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Section a) The Model for the oxidation is setup following the following 4 equations:
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Where N, number of PbS atomic pairs,
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dt hv( A n) T A N number of PbS exited pairs (or exciton number)
\ % = k*N, + kN, Nc¢  number of PbS pairs transformed into a new oxide product

that cannot produce photoluminescence (PL)

Additionally, the decay lifetime of the exciton

L L T radiative lifetime of PbS exciton
1 =1t + ik

Tnr Non-radiative lifetime of PbS exciton

Thus, the PL yield depends on the number of created excitons and the radiative and non-
radiative lifetimes as:
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As the non-radiative lifetime depends inversely with the number of defects, we propose a
power function with the number of non-oxidized atoms as:
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As the oxidation is slow compared to the time the QD requires to reach equilibrium between
Na and Na-, to a first approximation the equation system is first solved taken k* << 1/7. Kk is
much smaller than k*, thus we will use k = 0 from here on. Thus, we proceed to solve
explicitly for the fast process of photoexcitation (with neglected oxidation that is expected to
happen much slower). Note 7 is approximated to be constant on this part of the solution.
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characteristic values {

For each eigenvalue, we obtain a characteristic vector
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Applying the initial conditions at the moment lights are turned on, ie. All atoms are not
excited
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Arriving to time dependent explicit formulas
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Under constant illumination equilibrium values of Na~ and Na are stablished rapidly (in
microsenconds or less). It is upon these “quasi-static” steady state values of Nax and Na that
the slower oxidation process (seconds to hours) proceeds. Thus, the “quasi-static” values must
not be interpreted as Na and Na« have constant values over the whole experiment. The
equations explicitly show both depend on (Nt-N¢) which will slowly decrease as Nc (the
oxidized PbSO,) grows. All along the light emitted is always proportional to Na- and a
function of the radiative and non-radiative recombination paths.
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In “steady state>

The number of oxidized atoms then can be calculated from:

% = k"N, + kN;  (the kKN, term is much smaller and thus will be taken as zero)
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Following our stated phenomenologial dependance of the non-radiative lifetime on the
oxidation:
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Allowing for the explict evoluton of tyg be used in the PL expression, then the PL yield can
be compactly expressed as:
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M: microscope train constant

o, k"o __ TR

A=M

Bra O (Bt © | Wm



Section b) numeric constants used in the model:

PbS pairsin 1 QD

Ppbs * VQD = Mass of QD
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Thus, the a will be defined as:
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Section c¢) fit of other parameters:

On light intensity:
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On gas pressure:
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On temperature:

Parameter C (unitless
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