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Abstract: The quantitative relationships between the activity of zebrafish ZHE1 enzyme and a
series of experimental and physicochemical features of 24 metal oxide nanoparticles were revealed.
Vital characteristics of the nanoparticles’ structure were reflected using both experimental and
theoretical descriptors. The developed quantitative structure–activity relationship model for
nanoparticles (nano-QSAR) was capable of predicting the enzyme inactivation based on four
descriptors: the hydrodynamic radius, mass density, the Wigner–Seitz radius, and the covalent
index. The nano-QSAR model was calculated using the non-linear regression tree M5P algorithm.
The developed model is characterized by high robustness R2

bagging = 0.90 and external predictivity
Q2

EXT = 0.93. This model is in agreement with modern theories of aquatic toxicity. Dissolution and
size-dependent characteristics are among the key driving forces for enzyme inactivation. It was
proven that ZnO, CuO, Cr2O3, and NiO nanoparticles demonstrated strong inhibitory effects because
of their solubility. The proposed approach could be used as a non-experimental alternative to animal
testing. Additionally, methods of causal discovery were applied to shed light on the mechanisms and
modes of action.

Keywords: molecular descriptors; liquid drop model; QSAR; toxicity; metal oxide nanoparticles;
regression tree; zebrafish; causality

1. Introduction

The various aspects of nanotechnology have been advancing for over half a century and continue
to grow rapidly [1–3]. An increased usage of nanomaterials results in their release into the environment,
making it necessary to determine the hazardous effects of these materials [4]. Determining the toxicity
of materials is one of the main steps in safe materials design [5]. The majority of current studies are
focused on the investigation of the environmental safety of nano-sized materials and devices [6,7].

Every year, an enormous amount of money is spent in both academia and industry on testing new
hypotheses and the research and development of new nanomaterials [8]. Various alternatives to animal
testing have been proposed to overcome some of the drawbacks associated with animal experiments [9].
The idea of the 3Rs approach (reduction, refinement, and replacement) is suitable for the investigation
of nanoparticles (NPs). Different strategies have been proposed to reduce the number of experiments,
from the standardization of testing conditions and extrapolation to the application of computational
techniques [5,10]. For instance, as an alternative to animal testing, zebrafish has been replaced by its
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most representative enzyme: the zebrafish hatching metalloprotease, ZHE1 [11,12]. In the current
project, we have developed a computational model based on the in vitro data of ZHE1 inhibition.

Over the years, different computational methods have been developed, but the quantitative
structure–activity/properties relationships (QSAR/QSPR) approach is the most time-effective
one [13–15]. The fundamental assumption of QSAR modeling is that the features of molecular structure
are responsible for physical or biological properties of the studied samples [16]. Each compound
could be represented by a set of different numbers (known as “descriptors”) [17]. For this purpose,
the features of each chemical structure are defined by different physical or mathematical concepts and
then transformed into descriptors [17]. In the last ten years, more than fifty QSAR/QSPR models for
nanoparticles (known as “nano-QSAR models”) have been published [18,19].

Unique properties of NPs are governed by different characteristics related to the specific
organization of NP (release of ions from a surface, huge contact area, aggregation effects,
etc.). Therefore, researchers usually utilize experimental properties as descriptors: size, volume
concentration, solubility, zeta potential, Brunauer–Emmett–Teller (BET) measurements (shape,
surface area), reactivity, etc. [20–22]. Experimentally-based descriptors have a clear interpretation,
which makes them a very valuable class of NP descriptors. However, experimental parameters can
contain systematic or chance error, as the quality of measurements greatly depends on the equipment
and the skills of the researcher [17]. This makes these descriptors applicable only for representing
co-measured data (data obtained in the same laboratory).

As many existing models successfully combine simple descriptors with experimental data,
we suggested that a successful depiction of the properties or mechanisms of action would become
possible by means of a hierarchical combination of descriptors. The main idea of the hierarchical
approach is a simultaneous use of descriptors that reflect the NPs’ structure at different levels of the
organization of molecules: from ions to aggregates [23].

The objective of the current paper is the development of a theoretical 3R model that provides
a safety assessment of the nanoparticles towards zebrafish. To reach this goal, a combination of
theoretical descriptors with experimental parameters was applied for nano-QSAR modeling. As it has
recently been pointed out, nanomaterials can demonstrate non-linear changes in toxicity. To address
this problem in nano-QSAR modeling, a non-linear M5P tree approach was used. The general idea
of the technique that was used is the creation of a conventional decision tree combined with linear
regression functions [24]. Additionally, causal relationships between the activity and the descriptors of
the developed model were analyzed.

2. Results

The developed nano-QSAR model has high statistical characteristics: R2
adj = 0.85 and

RMSE = 0.062 for the training set, R2
adj = 0.69 and RMSE = 0.176 for the validation (bagging) set,

R2
adj = 0.80 and RMSE = 0.112 for the external validation (test set). Prediction for Cr2O3 in the training

set was outside of the three-sigma deviation for the developed model (outlier).
The developed model to be discussed is non-linear. However, for the readers’ convenience,

the observed–predicted diagram is presented in a classical way (in Figure 1). The straight line
represents perfect agreement between the experimental and the calculated values.

The developed model contains four descriptors: the hydrodynamic size (∅hyd), density (ρ),
the Wigner–Seitz radius (rwz), and the covalent index (CI). In Figure 2, the distributions of values
for the descriptors are represented using diagrams. QSAR methodology assumes that the structural
variation causes the variation of physical or biological properties; therefore, adequate distribution
of properties (descriptors) within the training/test set is crucial. As one can see from Figure 2,
the distributions of selected descriptors varied considerably.
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nodes. The first node (group 1) covered ~42% of the training set (eight NPs): Ni2O3, Mn2O3, In2O3, 
Co3O4, Fe3O4, Y2O3, Gd2O3, La2O3. Similarly, the second node (group 2) covered ~31.5% (six NPs): 
Fe2O3, CoO, TiO2, WO3, Al2O3, SnO2. The third node (group 3) covered ~16% (three NPs): Cr2O3, ZnO, 
CuO. The remaining nanoparticles (group 4, ~10.5%, two NPs) were not included in the three main 
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Figure 2. Radar plot of the distribution of used descriptors.

The nano-QSAR model is presented in Figure 3. The developed non-linear model contains
three nodes. The first node (group 1) covered ~42% of the training set (eight NPs): Ni2O3, Mn2O3,
In2O3, Co3O4, Fe3O4, Y2O3, Gd2O3, La2O3. Similarly, the second node (group 2) covered ~31.5%
(six NPs): Fe2O3, CoO, TiO2, WO3, Al2O3, SnO2. The third node (group 3) covered ~16% (three NPs):
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Cr2O3, ZnO, CuO. The remaining nanoparticles (group 4, ~10.5%, two NPs) were not included in
the three main nodes: CeO2, HfO2. The percentage of involvement for each descriptor for all nodes
(relative importance, RI) is presented in Table 1.
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Table 1. List of descriptors and their relative importance (RI, %) in quantitative structure–activity
relationship (QSAR) model. LDM: “liquid drop” model.

Descriptor Symbol Descriptor Type RI, %

hydrodynamic size ∅hyd experimental 37.8
density ρ LDM 16.2

Wigner–Seitz radius rwz LDM 37.8
covalent index CI ionic 8.2

In order to evaluate the causality of the developed nano-QSAR model, a probability of causal
relationships between toxicity and selected descriptors was measured. Direct and clear cause–effect
relationships were found for the hydrodynamic size and toxicity with p = 0.05 in the first node
(the Wigner–Seitz radius) and p < 0.001 for the remaining nodes.

3. Discussion

The percentage of relative importance of a descriptor reflects its mean influence. One of the most
important advantages of non-linear models (such as decision tree-based models) is their potential to
simultaneously describe different mechanisms of action. Each individual node (“leaf”) in a tree could
be applied only to a specific group of nanoparticles. It is very critical for a numerical representation
of nanoparticles, since different types of nanoparticles can affect certain targets (enzymes, cells, etc.)
in opposite ways. As was mentioned in the introduction, the mechanisms of a nanoparticle’s action
could vary as solubility, aggregates formation, and surface charge change.

Based on the above, low overall relative influence (8.2%) for the covalent index does not mean that
it has low impact on the nanoparticle’s action. Group 4 is driven by the CI (Figure 3); therefore, the CI
reflects only one mechanism of action (100%). It is critical to note that nanoparticles that were grouped
by the CI (Figure 3, group 4)—namely ZnO and CuO in the training set and NiO in the validation
set—demonstrated the highest ZHE1 inactivation.

The overall schematic representation of suggested toxicity mechanisms is outlined in Figure 4.
The toxicity of nanoparticles could be related to a two-step process. At the first step, ions are released
from the nanoparticle’s surface through the dissolution mechanism (Figure 4, Case 1). The likelihood
of releasing depends on the environmental conditions and on the general trends of dissolution of the
selected nanoparticle. Next, released metal ions interact with metal-sensitive binding sites in the active
center of the zebrafish hatching enzyme, ZHE1 [11].
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activity [28]. On the contrary, Cu2+ that substituted dipeptidyl peptidase could not restore the 
catalytic activity. These findings were supported by the analysis of coordination geometries: Cu2+ 
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Figure 4. Schematic representation of mechanisms of the zebrafish hatching metalloprotease (ZHE1)
inhibition induced by metal oxide nanoparticles.

ZHE1 is a zinc metalloprotease. Generally, different divalent metal ions can replace the zinc ion in
the enzyme’s binding site. However, binding affinity differs among a series of metal ions. For instance,
Holt et al. demonstrated that the binding affinity of metals to metallothionein changed in the order
Zn2+ < Cd2+ < Cu2+ < Hg2+ [25]. It was found that thermolysin activity increased when cobalt was
present [26]. Replacement of Zn2+ ion by Cu2+ or Co2+ in the catalytic center of astacin increased
enzymatic activity; inclusion of Ni2+ or Hg2+ inactivated the enzyme [27]. Similar results were obtained
recently: metal substitution of Zn2+ by Co2+ or Mn2+ in dipeptidyl peptidase maintained catalytic
activity [28]. On the contrary, Cu2+ that substituted dipeptidyl peptidase could not restore the catalytic
activity. These findings were supported by the analysis of coordination geometries: Cu2+ coordination
geometry is very rigid, while the coordination geometries of Zn2+, Co2+, and Mn2+ are flexible [25].
Moreover, even Zn2+ overdose can alter metalloprotease activity: Burkholderia cenocepacia ZmpA zinc
metalloprotease activity was lowered by an excess of Zn2+ [29].

As it was pointed out by Lin et al., the ionic radius of metal ions, associated ion-ligand coordination
chemistry, and binding constants could determine substitution in the enzyme center [12]. Based on
the above, the theoretical descriptor CI simultaneously reflects the properties of released metal ions
(charge and electronegativity) and interactions with the metal-binding amino acids in the enzyme
center. Using numerical analysis, polynomial regression for the covalent index and the enzymatic
activity of ZnO, CuO, and NiO (R2 = 0.85) were identified. Therefore, the descriptor CI represents an
attractive theoretical parameter that reflects mechanisms of action of released metal ions.
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As one can see from Table 2, an influence of the hydrodynamic size and the Wigner–Seitz radius
have the highest impacts and contribute equally to the enzyme inhibition. We suggest that the
hydrodynamic size and the Wigner–Seitz radius represent similar—or possibly the same—mechanism
of action (Figure 4, Case 2 and Case 3). For instance, nanoparticles that were characterized by
higher values of the Wigner–Seitz radius (rwz > 0.196, combination of area 1 and area 2 in Figure 3)
demonstrated simple linear relationships between enzymatic activity and the hydrodynamic size
(Pearson’s correlation coefficient r = −0.91).

With a high probability, the Wigner–Seitz radius indirectly reflects the fraction of molecules on
the nanoparticle’s surface, which could be responsible for toxicity or inhibitory activity (Figure 4,
Case 2). In general, the high influence of nanoparticles is caused by their large specific surface area
(Figure 4, Case 2). Indeed, metal oxides with higher values of the Wigner–Seitz radius usually have
a smaller surface-to-volume ratio (when sizes of studied nanoparticles are the same). A smaller
surface-to-volume ratio leads to lower activity. This is in agreement with the developed model
(see group 1 and group 2, in Figure 2). The groups of nanoparticles with rwz > 0.196 demonstrated
lower activity.

Moreover, as it was demonstrated in our previous contribution, the “liquid drop” model
(LDM)-based Wigner–Seitz radius (rw) and mass density (ρ) are mutually-related descriptors [30].
The Wigner–Seitz radius (rw) and mass density (ρ) are not directly correlated to each other in statistical
terms, but the relationship between ρ and rw has a straightforward mechanistic interpretation and can
be deducted from the basic LDM equation (Equation (1)).

As it was mentioned, the hydrodynamic size and the Wigner–Seitz radius are also related
to the third possible mechanism (Figure 4, Case 3). Another important process represents the
self-assembly of nanoparticles in large aggregates or agglomerates in a culture medium (Figure 4,
Case 3). Large nanoaggregates are not able to reach the binding site of the enzyme. If these
nanoaggregates are poorly soluble, they do not release substantial amounts of metal ions. As a
result, metal ions are not capable of reaching the binding site of the enzyme. In general, poorly
soluble or non-soluble nanoparticles could inactivate enzymes only blocking outer surfaces. In other
words, it is possible that certain metal oxide nanoparticles adsorb the target enzyme. However, at the
same time, larger aggregates reach enzymes (or cells) faster than smaller particles due to gravity
sedimentation. For example, Ni2O3 or Fe3O4 (Table 1, and Figure 4, Case 3) were characterized by a
large hydrodynamic diameter (665.8 and 831.7 nm, respectively) and demonstrated higher enzyme
inhibition than smaller nanoparticles aggregated from group 1 (In2O3, Co3O4, and La2O3, ∅hyd < 450).

Summarizing the data presented in Figure 4, one can conclude that the release of metal ions from
the surface of NP could cause their interaction with metal-sensitive binding sites in the active center
of the enzyme (Case 1, Figure 4); the high influence of nanoparticles is caused by their large specific
surface area (Case 2, Figure 4); aggregation can positively or negatively influence the dynamics of
metal ion accumulation (Case 3, Figure 4).

4. Materials and Methods

4.1. Biological Activity Data

The enzymatic activity of metalloprotease zebrafish hatching enzyme ZHE1 (abiotic enzyme
assay) for 24 nano-sized silica- and metal oxides was analyzed and all original experimental data were
taken from literature [12]. Chemical structures, enzymatic activity, zeta-potentials, and hydrodynamic
sizes (as measured in Holtfreter’s medium, pH 7.0) are given in Table 1.

4.2. Theoretical Descriptors

A simplified theoretical model for NPs representation—the “liquid drop” model (LDM)—has
recently been introduced [24,31,32]. Geometrical transformations help calculate various size-dependent
theoretical descriptors. In LDM, an NP is represented as a spherical drop. Basic elements
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(e.g., single atoms, molecules, or NPs in aggregate) are densely packed, and the density of a whole
NP is equal to mass density. The general idea of the LDM approach lies in the assumption that each
separate element is characterized by a radius of minimal interaction—the Wigner–Seitz radius (rw):

rwz =

(
3M
4πρ

) 1
3
, (1)

where M is molecular weight and ρ is mass density.
The Wigner–Seitz radius represents imaginary basic elements (such as molecules, crystal units,

or NPs in aggregate) inside nanoparticles. Depending on the type of basic elements, basic equation
can be modified.

It is widely known that ionic forms of metals are more active because of stronger binding of
ions to biomolecules [33]. In this connection, several ionic characteristics were developed for QSAR
modeling [24,33]. In the current study, the covalent index (CI) was utilized to describe a metal
ion’s affinity:

CI = χ2r (2)

where χ is electronegativity and r is the Pauling radius.

Table 2. Experimental data and theoretical descriptors. NP: nanoparticle.

NP Hydrodynamic
Size (∅hyd), nm

Density (ρ),
g/sm3

Wigner–Seitz
Radius (rwz), a.u.

Covalent
Index (CI)

Enzyme Activity (A),
mmol/mg·min

Al2O3 524.8 3.96 0.183 138.68 1.17
CeO2 321.3 7.30 0.178 109.13 1.10
Co3O4 247.6 6.07 0.212 229.74 1.25
CoO 378.3 6.40 0.144 247.41 1.17

Cr2O3 478.5 5.21 0.191 168.09 0.68
CuO 289.5 6.45 0.143 263.53 0.62

Fe2O3 385.2 5.25 0.194 216.00 1.15
Fe3O4 831.7 5.20 0.220 241.12 1.02
Gd2O3 726.7 7.41 0.227 134.64 1.10
HfO2 349.9 9.68 0.173 119.99 1.10
In2O3 303.2 7.18 0.210 253.47 1.17
La2O3 471.2 6.51 0.229 124.87 1.15
Mn2O3 525.9 4.55 0.202 139.35 1.08
Ni2O3 665.8 4.83 0.201 204.29 1.08
NiO 277.5 7.45 0.134 251.72 0.81

Sb2O3 459.9 5.19 0.238 319.39 1.15
SiO2 374.9 2.65 0.176 144.40 1.10
SnO2 635.0 7.01 0.173 265.07 1.17
TiO2 497.0 3.60 0.174 143.48 1.10
WO3 511.9 7.20 0.197 334.18 1.15
Y2O3 594.5 4.84 0.223 133.96 1.10

Yb2O3 682.6 9.25 0.217 105.03 1.10
ZnO 379 5.70 0.150 201.47 0.70
ZrO2 384.4 5.68 0.173 127.36 1.13

Control
value - - - - 1.25

Nanoparticles used for external validation set are marked in bold.

4.3. QSAR Modeling

The validation of the model was performed by splitting the experimental data into the training,
bagging, and external validation sets. The training set covers ~80% of the initial dataset; the external
validation set covers the remaining ~20%; the bagging set covers ~60% of the training set. Bagging
was used to reduce overfitting. This technique is close to the well-known “leave-one-out” validation
in classical regression modeling. During bagging, predictions composed of X random models fit
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to bootstrap samples. For the readers interested in a detailed description of the bagging technique,
Breiman’s original paper is strongly recommended [34].

NPs from the training set were structurally diverse to cover the whole descriptors space of
the overall data set. Metal oxides were homogeneously split between the training and the external
validation sets by ranging activity and covering all types of oxides (MeO, Me2O3, MeO2) for each set
(Table 2).

Nano-QSAR tasks were carried out using the M5P approach [35]. The models were developed
using the Weka software package (version 3.6) and its integration workflow plan for KNIME 2.11.
M5P methodology combines a conventional decision tree technique with the possibility of including
linear regression functions at the nodes. At the first step, a tree model was generated and specific tree
nodes were identified. At the next step, a multivariate linear model was constructed for the training
samples at each node obtained at the first step. The relative importance (RI) of variable score for
every descriptor included in the model was calculated. The importance indicated what share a certain
descriptor contributed to the modeled property. To reach this goal, the mean deviation of correct
classifications was computed. In our previous contribution, we successfully demonstrated application
of the M5P technique incorporated in KNIME 2.11 for the nano-QSAR modeling [32].

The statistical fit of the model was assessed by the adjusted determination coefficient
R2

adj, the bagging correlation coefficient Q2
bagging, and the external validation coefficient Q2

EXT.
Root-mean-square error RMSE was calculated for all sets.

R2 =
∑i(ŷi − y)2

∑i(yi − y)2 (3)

where yi represents the original data values, ŷi the modeled values, and y is the estimate of the mean.

RMSE =

√
∑i(ŷi − y)2

m − 1
(4)

where m is the number of data values.

4.4. Causal Relationships Modeling

A large number of publications related to QSAR/QSPR modeling contain a logical fallacy
due to the fact that causality was incorrectly assigned to the variables that were only correlated
(e.g., see discussion in our previous papers [30,33]). To avoid the logical fallacy, causal discovery
methods could be beneficial for simultaneous application with QSAR methods. When the causal
relationship is established, prevention of potential hazardous effects becomes possible.

The relationship between two sets of events, where one set of events (the effects) is a direct
consequence of another set of events (the causes), is called “causality”. In the current contribution,
the Peter Spirtes and Clark Glymour (PC) algorithm was applied to estimate causal relationships
between the descriptors and toxicity towards ZHE1 [36].

The PC algorithm states that at the first step all variables are connected within a complete
undirected graph. Next, conditional independence tests allow non-important edges to be deleted.
The maximum likelihood function over all variables has been maximized, and the null hypothesis based
on the assumption that the population covariance matrix is equal to the estimated covariance matrix
has been introduced. The results could be presented as a function of the free model parameters [36].

5. Conclusions

Understanding the factors that play a prevailing role in the activity of nanoparticles is crucial for
establishing the mechanism of their toxicity. In this study, we have analyzed clearly interpretable factors
and built a quantitative model that describes the relationships between the structural characteristics
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of metal oxide nanoparticles and their enzymatic activity. It was demonstrated that the combination
of experimental parameters and theoretical descriptors could be beneficial for a representation of
structural features of nano-sized metal oxides. The nano-QSAR model developed here reliably predicts
the activity of the studied nanoparticles towards the zebrafish hatching enzyme. The interpretation of
the descriptors included in the model is strictly related to possible mechanisms of the nanoparticles’
action. It was found that the theoretical Wigner–Seitz radius and the experimental hydrodynamic
radius have similar contributions to inhibitory effect and represent non-specific interactions between
the enzyme and the nanoparticle. It was demonstrated that specific surface and metal ion release are
important for the evaluation of metal oxide nanoparticles’ toxicity.
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