## Supplementary Information

## Transition Metal Hollow Nanocages as Promising Cathodes for the Long-Term Cyclability of Li–O<sub>2</sub> Batteries

Amrita Chatterjee<sup>1</sup>, Siu Wing Or<sup>1,\*</sup> and Yulin Cao<sup>1,2</sup>

- <sup>1</sup> Department of Electrical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; amrita.chatterjee@polyu.edu.hk (A.C.); caoyulin@szpt.edu.cn (Y.C.)
- <sup>2</sup> Physics Laboratory, Industrial Training Center, Shenzhen Polytechnic, Shenzhen 518055, China
- \* Correspondence: eeswor@polyu.edu.hk; Tel.: +852-34003345

Received: 19 March 2018; Accepted: 2 May 2018; Published: date



**Figure S1.** (a) SEM image of carbon spheres; (b) TEM image of carbon spheres; (c) TEM image and (d) EDS of Mn-adsorbed carbon spheres.



Figure S2. (a) TGA and (b) DSC plots of Mn-adsorbed carbon spheres.

| Morphology                                       | Precursors            | Preparation methods                                                                                                                                                            | Sbet (m <sup>2</sup> .g <sup>-1</sup> ) | Ref. |
|--------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------|
| Mn <sub>3</sub> O <sub>4</sub> hollow<br>spheres | KMnO4                 | 1) Carbon spheres+KMnO4,<br>hydrothermal treatment, 100 °C for<br>45 min;                                                                                                      | 59                                      | [S1] |
|                                                  |                       | <ul><li>2) calcination, 300 °C for 10 h in air;</li><li>3) annealing, 280 °C for 3 h in Ar/H2.</li></ul>                                                                       |                                         |      |
| Mn3O4 hollow<br>tetrakaidecahedrons              | Mn + NaClO4<br>+ NaOH | <ol> <li>Mn + NaClO<sub>4</sub> + NaOH, bubbled<br/>with pure N2;</li> <li>hydrothermal treatment, 200 °C for<br/>24 h;</li> <li>calcination, 600 °C for 2h in air.</li> </ol> | 37.16                                   | [S2] |
| Mn <sub>3</sub> O <sub>4</sub> hollow            | MnCl <sub>2</sub>     | Carbon spheres+MnCl2, calcination,                                                                                                                                             | 90.65                                   | This |
| nanocages                                        |                       | 450 °C for 1 h in air.                                                                                                                                                         |                                         | work |

Table S1. Comparison of synthesis procedures and surface area of Mn<sub>3</sub>O<sub>4</sub> hollow structures

SBET: Specific surface area calculated by BET method.



Figure S3. XRD pattern of KB carbon.

## References

- S1. Yue, J.; Gu, X.; Chen, L.; Wang, N.; Jiang, X.; Xu, H.; Yang, J.; Qian, Y. General synthesis of hollow MnO <sup>2</sup>, Mn <sup>3</sup> O <sup>4</sup> and MnO nanospheres as superior anode materials for lithium ion batteries. *J. Mater. Chem. A* **2014**, *2*, 17421–17426.
- S2. Zhang, G. Q.; Zheng, J. P.; Liang, R.; Zhang, C.; Wang, B.; Hendrickson, M.; Plichta, E. J. Lithium– Air Batteries Using SWNT/CNF Buckypapers as Air Electrodes. *J. Electrochem. Soc.* **2010**, *157*, A953.