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Abstract: TiO2-based composites have been paid significant attention in the photocatalysis field.
The size, crystallinity and nanomorphology of TiO2 materials have an important effect on the
photocatalytic efficiency. The synthesis and photocatalytic activity of TiO2-based materials
have been widely investigated in past decades. Based on our group’s research works on TiO2

materials, this review introduces several methods for the fabrication of TiO2, rare-earth-doped
TiO2 and noble-metal-decorated TiO2 particles with different morphologies. We focused on
the preparation and the formation mechanism of TiO2-based materials with unique structures
including spheres, hollow spheres, porous spheres, hollow porous spheres and urchin-like
spheres. The photocatalytical activity of urchin-like TiO2, noble metal nanoparticle-decorated 3D
(three-dimensional) urchin-like TiO2 and bimetallic core/shell nanoparticle-decorated urchin-like
hierarchical TiO2 are briefly discussed.
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1. Introduction

Based on its unique chemical and physical characteristics, titanium dioxide (TiO2) has attracted
much attention in many fields including paint pigments, photocatalysis, solar cells, antibacterial
agents, electrical energy storage and some advanced functional materials [1–3]. The performance
in these applications strongly depends on the microstructure, crystallinity and nanomorphology
of TiO2 [1]. In particular, in the photocatalysis field, although a new type of polymeric
photocatalyst—that is, graphitic carbon nitride—has been intensively investigated recently due to
its huge advantages—including metal-free contents, visible light absorption ability, suitable band
gap for water splitting, stability, and being environmentally benign [4–7]—TiO2 is still regarded as
one of most ideal candidates for photocatalysis because of its strong oxidization, harmlessness to
surroundings, chemical inactivity, good stability and low cost [1,3,8,9]. There are three important
processes including photo excitation, bulk diffusion and the surface transfer of photoinduced charge
carriers in photocatalysis [8]. Thus, the performance of photocatalysis depends strongly upon the
charge transfer at the material surface and the light-response range of materials [1,10,11]. The processes
of light harvesting and charge transfer efficiencies are affected mainly by the size, crystallinity and
nanomorphology of TiO2 materials [1,8,10–14]. The preparation and photocatalytic properties of TiO2

with different morphologies including zero-dimensional (micro/nanospheres), one-dimensional (rods,
tubes, and nanowires), two-dimensional (films, layers and sheets), and three-dimensional (porous
spheres, urchin-like spheres) TiO2 structures have been widely investigated in the past decade [15–21].
Different ways have been developed for preparing TiO2 materials with different nanostructures.
The general synthesis approaches for the fabrication of TiO2 materials include sol-gel, hydrothermal
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and solvothermal techniques [1]. Controlling the microscopic structures of TiO2 is still a challenge
because TiO2 precursors are highly reactive.

Pure TiO2 is not a perfect photocatalyst due to the disadvantages of low photocatalytic efficiency
and the narrow light-response region [8]. Doping metal ions or introducing noble metal nanoparticles
onto the surface of TiO2 was demonstrated to be one of the effective ways to enhance the photocatalytic
efficiency because these TiO2-based composites can combine the functions of TiO2 and metal ions or
noble metals [22–25]. Furthermore, the properties of the composites can be adjusted by controlling the
ingredients and the microstructures of the TiO2.

In the past two decades, our group has focused on the synthesis, electrorheological (ER) properties,
luminescence properties and photocatalytic activities of TiO2-based materials [26–32]. A series of
TiO2-based materials with different compositions, crystallinity and interior microstructures have
been synthesized by different methods [33–36]. The TiO2 particles with a familiar microstructure,
such as solid spheres [37], hollow spheres [29], porous spheres [28,38], hollow porous spheres [39] and
urchin-like spheres [30], were synthesized and characterized in detail. In addition, some TiO2

composites with a special interior microstructure were also designed and synthesized [40–43].
According to the dielectric design, rare-earth-doped TiO2 particles were synthesized by sol-gel
methods [44–49]. Inspired by the structure of biological surfaces, a kind of composite particle
possessing both nano- and micro-scale structures was prepared via a hydrothermal method [50,51].
TiO2 particles with a cell-like structure were also synthesized [52]. It is noteworthy that the TiO2-based
materials described above show excellent properties in different applications. For example,
the rare-earth-doped TiO2, and the micro- or nano-structured composites with TiO2 have been
demonstrated to show a distinct enhancement in their ER properties [44,50–52]. The hollow
Sm3+-doped TiO2 and the monodisperse mesoporous Eu-doped TiO2 spheres have shown good
luminescent performance [28,29]. The urchin-like TiO2 and urchin-like TiO2 decorated with
Au, Ag, Co@Au or Co@Ag nanoparticles have shown significant improvement in photocatalytic
activities [30–32].

Until now, there have been many review articles introducing the progress made in the field of
TiO2-based materials [1–3,8]. Based on our group’s research work on TiO2 materials, this review is
primarily concentrated on the preparation of TiO2 composites with different morphologies and the
photocatalytic activities of urchin-like TiO2 composites.

2. Preparation of TiO2 and TiO2-Based Composites with Different Morphologies

2.1. Micro- and Nano-Spheres

2.1.1. Solid Spheres

Spherical particles with a specific size can be used in many fields, such as photonic crystals,
pigments, and so on [15]. In order to obtain monodisperse spherical TiO2 particles, many methods
have been developed. However, it is still a challenge to control the morphology and size of TiO2

microspheres because of the high reactivity of precursors. Increasing the charge of the particle surface
and the steric repulsion of the particles are effective methods of controlling the stability of TiO2

microspheres [53]. We have reported a simple and reproducible sol-gel method for synthesizing
well-defined spherical TiO2 particles with diameters within 200–800 nm. In this method, polymers
including polyethylene glycol (PEG), poly(ethylene oxide)106-poly(propylene oxide)70-poly(ethylene
oxide)106 (F127) copolymer, octadecylamine (ODA), and surfactant Span-80 were used to control the
size of TiO2 particles [37]. For example, quasi-monodisperse TiO2 submicron spheres were synthesized
by controlling the hydrolysis of tetrabutyl titanate in ethanol containing the above polymers and small
amounts of deionized water. During this process, depending on the used polymer, the transmission
time from the transparent solution into white suspension changed from several seconds to minutes.
As soon as the transparent solution changed into white suspension, the stirring had to be stopped
and the suspension was further aged for 8 h to form quasi-monodisperse TiO2 submicron spheres.
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After high temperature annealing, the spheres were crystallized into the anatase phase. Figure 1
shows the quasi-monodisperse TiO2 submicron spheres with different diameters within 200–800 nm,
synthesized with different polymers.
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Figure 1. SEM (Scanning electron microscopy) images ((a) PEG (polyethylene glycol) 20000, (b) ODA
(octadecylamine), (c) F-127, (d) Span80) and the XRD (X-ray diffraction) patterns (e) of TiO2 spheres
synthesized by adding different polymers [37].

2.1.2. Hollow Spheres

Due to high specific surface area and low density, hollow structured materials have been widely
used in many fields [54]. TiO2 hollow spheres with a well-defined crystal phase are highly desirable for
photocatalysis use [55–57]. Hollow structured TiO2 can be feasibly synthesized by hard template and
soft template methods. Compared to the soft template method, the hard template method is simpler,
and so it is frequently used.

An et al. have used polystyrene (PS) spheres as a hard template to prepare hollow Sm3+-doped
TiO2 spheres [29]. The schematic illustration of the formation mechanism is shown in Figure 2.
Since the surface of PS spheres obtained by surfactant-free microemulsion polymerization is negatively
charged, no additional surface modification of PS spheres is needed for the next coating of TiO2. In an
ethanol/acetonitrile mixed solvent, a small amount of ammonia was used to induce the hydrolysis
of tetrobutyl titanate to form the amorphous Sm3+-doped TiO2 coating layer on the surface of the PS
spheres. After washing with ethanol, drying, and annealing, hollow TiO2:Sm3+ spheres, as shown in
Figure 3, could be obtained.
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2.1.3. Porous Spheres

Due to their high surface area, porous materials are very popular for different applications
including energy storage, solar cells and catalyzers [58–60]. Mesoporous TiO2-based materials have
attracted much attention for their enhanced reactivity and light harvesting [60]. The macrochannels
in mesoporous TiO2 particles have served as a light-transfer path that can introduce incident photon
flux to the interior surface of the TiO2 particles [58]. A mesoporous structure gives light waves more
chances to penetrate deep inside the photocatalyst and more light waves are captured. The crystallinity,
pore size and composition are important for tuning the properties of mesoporous TiO2 spheres [1,8,60].
There has been intensive research concentrated on the design and preparation of porous TiO2 materials
with unique porosities and tunable pore sizes [61–65].

We have synthesized mesoporous Ce-doped TiO2 spheres by a low-temperature hydrothermal
method by using neutral dodecylamine (DDA) as a surfactant and tetrabutyl titanate as a Ti source [64].
To control the rate of hydrolysis of tetrabutyl titanate, a solvent mixture of ethanol and propanol
(2:1, v/v) was used. No additional water was used to initialize the hydrolysis and condensation
reaction of the tetrabutyl titanate, due to the used CeCl3·7H2O containing structured water. After the
CeCl3·7H2O was dissolved, the structured water was released. DDA was able to make the solution
alkaline and this made it easy to increase the rate of hydrolysis of the tetrabutyl titanate. However,
the dissolution of CeCl3·7H2O also could result in a decrease of the pH value of solution. Thus,
CeCl3·7H2O could service as not only as a dopant but also as an initiator and buffer. After reaction,
a precipitate was formed and it was further refluxed for 2 h at 80 ◦C in an acid solution to get rid of the
template and obtain sphere-like mesoporous Ce-doped TiO2 particles with a diameter of 100–1000 nm
as shown in Figure 4. The XRD (X-ray diffraction) patterns in Figure 4 show that the TiO2 particles
are semi-crystalline. The formed anatase crystalline size is very small, about 2–3 nm. In addition,
from the TEM (Transmission Electron Microscopy) image, it could be found that the pore structure was
worm-like, with a size of 2–3 nm. The Brunauer-Emmett-Teller (BET) surface area of the mesoporous
Ce-doped TiO2 was 118 m2/g, which is much higher than the 9.6 m2/g of single-doped TiO2 obtained
without a surfactant.
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Figure 4. TEM photograph of mesoporous-doped TiO2 and XRD patterns (a) before hydrothermal and
acid treatment, (b) after hydrothermal and acid treatment of mesoporous-doped TiO2 [64].

The mesoporous Eu-doped TiO2 spheres have also been developed by the hydrolysis of tetrabutyl
titanate [28]. To increase the thickness of the pore wall, nonionic copolymer Pluronic F-127 was
used as a template agent. Europium ethoxide was specially prepared as a doping agent in order to
increase the rate of hydrolysis and condensation of the tetrabutyl titanate. Small amounts of water
were added to initiate the reaction under stirring. As soon as the solution became slightly white
after several minutes, the stirring was stopped. Meanwhile, in order to control the water content, the
preparation was conducted under the protection of flowing N2. After aging for 24–48 h at 35–40 ◦C,
the suspended particles were filtered and washed with ethanol several times. The final products
were obtained after calcination at 400 ◦C for 4 h. The synthesized Eu-doped TiO2 particles have a
spherical morphology and a mesoporous structure, with a pore size of 7–10 nm. The special surface
area of the phosphor particles is 158 m2/g. The high resolution TEM images in Figure 5c show that the
pore wall is semi-crystalline that many anatase nanocrystallites are dispersed in the amorphous TiO2.
The XRD patterns showed in Figure 5d have indicated that no peaks corresponding to the europium
compound was detected and no shift of the anatase peaks was observed after doping with Eu3+. It can
be concluded that Eu3+ ions are mainly dispersed in the amorphous TiO2 region.
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2.1.4. Hollow and Porous Spheres

Compared to single hollow spheres, hollow TiO2 spheres with a porous shell are more interesting
in photocatalysis because they can provide a higher surface area and active site points, decreased
diffusion resistance, and increased accessibility to reactants [66]. Several methods have been reported
to synthesize hollow TiO2 spheres with a porous shell [66,67]. Among these methods, the template
method is the most popular. Different sacrificial templates can be used for controlling the size and
morphology of such a hollow nanostructure. The template method followed by a hydrothermal or
calcination treatment is often used to synthesize hollow TiO2 spheres with a crystalline shell [39].
Figure 6 shows a typical process of preparing hollow TiO2 spheres with a crystalline shell. In this
process, amorphous TiO2 was firstly coated onto the surface of SiO2 spheres by the sol-gel method in
an alkaline solution. Then, the composite microspheres were subjected to a hydrothermal or calcination
treatment. Meanwhile, the amorphous TiO2 was crystallized into nanocrystals and the mesoporous
structure was formed by nanocrystal stacking. Finally, the SiO2 core was removed by etching in an
alkaline solution. As shown in Figure 7, the sample prepared by hydrothermal treatment had a mean
diameter of 620 nm with a 180 nm thick mesoporous TiO2 shell. The BET surface area was 231.1 m2/g
and the pore size was 6.5 nm. However, the sample prepared by calcination had a mean diameter of
440 nm with a 90 nm thick mesoporous TiO2 shell. The BET surface area was 158.3 m2/g.
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2.2. 3D Urchin-Like Hierarchical Particles

Urchin-like microspheres possess an epitaxial multilevel structure. The unique micro/nano
hierarchical structure has two obvious advantages over single nano-scale or micro-scale structures
when they are used as photocatalysts [54,68]. One is that urchin-like TiO2 is more efficient at absorbing
incidental light because of the increase of multiple-reflection of the hierarchical microspheres [54].
The other is that urchin-like hierarchical TiO2 is easy to separate from waste water by the filtration
or sedimentation methods. The template-assisted method is a familiar approach to prepare the
hierarchical materials. However, it is troublesome to remove templates from products. Impurities are
easily introduced into products in the process of utilization and removal of templates. The template-free
method is accepted as an ideal strategy which can overcome the drawbacks. Recently, TiO2 particles with
different hierarchical structures have been successfully fabricated via the template-free method [69–73].

2.2.1. Urchin-Like Hierarchical TiO2 Particles

We have developed a synthesis of a kind of 3D urchin-like TiO2 microspheres via a solvothermal
method without adding any surfactant or template [30]. Tetrabutyl titanate and titanium
tetrachloride (TiCl4) aqueous solution were used as the reactant, and toluene was used as the solvent.
The solvothermal reaction took place in a Teflon-lined autoclave at 150 ◦C for 24 h. Sea-urchin-like 3D
hierarchical TiO2 microspheres with a uniform size of 2.5–3.0 µm were obtained (Figure 8). The 3D
hierarchical microspheres were made of single crystalline rutile nanoneedles with diameters about
20–40 nm, which grew radially from the core of the microspheres. The morphology and crystal
phase of the 3D hierarchical TiO2 microspheres could be influenced by some factors, such as the
ratio of tetrabutyl titanate to TiCl4, the solvothermal temperature, and so on. By tracing the particle
morphology change by SEM and XRD techniques, we concluded that the formation of 3D hierarchical
TiO2 microspheres mainly concerned three steps, i.e., nucleation, self-assembly, dissolution and
recrystallization, as depicted in Figure 9. In the nucleation stage, nanoparticles were formed. Then,
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the nanoparticles assembled into microspheres. Finally, the microspheres gradually changed into the
urchin-like hierarchical structure by dissolution and recrystallization.
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2.2.2. Cr Doped Urchin-Like Hierarchical TiO2 Particles

Urchin-like Cr-doped TiO2 particles could be also synthesized by the same solvothermal method
described above in a solution of titanium tetrabutyl titanate dissolving CrCl3 [73]. The morphology of
Cr-doped TiO2 particles is characterized by SEM images shown in Figure 10. The mean particle size
of the hierarchical microspheres can be adjusted within 1–5 µm and the diameter of the nanorods is
about 20–30 nm. The EDS results showed that the content of the Cr element in the Cr-doped TiO2

particles was ~2.9 mol %.
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2.2.3. Noble Metal Nanoparticle-Decorated 3D Urchin-Like TiO2 Particles

Noble metal nanoparticle-decorated semiconductors are interesting for photocatalysis because
of their combined properties [74]. Decorating the noble metal nanoparticles (e.g., Au, Ag and
Pt) onto the surface of TiO2 is an effective method to improve the photocatalytic activity because
not only light-harvesting efficiency can be enhanced due to the surface plasmon resonance of
noble metal nanoparticles, but the recombination of surface radicals can also be slowed down by
capturing photogenerated electrons of noble metal nanoparticles [75–79]. Figure 11 shows a schematic
illustration of 3D urchin-like hierarchical TiO2 microspheres decorated with Au nanoparticles via a
two-step wet-chemical process [31]. In the first step, the surface of the urchin-like TiO2 microspheres
was modified with APTES (3-aminopropyl-triethoxysilane) that possess amidocyanogen. Then,
the modified particles were decorated with Au nanoparticles in HAuCl4 aqueous solution by the
reduction of NaBH4. Since the amidocyanogen could interact with Au nanoparticles by a weak covalent
bond, Au nanoparticles were closely attached to the surface of the TiO2 nanostructures, as shown in
Figure 12. It was seen that the Au nanoparticles with diameters of about 2–10 nm mainly adhered to
the surface of the needles uniformly. Most of the Au nanoparticles possess a rhombic dodecahedra
structure. The UV-Vis (ultraviolet-visible) spectra show an absorption band located at the wavelength
of about 530 nm due to the surface plasmon resonance of Au nanoparticles.
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Figure 12. SEM images (a,b), TEM images (c–e), XRD pattern (f) and UV-Vis absorption spectra (g) of
Au-decorated 3D urchin-like TiO2 nanostructures [31].

The urchin-like TiO2 microspheres decorated with Ag nanoparticles could be also prepared by
the similar process. As shown in Figure 13, the Ag nanoparticles with diameters of about 2 nm are
decorated on the TiO2 nanoneedles homogeneously. A broad absorption band at around 500 nm,
corresponding to the surface plasmon resonance of the Ag nanoparticles, appears in the UV-Vis
absorption spectrum (Figure 13f).
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3D urchin-like TiO2 nanostructures [31].

2.2.4. Core/Shell-Structured Bimetallic Nanoparticle-Decorated 3D Urchin-Like Hierarchical TiO2 Particles

Bimetallic nanostructures often show a more excellent comprehensive performance over their
monometallic counterpart [80]. Especially core/shell bimetallic nanostructures with a magnetic core
and a noble-metallic shell have aroused researchers’ interest [81–85]. The magnetic core can offer a drive
force for the recycling of samples, while the noble-metal shell can improve the optical properties [85].
Figure 14 shows a typical preparation process of a kind of 3D urchin-like hierarchical TiO2 decorated
with a bimetallic core/shell nanoparticle (Co@Au and Co@Ag). The preparation includes three
steps, i.e., surface activation, electroless plating and in-situ replacement [32]. First, the surface of the
urchin-like TiO2 microspheres was activated by implanting Pd nanodots. Then, Co nanoparticles were
formed and adhered to the nanoneedle surface of the urchin-like TiO2 microspheres by electroless
plating. Finally, Ag or Au were further formed and coated on the surface of the Co nanoparticles by an
in-situ replacement process.
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The SEM and TEM images in Figure 15 show the morphology of Co@Au/TiO2 composites. It can
be seen that many core/shell nanostructured nanoparticles with diameters of 10–80 nm are attached to
the surface of TiO2 nanorods. The images of the elemental mapping of core/shell nanoparticles further
identify that the core is Co and the shell is Au. The size and distribution of the bimetallic particles can
be adjusted by controlling the ratio of Co to TiO2 during the electroless plating process. The thickness
of the Au or Ag shell could be controlled by adjusting the concentration of HAuCl4 or AgNO3 in
the solution and the reaction time. Both the Co@Au/TiO2 and Co@Ag/TiO2 particles showed good
response to an applied external magnetic field [32].
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2.2.5. Photocatalytic Activity of Urchin-Like Hierarchical TiO2 and Their Composites

Although TiO2 is an ideal candidate for photocatalysis because of its strong oxidization,
harmlessness to surroundings, chemical inactivity, good stability and low cost, the main weakness
of TiO2 is the lack of visible light response due to the large band gap. Therefore, the question of how
to increase the efficiency of visible light harvesting is an important research topic in this field [1].
Although single controlling the morphology of TiO2 materials cannot increase the efficiency of visible
light harvesting, it is possible to enhance the visible light harvesting of TiO2 composites by combining
ion doping or noble metal decoration with morphology control. Ion doping or noble metal decoration
can induce or increase the visible light absorption of TiO2, while the absorption effect can be further
enhanced by other effects from material morphology, such as decreased light scattering or increased
multiple reflection, etc.

The photocatalytic efficiency of commercial P25, urchin-like TiO2 and Au or Ag-decorated
urchin-like TiO2 was evaluated by degrading MB (methyl blue) under UV-Vis light irradiation.
It was found that the photocatalytic degradation efficiency under the same conditions followed the
order: Ag/TiO2 > Au/TiO2 > TiO2 > P25 (Figure 16). By the photoluminescence spectra, Au or
Ag nanoparticles decorated on the surface of TiO2 were demonstrated to be able to effectively
capture photogenerated electrons and prevent electron/hole recombining (Figure 16). In addition,
the urchin-like micro/nano hierarchical structure also may increase the visible light harvesting
efficiency by the multiple-reflection of nanoneedles. These should be responsible for the enhanced
photocatalytic efficiency of urchin-like TiO2 microspheres after decoration with Au or Ag nanoparticles.
Similarly, the light-harvesting efficiency could also be enhanced by decorating with Co@Au or Co@Ag
bimetallic nanoparticles, as shown in Figure 17. As a result, the photocatalytical efficiency of urchin-like
TiO2 was enhanced obviously, as shown in Figure 17, by the experiment of decolorizing methyl blue
(MB) solution.
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3. Summary

Based on our group’s research work, we provided a brief review of the synthesis
of TiO2 with different morphologies and the photocatalytic properties of urchin-like TiO2,
noble metal nanoparticle-decorated 3D urchin-like TiO2 and core/shell-structured bimetallic
nanoparticle-decorated 3D urchin-like hierarchical TiO2. The examples of the fabrication of solid
spheres, hollow spheres, porous spheres, and porous and hollow microspheres of anatase TiO2-based
materials were introduced. The synthesis and photocatalytic efficiency of urchin-like rutile TiO2,
urchin-like rutile TiO2 nanostructures decorated with Au or Ag nanoparticles and core/shell-structured
bimetallic nanoparticles (Co@Au and Co@Ag) were especially introduced. The results of photocatalytic
tests show that 3D urchin-like hierarchical structures have unique merits in the efficient harvesting of
solar light, and decorating Au, Ag or bimetallic nanoparticles on the surface of 3D urchin-like TiO2 can
promote photoinduced charge-carrier separation.
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