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Abstract: One of the most common methods of carbon nanotubes (CNTs) synthesis is application
of an electric-arc plasma. However, the final product in the form of cathode deposit is composed of
carbon nanotubes and a variety of carbon impurities. An assay of carbon nanotubes produced in arc
discharge systems available on the market shows that commercial cathode deposits contain about
10% CNTs. Given that the quality of the final product depends on carbon–plasma jet parameters, it is
possible to increase the yield of the synthesis by plasma jet control. Most of the carbon nanotubes are
multiwall carbon nanotubes (MWCNTs). It was observed that the addition of catalysts significantly
changes the plasma composition, effective ionization potential, the arc channel conductance, and in
effect temperature of the arc and carbon elements flux. This paper focuses on the influence of metal
components on plasma-jet forming containing carbon nanotubes cathode deposit. The plasma jet
temperature control system is presented.
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1. Introduction

Carbon nanotubes (CNTs) are new materials with unique properties discovered in 1991 [1].
Nowadays, CNTs are used in almost every area of life. There are many methods of carbon nanotubes
synthesis. The most common low-temperature technique is chemical vapor deposition (CVD) and
the best-described high-temperature methods are arc discharge methods and laser ablation [2–12].
In our research, we focus on arc methods. Although this method used nowadays is well known and is
recognized in waste treatment, technology, medicine and microbiology [13–16], the basic processes
involved in nanotechnology and deposit formation are still under investigation. In the CVD methods,
relatively high temperature (hundreds of K) decomposes gases containing carbon [17]. In the arc
method, the temperature of the arc (thousands of K) leads to vaporization and decomposition of the
graphite electrode. Additional elements such as Fe, Ni, Co, Y, S, Cr, etc. can be used as catalysts to
obtain CNTs with unique properties [18–27]. There are a variety of parameters which influence
the plasma stream such as plasma composition, distance between electrodes, pressure, current,
and voltage. All parameters directly or indirectly influence the plasma column conductance, resistance
and in effect—temperature [28]. One of the methods for plasma column parameters measurement is
a temperature measurement based on the ratio of two spectral line intensities [29].

Due to their electrical, optical, chemical and physical properties, carbon nanotubes are widely
used in almost every industry. They have been on the market for years and, every month, hundreds of
articles about CNTs are published. Despite this, the cost of pure nanotubes—especially functionalized
ones—may exceed 100 USD/g. One way to change this situation is improvement of the synthesis
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efficiency. To increase the yield, we must improve control of the synthesis process, especially the
essential parameter, which is the temperature.

Metal particles (catalysts) in the plasma column strongly change its parameters such as thermal
conductivity, effective ionization potential and temperature. Stability of the plasma, and in effect
stability of the temperature distribution, determines the quality of the final product. So, an effective
monitoring and control system is required for the synthesis process optimization. It may be realized
by plasma jet temperature profile measurement.

2. Temperature Measurement

2.1. Arc Discharge Set-Up

In the arc discharge methods, the synthesis process occurs in a low-pressure neutral atmosphere.
In this case, graphite carbon electrodes are used as a source of carbon (Figure 1). The distance between
electrodes does not exceed 1 mm. A temperature of the arc discharge near the anode surface is higher
than the boiling point of carbon. This temperature causes vaporization of the carbon elements and
leads to formation of plasma jet. Carbon elements form a carbon–plasma jet and are deposited on the
relatively cold cathode. The product consists of different carbon molecules: soot, amorphous carbon,
fullerenes, and multiwall carbon nanotubes.
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Figure 1. Arc discharge carbon nanotubes synthesis system where: 1—anode; 2—cathode; 3—vapour jet;
4—cathode deposit.

Arc discharge methods enable synthesis of multiwall carbon nanotubes. It is necessary to apply
catalysts to the synthesis of single-wall carbon nanotubes or to the synthesis of the carbon nanotubes
with special properties e.g., ferromagnetic. The most effective catalyst elements are from ferrous group
metals [30–33]. The anode may be filled with a catalyst or carbon–catalyst mixture. During vaporization,
metal particles with carbon particles go towards the cathode-forming metal–carbon plasma column.
In our research, we focused on metals such as Ni, Co, Y and Fe. The carbon nanotube growth occurs
in the environment composed of ions of gas (e.g., He, Ar), ions of carbon, multi-atom molecules,
neutral gas particles, ions of catalyst, neutral catalyst particles and electrons. As an essential parameter,
the profile of plasma stream temperature is chosen. It was found that morphology of the product
depends on the coalescence of carbon individuals and catalysts in the colder reaction zone (out of
the plasma). In the case of electric-arc discharges, even a small amount of metal in plasma increases
electron density and electrical conductivity, resulting in a temperature increase [34].

The synthesis process begins with the repetitive evacuation of the research chamber and filling up
by ambient gas in order to eliminate oxygen. Then, it is filled with argon, helium or a mixture of these
gasses with the pressure between 0.2 bar and 0.5 bar. The positioning system moves the anode leading
to the connection of the two electrodes. Then the current flowing through the electrodes heats them
up, which enables an electric-arc ignition.

After a few seconds, the space between the electrodes is increased and the automatic control
system keeps the distance between the electrodes during the whole process. The high temperature of
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the arc leads to vaporization of the anode. Carbon or carbon-metal vapors—depending on a catalytic
or non-catalytic process—go along the arc channel and decompose on the cathode surface, forming the
irregular cylindrical cathode deposit (Figure 2).
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Figure 2. Cathode deposit where 1—soft core with nanotubes; 2—hard shell; (a) separated parts of
deposit; (b) deposit cross-section.

A temperature control system of the plasma jet during the synthesis process makes it possible
to obtain deposits with a maximum soft core/hard shell ratio. Application of too high temperatures
leads to thermal destruction of nanotubes. In too low temperatures, deposit is not formed. Cathode
deposit consists of two parts: carbon hard shell and soft core. Soft core is composed of different forms
of carbon: graphite, amorphous carbon and nanotubes. These two parts can easily be mechanically
separated from each other. Soft core may contain at least 30% w/w nanotubes, depending on the
plasma jet temperature. The final product is a mixture of components and, for industry use, usually
requires additional purification. One of the simplest methods of purification is a physical method
called “dry oxidation”. This kind of oxidation is carried out in air, oxygen or ozone, usually at
an elevated temperature. It is assumed that heating of carbon materials at temperatures 720–750 K in
air causes oxidation of soot, fullerenes and nanotubes with defects and sometimes spherical ends of
nanotubes. More resistant are carbon nanotubes (630–675 K). At temperatures above 870 K, destruction
of not-deformed multiwall carbon nanotubes is completed. To evaluate the purity of the obtained
product, thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) were applied.
For thermogravimetric analysis, 2950 TGA HR, TA Instruments was used. For microscopic analysis,
JEOL JSM 5500 LV was used. Figure 3 shows an example of TGA analysis for carbon nanotubes
synthesized with iron as catalyst. Figure 4 shows an example of analysis for carbon nanotubes obtained
without catalyst.
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Figure 3. Thermogravimetric analysis (TGA) of the sample with carbon nanotubes with iron
nanoparticles after oxidation (example for 5% w/w iron as catalyst, pressure 200 hPa, current 70 A,
voltage 22.5 V).
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Figure 4. TGA analysis of the sample with carbon nanotubes after oxidation (pressure 200 hPa,
current 80 A, voltage 21 V).

It can be noticed that the largest mass reduction appeared at the temperature of about 950 K,
which suggests the presence of large amounts of carbon nanotubes in the sample, as multiwalled
carbon nanotubes decomposition temperature occurs within 850–950 K [35]. The residue—23.76%
indicates the amount of metal nanoparticles in the sample.

Figure 5 shows an exemplary result of SEM analysis—dispersed multiwall carbon nanotubes
(MWCNTs) on Si wafer. The left side of the figure shows a typical SEM image of MWCNTs’ “spaghetti”
and part of the Si wafer surface. Brighter objects are catalyst particles. The right part shows an image
of MWCNTs in higher magnification.
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Figure 5. Scanning electron microscopy (SEM) analysis of the sample with carbon nanotubes after
oxidation (pressure 200 hPa, current 80 A, voltage 21 V). Figures shows different magnification of the
sample—100× on (a); 5000× on (b).

2.2. The Plasma Jet

Although in the applied systems we use under pressure it is assumed that the plasma column is in
the near-local thermodynamic equilibrium state [36], due to a high evaporation ratio, the local pressure
between two electrodes is relatively high. The assumption that plasma is in the local thermodynamic
equilibrium state means that:

• temperatures—the average kinetic energy of particles—of all of the plasma components are equal;
• velocity distribution of all kinds of particles is described in Maxwell’s law;
• distribution of particles with different energy levels is defined by the Boltzmann law;
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• the plasma components concentration is defined by the Saha–Eggert equation;
• concentration of the individual components of chemical reactions is determined by the

Guldberg–Waage law of mass action.

Due to the small distance between electrodes, the diameter of the radius of the plasma column is
relatively high. Cathode deposit growth depends on the mass of carbon elements transported from the
anode to the cathode. The average velocity distribution of carbon vapor over the anode spot surface
can be assumed as Gaussian (Figure 6).
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Figure 6. Anode vapor jet generation where: rs—sublimation radius; rb—boiling radius; v—velocity of
carbon profile.

The effectively evaporating area of the anode spot is bound with boiling radius rb, but the arc
channel foot is based on the sublimation radius rs. The temperature profile is also similar to Gaussian
and equals 4500–5500 K in the arc axis [37,38]. Figure 7 shows the photo of the plasma jet with
schematically indicated carbon elements velocity flux.
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Figure 7. Plasma column gap in arc plasma carbon nanotubes (CNTs) synthesis.

2.3. Temperature Measurement

One of the methods for plasma temperature measurement is the method whereby two spectral
lines characteristic for the same element are used. In this method, the image of the plasma column
goes to a spectrograph. The plasma temperature can be evaluated from the expression based on the
spectral lines characteristic for the same element [39–41].

Light from the plasma column reaches the optical system. Either moving parts of the optical
system or matrix of sensors can record the full profile of the arc. After reaching the spectroscope,
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light and its change over time are recorded and analyzed. By selecting the two spectral lines belonging
to the same element coming from the catalyst, it is possible to record intensity changes over time.
Spectral lines used for calculation should have the following characteristics:

- a relatively high intensity;
- spontaneous transition probabilities and statistical weights should be well described in literature;
- density of spectral lines in the separated region should be small.

Excitation energy difference is also an important factor to increase the calculation accuracy.
For iron—as the most popular catalyst—the proper spectral lines are 445.91 nm and 446.17 nm,
but spectral lines 495.76 nm, 522.71 nm and 526.95 nm can also be used (Figure 8) [37].
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It was calculated that even a small amount (up to 1%–3%) of catalysts is sufficient to detect as
a specific spectral line in all spectrums [42]. Knowledge of the intensity ratio allows for determining
the temperature:
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εv2

) (1)

where: χ—excitation energy, respectively for levels l and n, A—spontaneous transition probability,
g—statistical weight, λ—spectral lines wavelengths, ε—the intensity of the spectral lines calculated by
using the Abel transformation of the measured values.

It was assumed that the synthesis of carbon nanotubes forming the plasma column is circular
and is axially symmetrical over its entire length. Perpendicular measurement of plasma radiation is
a sum of the radiation through the thickness of the arc column. To calculate the intensity of radiation
at a given point in the column, Abel transformation should be used [37]. The plasma can be divided
into n concentric spaced rings (Figure 9).
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By Abel transformation we can obtain:

ε(r) = − 1
π

r∫
x

dI(x)
dx
· dx√

x2 − r2
(2)

To calculate the temperature, the Nestor and Olsen [43] method has been used:

ελ(k) =
2
π·δx

n

∑
i=k

Bk,i Iλ, i (3)

where:
Bk,i =

1
2k + 1

(4)

for i = k,

Bk,i =

√
i2 − k2 −

√
(i− 1)2 − k2

2i− 1
−

√
(i + 1)2 − k2 −

√
i2 − k2

2i + 1
(5)

for i ≥ k + 1.
This method requires good recognition of the atomic data of the plasma column-creating elements.

Most of the catalysts used in arc discharge plasma are well described in literature [44]. Additionally,
the measured spectral lines should have a relatively large intensity compared to the background
radiation. The use of spectral lines in areas with a large concentration of them can cause accumulation
of the number of lines and affect the results of the readings.

3. Results

The ChemSage software (GTT Technologies, Herzogenrath, Germany) has been applied for
calculations of carbon element equilibrium. It can be noticed that carbon particles such as carbon ions,
C2, C3 appear over 4000 K and at the boiling point of carbon (about 4800 K) C and are balanced nearly
to 30% (w/w) (Figure 10).
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Figure 11 shows examples of measured temperature profiles for average temperatures in the axis
4500 K, 5000 K and 5500 K. This temperature depends on current, distance between electrodes, and the
plasma composition.Nanomaterials 2017, 7, 50 8 of 12 
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Figure 11. Examples of temperature profiles with average temperature in the axis: 4500 K, 5000 K
and 5500 K (for the distance between electrodes −2 mm; pressure 200 hPa; helium as an inert gas;
current 70 A, 80 A, 90 A respectively).

At temperature 5000 K, vapor jet of C and C2 is sufficient for fulfilling the arc discharge region
with carbon elements. The helium—or helium and argon—elements can be omitted due to a high
carbon/gas ratio in the plasma arc zone. The carbon ions dominate in the plasma stream as the particles
are heated up to a temperature of 5500 K. If we compare decomposition of carbon in a temperature
range characteristic for the arc profile, it is possible to obtain profiles of carbon elements in the plasma
jet (Figure 12). A strong influence of the temperature on plasma composition, and then on the size and
structure of the deposit, can be seen (Figure 13).

Higher arc current increases anode jet velocity. Intensifying evaporation results in an increase
in carbon vapor partial pressure near the cathode deposit surface. The growth rate can be controlled
by the combination of arc current and the gap between electrodes. It can be noticed that containing
carbon nanotubes soft core corresponds to the predominance of small carbon elements and carbon
ions near the discharge axis. Multiatom carbon compounds appear in the zone of hard-shell formation.
Figure 14 shows composition of plasma jet for different catalysts introduced into the system.
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Figure 14. Examples of cathode deposits (photos in the left and plasma column composition in the
right) where (a) Ni as catalyst (5 wt %, pressure 200 hPa, current 90 A, voltage 26 V); (b) Y as catalyst
(5 wt %, pressure 200 hPa, current 60 A, voltage 25 V); (c) Fe as catalyst (5 wt %, pressure 200 hPa,
current 70 A, voltage 22.5 V).

The plasma stream temperature measurement, and then the recalculation temperature into plasma
jet composition, explains the differences between cathode deposits morphology. Control of the plasma
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column temperature—and thus plasma composition—during synthesis enlarges the volume of soft
core, which leads to synthesis improvement.

4. Summary

It was noticed that the minimum metal content in the plasma arc determines the essential
properties of the plasma. The addition of catalysts changes the plasma composition, electrons
density, conductance and in effect—temperature of the plasma. This fact affects the carbon nanotubes
synthesis efficiency.

The calculation of the temperature is independent on concentrations of elements and plasma
composition, but choice of the proper lines is essential. Spectral lines should have a relatively high
intensity, spontaneous transition probabilities and statistical weights should be well described in
literature, density of spectral lines in the separated region should be small. However, the difference in
excitation energies (χ1 − χ2) is also an important factor that can increase the calculation accuracy.

For iron as the most popular catalyst, the proper couple of spectral lines are 445.91 nm and
446.17 nm, but spectral lines 495.76 nm, 522.71 nm and 526.95 nm can also be used; for Ni lines with
relatively high intensity: 499.2 nm and 503.54 nm; for Co: 453.1 nm and 456.56 nm.

The big advantage of this method is that temperature calculation is independent on concentration of
plasma elements and plasma composition does not affect the measurement accuracy. The disadvantage is
that accuracy depends on the spectral lines chosen.

Knowledge about carbon decomposition in different temperatures with the information about
the temperature profile enables us to determine the profile of carbon elements stream and then the
structure of the deposit.

The results of experiments and calculations have great practical potential in modelling of
the phenomena that occurs during the synthesis process. A new approach to the problem will
improve currently used technologies and increase the efficiency of carbon nanotube creation.
Plasma temperature is one of the most important factors during carbon nanotubes synthesis by
arc discharge method. However, this temperature is the consequence of the combined effect of the
pressure, the type of ambient gas, the type of applied catalysts, the catalyst contamination, the method
for introducing the catalyst into the system, the arc current, the distance between electrodes and
even the system configuration. The combination of numerous parameters makes the process almost
unpredictable and forces empirical determination of the best conditions for carbon nanotubes synthesis.
Determining the plasma jet temperature simplifies the control system. It was measured that by
controlling the plasma jet temperature profile, it is possible to increase the carbon nanotubes efficiency
by up to 30%. In our arc discharge system, where the plasma jet diameter equals about 6–10 mm,
the most appropriate temperature is the temperature over 4800 K in the center part of the plasma,
and lower temperature at the edges. The lower temperature is responsible for the creation of larger
particles of carbon, which form hard-shell closing carbon nanotubes inside deposit. It was observed
that the most appropriate situation is when the internal higher temperature is included in 60–80% of
the plasma jet.
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