Supplementary materials

Direct Exfoliation of Natural SiO₂-Containing Molybdenite in Isopropanol: A Cost Efficient Solution for Large-Scale Production of MoS₂ Nanosheets

Wenyan Zhao¹, Tao Jiang¹, Yujie Shan¹, Hongrui Ding³, Junxian Shi^{2,*}, Haibin

Chu¹, Anhuai Lu^{3,*}

² School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, Inner Mongolia, PR China.

³ School of Earth and Space Sciences, Peking University, Beijing, 100871, PR China

*Corresponding author: E-mail: 111969116@imu.edu.cn (J.X. Shi), ahlu@pku.edu.cn (A.H. Lu).

Element	Мо	K ₂ O	CaO	Mn	Sr	Na ₂ O	Sn	Ge	Yb	Y	As
Content/ 10^{-2} (wt%)	58	1	0.4	0.05	0.008	< 0.01	< 0.004	< 0.002	< 0.002	< 0.001	< 0.0008
Element	S	Fe ₂ O ₃	Zn	Ni	F	Hg	Ti	In	Hf	Te	Co
Content/ 10^{-2} (wt%)	21	1	0.2	0.02	< 0.05	< 0.01	< 0.003	< 0.002	< 0.002	< 0.001	< 0.0007
Element	SiO ₂	Pb	MgO	Bi	Cd	Sb	Th	La	Та	W	Zr
Content/ 10^{-2} (wt%)	11	1	0.1	0.01	< 0.02	< 0.009	< 0.003	< 0.002	< 0.002	< 0.001	< 0.0006
Element	Al ₂ O ₃	С	Cr	Rb	Ba	Ag	V	Ce	Cu	Ga	Nb
Content/10 ⁻² (wt%)	2	1	0.06	0.009	< 0.02	< 0.006	< 0.002	< 0.002	< 0.001	< 0.0008	< 0.0005

Table S1: Content of natural molybdenite by component analysis using XRF

¹ School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, Inner Mongolia, PR China

Figure. S1: SEM images of natural molybdenite (a), sifted natural molybdenite after ball-milled (b) and commercial MoS₂ (*c*, d).

Figure. S2: XRD patterns of natural molybdenite and commercial MoS₂ shows both raw material mainly consist of 2H MoS₂ and the presence of quartz phase SiO₂ in natural molybdenite.

Fig. S3: Elemental analysis of natural molybdenite using EDS shows the SiO₂ and MoS₂ are mixed uniformly in the micro-scale.

Figure. S4: TEM images of products exfoliated in P123 aqueous solution from natural molybdenite (a, b), commercial MoS₂ (c, d). Inset in (a): magnifications of the selected area; insets in (b): a SAED pattern, scale bar=5nm-1, a low resolution image, scale bar=100nm; inset in (d): a low resolution image, scale bar=20nm.

Figure. S5: (a): XRD patterns of products exfoliated in P123 from natural molybdenite and commercial MoS₂. (b): TEM images of NM-P123 powder-sample obtained by washing with deioned water several times to remove P123 after centrifuging at 1500rpm for 45min. It is shown that1500rpm is not sufficient to completely separate the bulk material, and nanosheets are lost during washing.

Figure. S6: (a): Raman spectrum of NM-P123 powder-sample obtained by calcining at 450°C for 2h (no characteristic shifts of MoS₂ and many shifts of organic carbon were found). (b): TGA curves of NM, CM, NM-IPA-Powder and P123 (burning at 450°C could cause the change of MoS₂ nanosheets and introduce new organic carbon impurities).

Figure. S7: UV-Vis absorption spectra stack plot of MoS₂ dispersions obtained from the initial NM and NM removed SiO₂.