicity of drugs are important factors that hinder
the development of cancer treatment. Recently, a hot topic is drugs transmitted to the cancer area with
high efficiency to kill cancer cells [1–3].

Nanoparticles (NPs) can load drugs to form nano-drug preparations and passively target
cancer tissue because of the difference in blood-vessel characteristics in cancer tissue and rich blood
flow [4,5]. Nano-drug preparations feature sustained release in the circulatory system [6,7]. Therefore,
the treatment efficiency of nano-drug preparations mainly depends on cellular drug intake after they
target tumor tissue. The cell uptake of the drug depends on the efficiency of NP uptake and drug
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loading amount. The efficiency of uptake is closely related to NP properties such as hydrophobicity,
shape, size, and surface charges [8–10]. Positively charged NPs showed high efficiency of cell
uptake [11,12]. They are largely adsorbed by the cell membrane quickly, because they have high affinity
with the cell membrane whose lipid bilayer is negatively charged [13]. The NP drug-loading amount
is related to the composition of the nano-material polymer [14]. Amphiphilic polymeric NPs feature
a higher degree of substitution in hydrophobic groups and load more small-molecule anti-cancer
drugs [15,16]. The evaluation of NP surface charge, drug-loading amount in the hydrophobic group,
and cellular uptake efficiency is of great importance to screen high-efficiency nano-drug preparations.

To design highly efficient nano-drugs, we need to understand the structure of NPs. NPs consisting
of amphiphilic polymers have core-shell structures [17]. Hydrophobic groups form the hydrophobic
core of the NPs as a major part of the loaded drug [18] and hydrophilic groups form the shell of NPs,
improving the water-solubility of NPs loaded with a small quantity of drugs [19]. The formation of
the NP spherical shape is driven by hydrophobic groups of polymers [20]. The greater the degree of
substitution, the smaller the NP [21]. NP size is related to targeting and cell uptake efficiency [22,23].
The surface of polymer hydrophilic groups modifying amino derivatives or carboxylic acid derivatives,
and hydrophobic groups participate in the NP self-assembly process [24–26]. The hydrophobic
group plays a leading role in the process of self-assembly, whereas the hydrophilic amino and
carboxyl groups play an important part in NP formation [16,25]. Due to the repulsive forces between
NPs, amino-functionalized NPs with a positive-charge surface can prevent their aggregation [25]
and increase the stability of NPs in vitro, with good targeting of tumor tissues and high cellular
uptake [27,28]. Therefore, we can improve the drug curative effect by the rational design of high-drug
loading with positive-charged NPs.

Pullulan has good water solubility, nontoxicity and good biocompatibility and is widely used
in medicine. Because pullulan has a large amount of hydroxyl groups, it can graft small molecules
such as cholesterol for hydrophobic modification and forming amphiphilic polymers [29]. As a drug
carrier, cholesterol-modified pullulan (CHP) NPs can improve therapeutic efficiency because of high
drug-loading and tumor-targeting [30].

The tumor-targeting function of CHP NPs results from the size, about 100 nm, and the high
drug-loading amount of CHP NPs depends on the cholesterol substitution degree in polymer [31,32].
Only with an appropriate range of cholesterol substitution can polymer assemble into a core-shell
structured NP [29]; within this range, the greater the substitution degree, the higher the drug-loading
amount [32]. We synthesized cholesterol-modified carboxyethyl pullulan (CHCP) polymer in the early
stage; under the condition that the cholesterol substitution degree is suitable for CHP polymer,
carboxyethyl can affect the size and drug-loading and drug-release amount of NPs [32]. Here,
we synthesized hydrophobic cholesterol-modified amino-pullulan (CHAP) polymer by new methods,
identified its structure by infrared spectrum and nuclear magnetic resonance (NMR) spectroscopy,
calculated the degree of substitution of the hydrophobic groups, and controlled the dosing ratio of
polymer synthesis. Thus, the degree of the substitution of the hydrophobic groups was almost equal
to that of the CHP and CHCP polymer synthesized in the early stage.

We prepared CHAP NPs, measured the size and electric potential by dynamic light-scattering
(DLS), observed the morphology by transmission electron microscopy (TEM), measured the
drug-loading amount and encapsulation efficiency, and investigated the effect of hydrophobic groups
and surface charge on the formation of particle size and drug-loading amount. We compared the
extracorporeal release amount and drug release amount in the acid environment of the pullulan
nano-drug preparations with different surface charges and evaluated their release efficiency in
extracelluar fluid of cancer cells in an acid environment after targeting cancer. We also measured the
efficiency of the NP preparations in suppressing cancer cell activity and evaluated the effect of surface
charge on the suppression efficiency in cancer cells.
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2. Results and Discussion

2.1. CHAP Conjugate

Pullulan and ethylenediamine were reacted with esterification to yield amination pullulan(AP) to
improve bioactivity, which was used to form an NP surface charge (Figure 1). Then cholesterol was
covalently attached to AP to synthesize the CHAP conjugate with an amphiphilic property (Figure 1).
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Figure 1. The synthesis route of the cholesterol-modified amino-pullulan (CHAP) conjugate.

Figure 2 shows the FTIR spectra for pullulan, AP and CHAP. As compared with pullulan spectra,
AP spectra was 1144 cm−1 (C–N stretching vibration peak), 1702 cm−1 (C=O stretching vibration
peak, amide band I), 1544 cm−1 (the amide band II caused by N–H and C–N coupling), and 1267 cm−1

(amide band III). Therefore, the amide group was grafted to pullulan. As compared to AP spectra,
CHAP spectra was 1702 cm−1 (C=O vibration absorption peak), and 1267 and 1020 cm−1 (C–O–C
stretching vibration peak), so the CHAP conjugate contained an ester base. According to these
characteristic peaks, CHAP was successfully synthesized by the esterification reaction.
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Figure 2. Infrared spectra of pullulan (a); amino-pullulan (b); and CHAP(c).
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Figure 3 shows the 1H-NMR spectra for pullulan, AP and CHAP. As compared with pullulan,
AP showed signals at 6.0 to 7.0 ppm, belonging to the amino group. The signals at 2.50 ppm were
characteristic peaks for DMSO-d6 and 2.55 ppm were characteristic for methylene groups (–CH2CH2–),
so ethylenediamine grafted to pullulan. CHAP 1H-NMR spectra analysis was used to identify protons
corresponding to the pullulan chain at 0 to 2.40 ppm (the H signal of cholesterol), 2.50 ppm (DMSO-d6),
2.55 ppm (methylene groups, –CH2CH2–), and 6.0–7.0 ppm (amino group). The degree of substitution
of an amino group per 100 glucose units in pullulan was calculated by the ratio of methylene protons
(2.55 ppm) to sugar protons (C1 position of α-1, 6 and α-1, 4 glycosidic bonds, 4.68 and 5.00 ppm) with
the following equation [16]:

DS =
A∂2.55

4(A∂4.68 + A∂5.00)
× 100%

where A∂2.55 is the spectrum area under the characteristic methylene (hydrogen) peak, and A∂4.68
and A∂5.00 are spectrum areas under characteristic proton peaks of α-1, 6 and α-1, 4 glycosidic bonds,
respectively. The degree of substitution calculated from the spectra for amino groups in the AP NPs
was 8.34%. The methylene groups (–CH2CH2–) of CHAP NPs included two aspects: ethylenediamine
and cholesterol succinate (CHS). The degree of substitution calculated from the spectra for methylene
groups (–CH2CH2–) in CHAP NPs was 11.26% and for cholesterol groups was 2.92.
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2.2. Property of CHAP NPs

Pullulan NPs composed of a hydrophilic pullulan shell and hydrophobic cholesterol core
can load a small anticancer drug and macromolecular gene drug to form pullulan nano-drug
preparations [33,34]. The preparations function in treatment, mainly in terms of NP properties such
as surface charge, size, and hydrophobicity [10,11,35,36]. We previously found that CHP NPs with
increasing degree of substitution with increasing cholesterol caused decreased NP size, so the formed
NP size was related to the cholesterol groups [37]. In this study, we chose a degree of substitution for
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cholesterol in CHP, CHCP, and CHAP NPs of 3.11, 3.46 and 2.94, respectively, with close hydrophobicity.
The degree of substitution of the cholesterol groups in the conjugates must occupy a suitable range for
forming an NP structure. The degree of substitution for the cholesterol group in CHP NPs (2%–7%) was
suitable for forming a homogeneous NP with a spherical structure, as well as CHCP and CHAP NPs,
as shown by TEM in Figure 4. The figure also shows the size distribution and zeta potential of pullulan
NPs with different properties. The mean size for CHAP NPs was 263.9 nm, with polydispersity index
0.138; for CHP NPs was 110.8 nm, with polydispersity index 0.267; and for CHCP NPs was 148.6 nm,
with polydispersity index 0.189 [32]. The formed sizes of pullulan NPs with close hydrophobic groups
differed, and carboxyl pullulan NPs and AP NPs were larger. Thus, carboxyl groups and amino groups
tended to self-aggregate to form NPs, for the formation of larger-sized NPs with a loose structure
in aqueous solution. CHAP NPs had zeta potential 7.22 mV as compared with −19.9 mV for CHCP
NPs and −1.21 mV for CHP NPs [32]. Thus, positive-charged amino groups and negative-charged
carboxyethyl groups contributed to particle surface charges.
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2.3. Mitoxantrone (MTO) Loading of Pullulan NPs with Different Surface Charge

Pullulan polymer NPs contain a hydrophilic sugar chain as an external shell and hydrophobic
cholesterol groups as an interior core, which can load small molecular drugs to form nano-drug
preparations [38]. The treatment efficiency of nano-drug preparations depends on the drug loading
amount, which is closely related to the degree of substitution of hydrophobic groups in the polymer [32].
The CHP NPs with a higher degree of substitution of cholesterol groups can load more MTO [32].
We chose pullulan NPs with different surface charge and a close degree of substitution of cholesterol
groups to evaluate the drug-loading amount. MTO was loaded into pullulan NPs at a ratio of 4 mg
MTO to 20 mg pullulan NPs by the dialysis method. Table 1 shows encapsulation efficiency for
CHP, CHCP, and CHAP NPs of 75.2%, 72.4%, and 70.8%, and loading capacity of 13.3%, 12.7%,
and 12.3%, respectively. CHCP NPs with cholesterol substitution 3.46 could form negative-charge
NPs with drug-loading capacity of 12.7% as compared with 13.3% for CHP NPs. CHAP NPs with
cholesterol substitution 2.92 could form positively charged NPs with drug-loading capacity of 12.3%
as compared with 13.3% and 12.7% for CHP NPs and CHCP NPs. Thus, besides the hydrophobic
cholesterol groups in the NPs deciding the drug-loading behavior in the formed NPs, the carboxyethyl
group or amino groups also affected the drug-loading amount. Pullulan NPs showed little change of
surface charge after drugs were loaded, shown in Table 1 as zeta potential −1.21 ± 0.12, –19.9 ± 0.23,
and 7.22 ± 0.18 mV for CHP, CHCP and CHAP NPs, respectively.
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Table 1. Characteristics of mitoxantrone-loaded pullulan NPs with different surface charge.

Sample D/C (w/w) a EE (%) b LC (%) c ζ (mV) d

CHP 1/5 75.2 ± 1.94 13.3 ± 0.22 −1.21 ± 0.12
CHCP 1/5 72.4 ± 1.72 12.7 ± 0.20 −19.9 ± 0.23
CHNP 1/5 70.8 ± 1.68 12.3 ± 0.20 7.22 ± 0.18

a Weight ratio of drug and carrier (mg/mg); b encapsulation efficiency determined by ultraviolet
spectrophotometry at 608 nm; c loading capacity determined by ultraviolet spectrophotometry at 608 nm;
d zeta potential of drug-loaded pullulan NPs measured by dynamic laser light-scattering.

2.4. Effect of Media pH Value on Drug Release of Pullulan NPs with Different Surface Charge

Drug release of NPs is related to NP hydrophobicity, surface charge, and release media pH [32].
In this study, we measured the drug release of CHAP NPs and studied the drug release of pullulan
NPs with close hydrophobicity and different surface charge. In Figure 5, free MTO has a fast release,
with 99.94% of the total drug released after 8 h. Drug release of pullulan NPs with different surface
charge all showed sustained release. The drug release in 48 h included two steps: fast release within
8 h and slow release after 8 h, attributed to the drug-loading pattern in pullulan NPs. The total
drug release amount was 60.28%, 65.78%, and 72.36% for CHP, CHCP and CHAP NPs, respectively.
With close hydrophobicity, pullulan NPs with positive surface charge showed greater drug release.
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When nano-drug preparations are targeted to the cancer tissue, the drug release amount increases
substantially under the acidic environment of the cancer extracellular fluid, which causes the release
at the cancer location to kill cancer cells with high efficiency [39–41]. Therefore, for cancer treatment,
we must study the drug release of NPs with acid pH. We measured the drug release of CHAP NPs
with weak and strong acid pH and evaluated the media pH effect on drug release of pullulan NPs
with different surface charge. Figure 6 shows the drug release of CHAP, CHCP and CHP NPs in
release media at pH 6.8 and 4.0. In release media at pH 6.8, the drug release amount was 64.78%,
68.25% and 76.27% for CHP, CHCP and CHAP NPs, respectively, at 48 h. The drug release was fast
and substantially increased with release media at pH 4.0: 88.24%, 78.67%, and 94.26% for CHP, CHCP
and CHAP NPs, respectively, at 48 h. Therefore, drug release in the pullulan NPs favored an acidic
environment. The drug release amount was enhanced with increasing acid intensity. Although the
three kinds of NPs all showed greater drug release with increasing acid intensity, the drug release
sensitivity differed by acidity. Compared to CHP NPs with drug release from 64.78% to 88.24%, CHCP
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and CHAP NPs showed drug release from 68.25% to 78.67% and 76.27% to 94.26%, respectively. CHAP
NPs showed more drug release than other two NP types, and the sensitivity was stronger than with
negative-charged CHCP NPs. Self-aggregated NPs are degraded under strong acid release media
(pH 4.0) [41–43]. Positive-charged CHAP NPs may be degraded more easily than negative-charged
CHCP NPs, for a greater drug release amount with a strong acid environment. Comparative analysis
of drug release of NPs with different surface charge is needed for designing nano-drug preparations
with highly efficient tumor treatment.Nanomaterials 2016, 6, 165 7 of 14 
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acetate buffer (pH 4.0) (pH 6.8: � CHP, CHCP, N CHAP; pH 4.0: J CHCP, t CHP, I CHAP).

2.5. In Vitro Cytotoxicity

After NPs target tumor tissue, the drug is partly released in the extracellular fluid and the
treatment function is displayed by cell uptake with free drug. However, tumor treatment mainly
depends on cell endocytosis of nano-drug preparations [44]. Cell endocytosis efficiency of nano-drug
preparations was evaluated for the cell proliferation, which can be measured by MTT assay.
Cytotoxicity was measured by MTT cell viability assay in HeLa cells. HeLa cells were incubated
with MTO-loaded NPs at a dose equivalent to that of free MTO. Three kinds of blank NPs showed no
significant cytotoxicity at the highest concentration (2 mg/mL) in cells after 12- and 24-h incubation
(Figure 7). With the same dose treatment, cell viability decreased with increasing concentration of
MTO-loaded NPs from 1 to 15 mg/mL as well as MTO alone (Figure 8). The cytotoxicity of MTO-loaded
NPs and free MTO increased with increasing MTO concentration. Growth of HeLa cells was inhibited
more with MTO-loaded NPs than free MTO. MTO-loaded CHAP NPs showed stronger cytotoxicity
than other two drug-loaded NPs, and cell inhibition rates were 35%, 65.4%, and 81.4% with 1, 5, and
15 mg/mL treatment, respectively. Cell inhibition testing suggested that CHAP NPs as a drug carrier
may have high tumor treatment efficiency with improved drug loading.
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3. Discussion

Nano-drug formulations have aroused great interest because they can significantly improve the
efficacy of anti-cancer drugs by targeting cancer tissue and reducing toxicity [45,46]. Research into
nano-drug preparations has made great progress, but only a few reports describe the implementation
process and the factors that affect efficiency in nano-drug treatment. The therapeutic efficacy of
nano-drug preparations includes two steps: the targeted tissue and penetrating the cell membrane.

The NP target site is closely related to the size of particles and protein coating [22,47]. For example,
the nano-level particle size in the 100- to 200-nm NP size can passively target cancer tissue. The function
of nano-drug preparations and the effects of proteins are inseparable. For example, after using
polysorbate to modify the surface of NPs, nano-drug preparations can deliver drugs to brain tissue
through the blood–brain barrier, for brain targeting, when mediated by apolipoproteins [48]. NPs can
be swallowed by the reticulo-endothelial system of liver and passively target liver tissue mainly
because they can absorb tropin and integrin in the blood circulation and lead to accumulated Kupffer
cells in liver [49].

After the NP surface is modified by PEG, because of the steric hindrance of the hydrophilic-chain
PEG, the absorption of opsonins and integrins is blocked, thereby weakening the phagocytosis of
the liver reticuloendothelium system [50]. Because normal blood vessels have a barrier function
under non-pathological circumstances, particles of nano-size cannot penetrate the blood capillaries,
so PEG-modified NPs can circulate in vivo for a long time, for a long-lasting release function. Thus,
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protein-absorbed NPs have great importance in the targeting function of NPs; however, the targeting
character of NPs ultimately depends on NP characteristics, such as material ingredients and surface
quality, which decide the kind and amount of the protein absorbed [51,52]. The aggregation and
nonspecific adsorption of cationic nanocarriers with serum albumin in the bloodstream stimulate
clearance by phagocytic cells and the reticuloendothelial system.

The cellular uptake efficiency of positive-charged NPs is higher than neutral NPs and
negative-charged NPs because the cell membrane phospholipid bilayer is negatively charged,
which helps with positive-charged NP adsorption, then endocytosis occurs under cell membrane
protein mediation [53] (Figure 9). However, before the positive-charged NPs enter the tumor cell,
they can be adsorbed by plasma proteins and the electric charges are cleared by shielding the adsorption
of negative-charged protein, finally causing lower cellular uptake efficiency [54]. When NPs target
the tumor tissue and reach the cell, the cells meet NPs absorbed with protein [55]. Nano-protein
coronas touch the cell membrane directly, so the charge that NPs take will not affect cell uptake directly
(Figure 10).Nanomaterials 2016, 6, 165 9 of 14 
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Therefore, the therapeutic efficiency of positive-charged NPs can avoid the presence of drugs in
circulation, for highly efficient cell uptake. The therapeutic effects can be enhanced by providing drugs
locally as in intravesical infusion in superficial bladder cancer. CHAP is a kind of positive-charged
NP with a polysaccharide cloak. It can be delivered to tumor locations by irrigating the bladder.
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Polysaccharide can enhance the tissue adhesion of NPs and the fixation of tumor location. The positive
charge can enhance cell adhesion and the efficient uptake of drugs.

When in the acidic environment around the tumor, the amount of drug released by CHAP NPs is
greater than that released by negative-charged and neutral NPs. The release of free drug and the cell
uptake efficiency all indicate that CHAP NPs may have potential as an excellent carrier of intravesical
therapy in cancer.

4. Materials and Methods

4.1. Materials

CHP and CHCP NPs were synthesized as described in [16,37]. 3.11 cholesterol groups were
grafted to glucose moieties of pullulan per 100 units in CHP NPs. The degree of substitution for
carboxyethyl and cholesterol groups per 100 glucose units in CHCP NPs was 10.13% and 3.14%.
N,N-carbonyldiimidazole was from Shanghai YuanYe Biological Technology (Shanghai, China).
Ethylenediamine was from Tianjin HengXing Chemical Reagent (Tianjin, China). Mitoxantrone
(MTO) was from Beijing Huafeng United Technology (Beijing, China). Diphenyltetrazolium bromide
(MTT) was from Sigma Co. (St. Louis, MO, USA). All other chemical reagents were of analytical grade
and obtained from Changsha Huicheng Commerce (Changsha, China).

4.2. Synthesis of CHAP NPs

Synthesis of amination pullulan (AP): 1.80 g pulullan and 1.00 g N,N-carbonyldiimidazole, were
dissolved in 100 mL dewatered dimethyl sulfoxide (DMSO); after heating and stirring in a 50 ◦C oil
bath for 4 h, 3.60 g ethylenediamine was added for heating and stirring for 24 h, then the reaction was
stopped. When the reaction liquid cooled to room temperature, it was placed in a 4000 interception
dialysis bag, with double-distilled water for dialysis for 1 day, then lyophilization. A light yellow solid
was the product of amino pullulan.

Synthesis of CHAP: Cholesterol succinate (CHS) was synthesized as described in [26]. An amount
of 2.00 g AP was dissolved in an appropriate amount of DMSO. Then 1.06 g CHS, 0.505 g EDC•HCl and
0.268 g DMAP was dissolved in an appropriate amount of DMSO. The above two groups of reagents
were mixed and activated for 1 h at room temperature and reacted at 50 ◦C in a heated oil bath pot for
48 h; the reaction was stopped and cooled to room temperature; then dropped into the right amount of
anhydrous ethanol by stirring constantly to precipitate a white solid and obtained by suction filtration
several times with a moderate amount of anhydrous ethanol, ethyl ether, and tetrahydrofuran wash
products; the products were placed in a blast dryer at 50 ◦C. The end product was a light yellow solid.

4.3. Fourier Transform Infrared (FTIR) Spectroscopy and NMR Spectroscopy

The FTIR spectra for pullulan, AP and CHAP were obtained as KBr pellets for FTIR spectroscopy
(Nicolet NEXUS 470-ESP, Thermo Fisher Scientific Inc., Waltham, MA, USA). The chemical structure
of pullulan, AP and CHAP was confirmed by 500 MHz 1H-NMR, using DMSO-d6 as the solvents.
The degree of substitution, defined as number of cholesterol and amino residues per 100 glucose units
of CHAP, was determined by 1H-NMR.

4.4. Preparation and Characterization of Pullulan NPs

CHAP NPs were prepared by the dialysis method [37]. Briefly, CHAP was dissolved in 1 mL
dimethyl sulfoxide. To form NPs, the solution was injected in a dialysis bag for dialysis for 24 h to get
rid of dimethyl sulfoxide. The solution of CHAP NPs was screened with a membrane filter (pore size:
0.45 µm, Millipore, Boston, MA, USA) to remove the larger sizes of the aggregated CHAP NPs .The size
distribution and zeta potential of obtained particles were determined by DLS (Zetasizer 3000 HS,
Malvern Instruments, Malvern, UK) at 11.4 V/cm, 13.0 mA. The solution of CHAP NPs (1.0 mg/mL)
was dropped onto a copper grid, followed by the application of phosphotungstic acid (2%) negative
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stain, and morphology was observed by TEM (Tecnai G2 20 S-Twin, FEI Hong Kong Inc., Hong Kong,
China) at accelerating voltage 80 kV. CHP and CHCP NPs were prepared and characterized by the
same method.

4.5. Preparation and Characterization of MTO-Loaded NPs

Drug-loaded pullulan NPs were prepared as described [32]. Briefly, 4 mg MTO and 20 mg NPs
were dissolved in 20 mL DMSO, and an amount of trethylamine was used as the propellant to help
CHAP NPs with higher drug loading. MTO-loaded NPs were obtained by dialysis (weight cutoff,
12–14 kDa, Millipore) for 9 h to remove DMSO and superfluous drug. The zeta potential of the obtained
drug-loaded CHP, CHCP and CHAP NPs were measured by DLS. Drug loading content (%) and
efficiency (%) of CHAP NPs were calculated with following formula [37]:

Drug loading efficiency (%) = NP drug-loading amount/initially added drug amount × 100%
Loading content (%) = NP drug-loading amount/NP drug carrier amount × 100%

4.6. In Vitro Drug Release of Pullulan NPs with Different Properties

The solution of MTO-loaded CHAP NPs was put in Visking dialysis bag and dialyzed in the
release media of phosphate buffered saline at 37 ◦C. Then, 2 mL of the solution of release media was
collected and substituted with an equal volume of the fresh solution at pre-defined time intervals
(Ti). The drug release amount was measured by UV spectrometer (UV-384 plus, Molecular Devices,
Thermo Fisher Scientific Inc., Waltham, MA, USA), and The percentage rate of drug release (Q%) was
measured as follows [30].

Q% = (Cn × V + Vn

i=n

∑
i=0

Ci)/Wdrug−loading

where Cn is the sample concentration at Tn, V is the total volume of release medium, Vi is the sample
volume at Ti, Ci is the sample concentration at Ti (both V0 and C0 were equal to zero), and Tn is the
sampling at the Nth time. The drug release features of CHP and CHCP NPs were also collected to
compare with the drug release of CHAP NPs.

4.7. In Vitro Drug Release of Pullulan NPs in Release Media with Different pH

In phosphate buffered saline (pH 6.8) and acetate buffer (pH 4.0), we measured MTO release
amount in vitro by a dialysis method. Briefly, MTO-loaded CHAP NPs was placed into a dialysis
tube (weight cutoff, 12–14 kDa, Millipore) and dialyzed against the release media at 37± 0.2 ◦C in an
air-bath shaker at 100 rpm. Then, the release percentage was calculated with collection of drug release
amount as described previously. The drug release amount from CHP NPs was collected in media at
different pH to compare with that from CHCP NPs.

4.8. In Vitro Cytotoxicity

The cytotoxicity of blank NPs, MTO-loaded NPs and free MTO was determined by measuring
the inhibition of cell growth by tetrazolium dye (MTT) assay as described [56]. Briefly, HeLa cells
were seeded at 5 × 103 cells/well in 96-well plates. After 12 and 24 h incubation, cells were treated
with a concentration of blank NPs with different surface charge (2 mg/mL), MTO-loaded NPs and
free MTO in serum-free medium for 24 h, then with MTT solution (20 µL, 5 mg/mL in PBS) for 4 h at
37 ◦C. The resulting formazan was dissolved in DMSO (150 µL) and measured at 490 nm by using a
microplate reader. The cellular growth inhibition was calculated as follows:

inhibition% = (1 − Test − Blank
Control − Blank

)× 100%
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We used untreated cells as the control (100% survival) and non-cell wells as the blank to substrate
solvent absorbance.

5. Conclusions

Pullulan was grafted with amino-ethyl groups and cholesterol groups to form CHAP NPs
with positive surface charge, which was compared to two other types of NPs with close cholesterol
hydrophobic properties: CHP and CHCP. The amino-ethyl groups affected the NP size formed and
directly affected the formation of the positive surface charge. The drug-loading amount depended
on NP hydrophobic groups and was affected by NP surface charge. NPs with positive or negative
surface charge showed more drug release than NPs with neutral surface charge. The drug release
amounts of NPs were all increased in the acid media and increased with increasing acidity. However,
the drug release of CHAP NPs was sensitive to acid change, and the drug release amount in strong
acid media was higher with CHAP NPs than the two other NPs. Drug-loaded CHAP NPs showed
high cytotoxicity, so they may have potential as a drug carrier for tumor treatment.
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