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Abstract: Nanoparticles are increasingly being developed for in vivo use, from targeted drug delivery
to diagnostics, where they have enormous potential, while they are also being used for a variety of
applications that can result in environmental exposure for humans. Understanding how specific
nanoparticles interact with cells and cell systems is essential to gauge their safety with respect to
either clinical or environmental exposure. Zebrafish is being increasingly employed as a model to
evaluate nanoparticle biocompatibility. This review describes this model and how it can be used to
assess nanoparticle toxicity at multiple levels, including mortality, teratogenicity, immunotoxicity,
genotoxicity, as well as alterations in reproduction, behavior and a range of other physiological
readouts. This review also provides an overview of studies using this model to assess the toxicity of
metal, metal oxide and carbon-based nanoparticles. It is anticipated that this information will inform
research aimed at developing biocompatible nanoparticles for a range of uses.
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1. Introduction

1.1. Nanoparticles

According to the definitions of the International Organization for Standardization, American
Society of Testing and Materials and National Institute of Occupational Safety and Health, particles
with a diameter between 1 and 100 nm or fibers spanning the range 1–100 nm are termed as
nanoparticles (NPs) [1]. Over the last decade, the synthesis, analysis and application of nanoparticles
has grown exponentially, becoming an active area of intense innovation [2]. Recent advances allow
for the synthesis of nanosized particles with multiple properties, referred to as multifunctional
nanoparticles, which includes metal and metal oxides nanoparticles, fullerenes, carbon nanotubes
(CNT), nano polymers and crystalline materials [3,4].

1.2. Applications of Nanoparticles

NPs are being utilized for a wide range of applications. In manufacturing they are employed as
chemically-inert additives, from fillers to pigments to anti-caking agents, but increasingly to create
functional surfaces/membranes with catalytic, anti-microbial, UV protection, filtration and other
diverse properties [5]. They are also fueling a new discipline of nanomedicine, lying at the intersection
of chemistry, physics and medicine and focused on a range of biomedical applications. These include
use as biosensors for nucleic acids, metabolites, proteins, drugs, pathogens and cancer cells by taking
advantage of inherent optical, electrochemical, piezo-electric and photoluminescence properties [5,6].
NPs are also being used in a broad range of bioimaging, drug delivery, tissue engineering and other
therapeutic applications, such as photoablation, which are facilitated by the accessibility of these small
molecules throughout the body, and the ability to link with specific targeting modalities as well as
carry a functional payload [4,6,7].

Nanomaterials 2018, 8, 561; doi:10.3390/nano8070561 www.mdpi.com/journal/nanomaterials

http://www.mdpi.com/journal/nanomaterials
http://www.mdpi.com
http://www.mdpi.com/2079-4991/8/7/561?type=check_update&version=1
http://dx.doi.org/10.3390/nano8070561
http://www.mdpi.com/journal/nanomaterials


Nanomaterials 2018, 8, 561 2 of 18

1.3. Measuring Nanoparticle Toxicity

Biomedical applications explicitly require nanoparticles that are non-toxic. However, toxicity
is also an important consideration for nanoparticles used for manufacturing and other applications,
since these can result in environmental exposure [2,8]. A number of different platforms are available to
assess toxicity, ranging from in vitro cell culture assays to basic model organisms, such as sea urchin
and daphnia, to advanced higher vertebrate models, like rodents and primates [9]. Cell lines and
simple organisms are useful for cell-level toxicity and genotoxicity studies, but higher vertebrates
are essential to detect complex physiological interactions. However, rodent models are high cost,
have relatively slow and inaccessible embryo development, require substantial amounts of material
for testing due to their relatively large size, and are accompanied by ethical concerns about their
use—while primate models have similar issues, but to an even greater extent [9]. Therefore, small,
low cost but sophisticated models are very attractive for the evaluation of in vivo nanotoxicity. In this
context the zebrafish serves as a compelling, efficient and cost-effective alternative [10].

2. Zebrafish as a Model

2.1. Overview

The zebrafish (Danio rerio) is an established vertebrate model for the study of development
and disease [11–16] and is being increasingly used for both pre-clinical studies and toxicological
applications due to a range of favorable traits [17,18]. Zebrafish require relatively inexpensive housing,
making them very cost-effective, and are small in size, reducing housing requirements as well as the
quantity of agent required for testing [11,16]. They also exhibit a high fecundity rate, with a single
female able to produce around 300 eggs, further underpinning their efficiency as a model [11,19].
The zebrafish and human genomes share ~70% similarity [20,21]. There is also very good conservation
of major developmental and physiological processes, with key organ systems, such the digestive,
nervous and cardiovascular systems, similar to humans [22]. This largely underpins the extensive
equivalence in response to pharmacological agents between the two species [23], with many zebrafish
models mimicking human diseases both genetically and phenotypically [16].

2.2. Zebrafish Development

Zebrafish eggs are robust and develop externally, making them easy to manipulate and
amenable to high-throughput applications. This is further augmented by the optical transparency
of the developing zebrafish, which allows exquisite visual analysis, including of fluorescent and
other markers [12,16]. Development is also incredibly rapid, with the basic zebrafish body plan
well-established by 24 h post fertilization (hpf), with embryogenesis completed by 72 hpf and most
organs fully developed by 96 hpf and reaching adulthood in around 3 months [12]. This makes them
amenable to a wide variety of toxicological applications throughout their lifespan (Figure 1).
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Figure 1. Toxicological studies performed in zebrafish. Schematic representation of zebrafish 
development, from spawning of embryos through their rapid development and hatching into free-
swimming larvae and further growth and development into adults. Nanoparticles (NPs) can be 
administered via a variety of routes, including injection into eggs or specific sites on juveniles and 
adults, or alternatively administered in the water, sediment or food. The key assays used to examine 
toxicity in this model are indicated. 

3. Approaches for Measuring Nanoparticle Toxicity in Zebrafish 

3.1. Assessing Teratogenic and Other Developmental Effects 

The rapidly developing, transparent and external embryos of zebrafish [24] are ideally suited for 
screening for agents that disrupt normal development, from the rapid cell divisions that follow 
fertilization, to the extensive morphogenesis that occurs during epiboly to the development of the 
body plan and its key organs and other structures [25,26]. Particularly sensitive to perturbation are 
the eye, brain, heart, notochord and fin, while visualization of the effects on pigmented cells, 
including red blood cells, as well as hatching and overall mortality, is very easy. For example, 
disrupted eye development and pigmentation was observed via simple light microscopy following 
exposure of zebrafish embryos to functionalized gold nanoparticles [27]. In addition, the dose- and 
time-dependent toxicity of silica NPs was able to be readily gauged by assessing mortality rates [28] 
and impacts on the cardiovascular system [29]. Furthermore, the enhanced biocompatibility of 
chitosan NPs compared to normal chitosan particles was evaluated by quantifying relative hatching 
[30]. 

3.2. Immunotoxicity 

The immune system has been shown to be very sensitive to a variety of agents, including NPs, 
particularly the induction of an inflammatory response as well as associated accumulation and 
activation of neutrophils and macrophages [31]. For example, gold (Au) NPs have been shown to 
disrupt pathways involved in inflammatory and other immune responses [32], while silver (Ag) NPs 
caused immunotoxicity in adult zebrafish due to oxidative stress [33]. 

3.3. Genotoxicity 

DNA is susceptible to damage following exposure to many chemical entities, which results in 
gene mutations and larger chromosomal alterations, collectively termed genotoxicity [34]. This can 
be assessed in embryos, larvae or adult tissues in a number of approaches, including quantitative 
RAPD-PCR methodology that has been used to demonstrate dose-dependent genotoxicity of TiO2 
NPs [35], and comet assays for examining the impact of ferric oxide (Fe2O3) NPs [36]. 
  

Figure 1. Toxicological studies performed in zebrafish. Schematic representation of zebrafish
development, from spawning of embryos through their rapid development and hatching into
free-swimming larvae and further growth and development into adults. Nanoparticles (NPs) can be
administered via a variety of routes, including injection into eggs or specific sites on juveniles and
adults, or alternatively administered in the water, sediment or food. The key assays used to examine
toxicity in this model are indicated.

3. Approaches for Measuring Nanoparticle Toxicity in Zebrafish

3.1. Assessing Teratogenic and Other Developmental Effects

The rapidly developing, transparent and external embryos of zebrafish [24] are ideally suited
for screening for agents that disrupt normal development, from the rapid cell divisions that follow
fertilization, to the extensive morphogenesis that occurs during epiboly to the development of the
body plan and its key organs and other structures [25,26]. Particularly sensitive to perturbation are the
eye, brain, heart, notochord and fin, while visualization of the effects on pigmented cells, including
red blood cells, as well as hatching and overall mortality, is very easy. For example, disrupted eye
development and pigmentation was observed via simple light microscopy following exposure of
zebrafish embryos to functionalized gold nanoparticles [27]. In addition, the dose- and time-dependent
toxicity of silica NPs was able to be readily gauged by assessing mortality rates [28] and impacts on the
cardiovascular system [29]. Furthermore, the enhanced biocompatibility of chitosan NPs compared to
normal chitosan particles was evaluated by quantifying relative hatching [30].

3.2. Immunotoxicity

The immune system has been shown to be very sensitive to a variety of agents, including
NPs, particularly the induction of an inflammatory response as well as associated accumulation and
activation of neutrophils and macrophages [31]. For example, gold (Au) NPs have been shown to
disrupt pathways involved in inflammatory and other immune responses [32], while silver (Ag) NPs
caused immunotoxicity in adult zebrafish due to oxidative stress [33].

3.3. Genotoxicity

DNA is susceptible to damage following exposure to many chemical entities, which results in
gene mutations and larger chromosomal alterations, collectively termed genotoxicity [34]. This can
be assessed in embryos, larvae or adult tissues in a number of approaches, including quantitative
RAPD-PCR methodology that has been used to demonstrate dose-dependent genotoxicity of TiO2

NPs [35], and comet assays for examining the impact of ferric oxide (Fe2O3) NPs [36].

3.4. Reproduction Analysis

The high fecundity rates of zebrafish are well suited to assessing the impact of agents on various
aspects of reproduction, from egg production to fertilization rates to subsequent embryo viability.
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For example, reduced egg production and increased embryo mortality represent a hallmark of chronic
exposure with TiO2 NPs [37], while in contrast Ag NPs mediated enhanced maturation of zebrafish
oocytes due to increased oxidative stress and resultant follicle cell apoptosis [38].

3.5. Neurotoxicity and Behavioral Analysis

Zebrafish exhibit a range of complex behaviors that can be used as sensitive parameters to assess
toxicity, including color preference, spatial recognition and locomotion [39,40]. The nervous system
that underpins these behaviors, including the developing brain, is particularly vulnerable to oxidative
stress because of its high energy demand, low level of antioxidants, and high cellular content of lipids
and proteins. A range of NPs can trigger free radical activity at their surface, thereby creating oxidative
stress at the site of particle deposition and translocation [41–43]. Neurotoxicity has been commonly
noted for NPs that are able to reach the brain, where they can lead to neurodegeneration [44,45].
Behavioral effects have also been seen that are specific for particular NPs. For example, altered color
preferences were found to be caused by silicon dioxide (SiO2) NPs [46], while locomotor activity
was affected by cadmium telluride (CdTe) quantum dots [47]. More detailed analysis has identified
enhanced neuron apoptosis and glial cell proliferation, along with altered gene expression, following
exposure to titanium dioxide (TiO2) NPs [48].

3.6. Other Approaches

A range of additional techniques can be used to further understand potential toxicity, including
a variety of high-content approaches [49], such as transcriptome analysis [36,50] and plasmonic
spectroscopy [51]. Taking advantage of the optical transparency and genetic amenability of
zebrafish, transgenic reporter lines have increased the ease and efficiency of toxicology studies [47,52].
Certain agents have inherent luminescent or fluorescent properties that can also be exploited to
provide dynamic imaging of zebrafish embryos [53], including studies examining NP distribution
in vivo [54,55].

3.7. Comparison between Zebrafish and Mammalian Studies

A number of studies have demonstrated that a variety of compounds tested in zebrafish embryos
yielded similar results to those observed in rodents. This includes research showing comparable
developmental toxicity for a series of 1,2,4-triazoles [56] and organotins [57], as well as correlations
between zebrafish embryo LC50 (lethal concentration 50%) values and rodent LD50 (lethal dose 50%)
values for a set of 60 compounds [49], although the latter study showed that the compound class
influenced relative toxicity [49]. In a landmark study, a meta-analysis of toxicity testing in zebrafish
of over 600 chemicals was performed, which compared aggregated toxicological end-points with
outcomes observed in laboratory mammals. This demonstrated that for acute toxicity, there was a good
correlation between zebrafish embryo LC50 values and LD50 values obtained across various laboratory
mammals when the chemicals were administered via inhalation or injection, but not orally [58], which
was consistent with other studies [59,60]. There was also a correlation between effects on zebrafish
hatching and pre-natal loss in rabbits [58]. Furthermore, analysis of teratogens using zebrafish correctly
ranked known mammalian teratogens [61,62]. Of note, zebrafish embryos were consistently more
sensitive than mammalian systems to the agents tested [58,59].

3.8. Standardization of Zebrafish Testing

In light of the effectiveness of using zebrafish and other fish species for toxicity studies, test
guidelines have been developed by the Organization for Economic Cooperation and Development
(OECD). These include guidelines for the Fish Embryo Toxicity (FET) test [63], Fish: Juvenile Growth
Test [64], and the adult-based Fish: Acute Toxicity Test [65]. The FET test has been validated by
independent laboratory testing and has been shown to be a robust and reproducible methodology [66].
It has also been shown to have an excellent correlation with the Acute Toxicity Test in adults [67],
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and has been proposed to be a worthy range-finder prior to more extensive testing [68]. A recent
study used the FET test to evaluate toxicity of methylxanthine drugs, which revealed a strong positive
correlation between TC50 measurements of mortality, morphological defects and teratogenicity in
zebrafish embryos and published mammalian LD50 values [69].

4. Selected Nanotoxicology Studies in Zebrafish

Zebrafish have been utilized for a myriad of nanotoxicology studies [36–38,48,70,71]. A summary
of key studies involving the analysis of metal, metal oxide and carbon-based nanoparticles, particularly
those related to shape, size and surface charge are discussed below, with relative toxicity summarized
(Table 1).

Table 1. LC50 toxicity testing in zebrafish embryos and adults of nanoparticles detailed in this review
and selected others.

Nano Particle Stage LC50 (mg/L) Time Teratogenicity Reference

Cu
eggs 24.0 48 h Malformations, delayed hatching [72]

adults
4.2 48 h N/A [72]
1.5 48 h N/A [73]

Chitosan eggs 280 96 h Malformations [30]

Au
eggs >200 48 h None [72]

adults >200 48 h N/A [72]

Ag
eggs 2.7 48 h Malformations [72]

1.2 96 h Malformations [74]

adults 2.9 48 h N/A [72]

Cd/Te QDs eggs 186 (nM) 120 h Malformations, delayed hatching [75]

TiO2
eggs >1600 48 h Premature hatching [72]

adults >1600 48 h N/A [72]

ZnO eggs 3.5−9.1 120 h None [76]
1.8 96 h Delayed hatching [77]

MgO
eggs >3200 48 h None [72]

428 96 h Delayed hatching [78]

adults 140 48 h N/A [72]

Fe2O3
eggs >1600 48 h None [72]

adults >1600 48 h N/A [72]

NiO
eggs 1700 48 h None [72]

adults
760 48 h N/A [72]
45 30 d N/A [79]

CuO
eggs 960 48 h None [72]

175 48 h None [80]

adults 400 48 h N/A [72]

Fullerene
eggs >200 48 h None [72]

1.5 96 h Reduced hatching [81]

adults >200 48 h N/A [72]

CNTs
eggs >200 48 h None [72]

>360 96 h None [82]

adults >200 48 h N/A [72]
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4.1. Metal Nanoparticles

4.1.1. Gold

Among metal nanoparticles, Au NPs have been the most widely studied in biomedicine, with key
applications as drug carriers [83] and as diagnostic agents [84]. However, Au NPs can cause cytotoxicity
in humans [85,86]. As a consequence, zebrafish has become increasingly used as an in vivo model to
evaluate the toxicity of Au NPs.

Food containing Au NPs (12 and 50 nm) elicited a variety of cellular dysfunctions as well as
genome alterations in adult zebrafish that were dependent on size, concentration and exposure
time [87]. Chronic exposure of zebrafish to sediment containing 14 nm Au NPs also resulted in genome
modification in various adult tissues, probably related to increased oxidative stress [88]. Au NPs were
found to accumulate within tissues, suggesting the potential for higher toxicity compared with ionic
Au. This was supported by other work that demonstrated 10–50 nm Au NPs could induce strand
breaks in zebrafish ovaries, in addition to other cell types [89].

Surface charge functionalization has been identified as a critical determinant of toxicity. In one
key study, Au NPs functionalized with positively-charged N,N,N-triethylammoniumethanol (TMAT)
caused significant mortality, but elicited negligible malformations, whereas those functionalized
with negatively-charged 2-mercaptoethanatesulfonate (MES) substantially increased the incidence of
malformations, but did not result in significant mortality within the five-day exposure period. Neutral
2,2-mercaptoethoxyethoxyethanol (MEEE) and 2,2-mercaptoethoxyethanol (MEE) functionalized Au
NPs did not elicit adverse effects even at higher concentrations of up to 250 ppm. A related study
additionally found that exposure to either positively and negatively charged Au NPs resulted in
behavioral abnormalities, including hypo-locomotor activity [90]. Kim et al. further showed that
1.3 nm TMAT-functionalized Au NPs caused abnormal eye development, with altered pigmentation
and neuronal damage and concomitant behavioral changes [27]. These effects correlated with the
ability of charged Au NPs to mediate inflammatory and altered immune effects [32].

Shape represents another important factor mediating the effects of Au NPs. The toxicity
and biodistribution of fluorescently-labeled Au NPs of different shapes were examined in adult
zebrafish [91]. Rod-shaped Au NPs exhibited enhanced uptake and clearance, while star-shaped Au
NPs in contrast displayed slower uptake but longer sequestration in comparison to rod-shaped or
spherical particles.

This study also showed that the choice of linker—polyethylene glycol (PEG) or
mannose-capped—also had a significant effect [91]. Other research with peptide-capped Au NPs
showed that the terminal modification was important, with the presence of terminal histidines
being more toxic than tryptophans, with methionine conferring the least toxicity [92]. In addition,
co-incubation of zebrafish embryos with Au NPs and a surfactant (polysorbate 20) resulted in increased
uptake and toxicity [93]. Together this suggests that the overall shape and surface chemistry of the Au
NPs are key determinants of biocompatibility.

4.1.2. Silver

Ag NPs have also been extensively studied, with broad applications as therapeutic agents [94],
antimicrobial agents [95], drug delivery systems [96] and biosensors [96].

Exposure of zebrafish to Ag NPs during early development elicited a range of toxicities,
including a reduction in heart rate, damage to neuromast hair cells and more modest but statistically
significant increases in both mortality and teratogenicity [97]. Another study demonstrated that low
concentrations of 10–20 nm Ag NPs (<5 mg/L) had little impact on normal embryonic development,
but higher concentrations resulted in significant effects on the development of mesodermal and
ectodermal tissues, possibly due to delayed or inhibited cell division [98]. Exposure of adult zebrafish
to Ag NPs resulted in localization in the gills and liver, where they caused oxidative stress and
immunotoxicity [33].
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The size-dependence of Ag NP-mediated toxicity is still debatable. One study reported similar
mortality for zebrafish embryos treated with Ag NPs across a size range of 3–200 nm [99]. In contrast,
Lee et al. showed that Ag NPs with a particle size of 30–72 nm were able to selectively enter
zebrafish embryos through chorionic pores via random Brownian motion and caused more potent
toxic effects [70]. In another study, Ag NPs were found to impact on neural development of zebrafish
embryos in a size-dependent manner. In this case, 4 nm Ag NPs were taken up more efficiently than
10 nm-sized particles, with the head of the exposed zebrafish embryos able to accumulate more Ag
NPs than the trunk [100].

The charge characteristics of Ag NPs has also been demonstrated to be an important determinant
of toxicity. Investigation of ~12 nm Ag NPs functionalized with peptides of different charge revealed
that positively-charged Ag NPs were the most biocompatible, with the extent of deformity and level of
mortality greater in those embryos exposed to NPs with a negatively-charged peptide coating and
greatest for those with a highly negatively-charged peptide coating [101].

Ag NPs of several different shapes were all shown to induce oxidative stress, but plate shaped
Ag NPs were more toxic than spherical and wire-like shaped forms [102,103]. Interestingly, these
effects correlated with the presence of surface defects rather than Ag shedding [102]. Coating with
cysteine [102] or sulfidation [104] resulted in Ag NPs that elicited reduced oxidative stress in embryos
or adults, respectively. Other studies have further demonstrated that embryonic toxicity of Ag NPs was
augmented by exposure to simulated solar light [105]. Collectively, this suggests a complex interplay
of factors, where a range of physiochemical properties underpin biocompatibility.

4.1.3. Cadmium-Based Quantum Dots

Quantum dots (QDs) have been extensively employed for biological and medical imaging because
of their small size and bright fluorescence, with broad absorption spectra, narrow emission spectra and
high photostability [101,106–108]. Cadmium selenide (CdSe) and CdTe nanocrystals represent two of
the most commonly utilized QDs for biological applications, with their extremely bright fluorescent
properties making them powerful labelling agents for diverse in vivo applications. Several studies
have shown CdSe QDs to be well tolerated with only modest toxicity even when directly injected
into embryos at relatively high concentrations [47,109]. However, exposure of CdTe QDs to zebrafish
embryos lead to a range of developmental and behavioral disturbances [75].

4.2. Metal Oxides

Metal oxide NPs, and particularly those based on TiO2, are widely used in a range of products,
including paint, food and personal care products [110,111]. Due to concerns over the possible
consequences of environmental exposure, their biocompatibility has been extensively studied
using zebrafish.

4.2.1. TiO2

Low dose (1 mg/L) exposure of zebrafish embryos to TiO2 NPs failed to induce major
developmental malformations [112], although several groups have demonstrated that TiO2 NPs
cause premature hatching in a dose-dependent manner [113,114]. In addition, higher doses of TiO2

NPs can lead to embryonic malformation and death [45]. Another study demonstrated that TiO2 NPs
were able to absorb photons and produce electron-hole pairs that interact with water and oxygen
to form reactive oxygen species that were toxic to zebrafish larvae [115]. Chronic exposure of adult
zebrafish to TiO2 NPs at low concentrations (<4 mg/L) for 6 months was also associated with low
toxicity, as determined by mortality rate. However, at higher concentration these NPs were found
to accumulate in different parts of the fish, including the gill, liver, heart and brain [116]. High level
exposure can also lead to genotoxic effects [35].

However, the major effect of TiO2 NPs is neurotoxicity. Even low levels of TiO2 NPs showed
impacts on embryonic neurogenesis and neuronal differentiation observed [112], while exposure of
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larvae to TiO2 NPs significantly affected swimming parameters, including average and maximum
velocity [117]. TiO2 NPs were able to cross the blood-brain barrier to damage the brain [45].
Chronic exposure of adult zebrafish to low dose TiO2 NPs for 45 days led to reduced levels of
neurotransmitters and consequent changes in behavior, as well as histopathological changes in the
zebrafish brain, which were associated with dose-dependent increases in nitric oxide levels [48].
Other researchers have compared the effect of bulk TiO2 and TiO2 NPs on the zebrafish brain,
which revealed that TiO2 NPs were more toxic than bulk TiO2 due to enhanced lipid oxidation
and degradation [118].

4.2.2. Zinc Oxide (ZnO)

Zinc oxide (ZnO) NPs (20 nm) have also been shown to cause delayed development and inhibition
of hatching in zebrafish embryos but only at higher concentrations (>0.1 mg/L) [77,119]. Again,
surface properties and shape appear to be important. Polymer-coated ZnO NPs were shown to be
more biocompatible than spherical ZnO, with leaf-shaped ZnO NPs having the greatest impact on
hatching [120]. In another study comparing different shapes of ZnO NPs, nanosticks were found
to be more toxic than nanospheres and cuboidal submicron particles with respect to hatching and
overall mortality [121]. However, similar results were observed between ZnO NPs and bulk ZnO,
suggesting that leaching of the metal oxide may be a key factor in mediating the effects of ZnO NPs [77].
Co-incubation with humic acid was able to suppress the impact of the released zinc [119].

4.2.3. Other Metal Oxides

A number of studies have shown that other metal oxide NPs elicit variable toxicity. For example,
magnesium oxide (MgO) NPs (20 nm) decreased hatching rate and survival of zebrafish embryos in a
dose-dependent manner, leading to various types of malformations [78]. Fe2O3 NPs caused severe
deformities in embryos [122] and elicited strong genotoxic effects in adult zebrafish [36]. Others have
observed that NPs based on cupric oxide (CuO) and nickel oxide (NiO) also interfered with hatching,
whereas those utilizing cobalt oxide (Co3O4) [123] or aluminum oxide (Al2O3) [77] were relatively inert.

4.3. Carbon Based Nanoparticles

Carbon-based nanomaterials have attracted increasing interest in the field of biomedical research,
including as drug delivery systems, tissue scaffold reinforcements and cellular sensors [124].
Carbon NPs are considered particularly promising due to their low toxicity compared to other
NPs [125]. In the last few years, the toxicity of different carbon NPs have been evaluated using
zebrafish as a model, such as fullerenes, carbon nanoparticles, carbon nanotubes (CNT), graphene QDs
and carbon QDs (C-dots).

4.3.1. Fullerenes

Fullerenes are allotropes of carbon discovered in 1985 [126] that have been widely evaluated for
biomedical applications, such as drug and gene delivery [127], bioimaging [128] and quenching of
reactive oxygen species [128]. Analysis in zebrafish has shown that fullerenes exhibit toxicity that is
related to their surface chemistry. Exposure of embryos to C60 or C70 fullerenes at 200 ppb delayed
development and resulted in specific caudal fin malformation and significant pericardial edema,
with >200 ppm C60 or C70 leading to 100% mortality. In contrast, exposure to >2500 ppb C60(OH)24

was required to induce fin malformations and pericardial edema, with significant mortality only
observed at concentrations of >4000 ppb [129]. Another study of water soluble fullerenes indicated that
positively-charged fullerenes showed enhanced toxicity compared to negatively-charged fullerenes
with similar structures. Toxicity was shown to vary considerably between the negatively-charged
fullerenes from very low to moderate, depending on structural features [130]. Kuznetsova et al.
showed phosphatidylcholine-based phospholipid NPs containing C60 elicited low toxicity on zebrafish
embryos [131]. Photons appear to exacerbate toxicity, since reducing light levels during exposure to
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C60 (at 200–300 ppb) significantly decreased mortality as well as the incidence of fin malformations and
pericardial edema [132]. Other research has suggested that water-soluble fullerenes may protect against
apoptotic cell death [130]. This was supported by a study investigating a C60 fullerene based derivative
(dendrofullerene) containing 18 carboxylic groups, which was able to reduce radiation-induced nerve
cell damage through its actions as a free-radical scavenger [133]. Multi-shell fullerene structures,
known as nano-onions, demonstrate good biocompatibility, with little toxicity and homogenous
biodistribution in zebrafish larvae [134].

4.3.2. Carbon Nanotubes

Carbon nanotubes (CNTs) have attracted intense interest for various biomedical applications
due to their distinctive chemical and physical characteristics [124]. These characteristics make
CNTs promising candidates for the delivery of chemotherapeutic agents, including paclitaxel and
doxorubicin, small interfering RNAs, genes and antibodies [135,136].

Pristine CNTs have been shown to have high biocompatibility, with single-walled (SW),
multi-walled (MW) CNTs or carboxylated MW pristine CNTs having little effect on embryo viability
and development, even at high concentrations (200 ug/mL) [137]. In another study SW CNTs
functionalized by polyethylene glycol increased mortality, delayed hatching and decreased total
larval length only at the highest concentration tested (1 ppm), but with no genotoxicity observed and
no evidence of the nanotubes being taken up by tissues [138]. Another group found that the length
of CNTs was an important determinant of toxicity with longer CNTs causing distinctive cellular and
molecular changes [139].

Exposure of adult zebrafish to MW CNT (diameter 500 nm) caused reversible inflammation in
the gills, but again no genotoxicity was seen [140]. Another study showed that MW CNTs were able
to accumulate in zebrafish [141], while Li et al. demonstrated that exposure to CNTs can result in
alterations in the brain and gonads [142].

4.3.3. Carbon/Graphene Quantum Dots

C-dots are a type of quasi-spherical carbon material with a diameter of <10 nm [143], whereas
graphene QDs (GQDs) represent multiple layers of graphene with a size of <30 nm [144,145].
Both C-dots and GQDs have emerged as superior universal fluorophores due to their unique
combination of excellent photostability, small size and highly tunable photoluminescence, being
effective in photon-harvesting in the short-wavelength region because of π−π* transition of
C=C bonds [146], with a variety of imaging applications [147]. C-dots and GQDs are also attractive
for drug/gene delivery [148–151] due to their low toxicity, a consequence of the predominance of
inert carbon rather than more reactive hydrogen, nitrogen and oxygen in their make-up [150,152].
However, C-dots and GQDs do contain −OH, −NH2, >C=O and –COOH functional groups on their
surface, which increase water solubility [143], as well as assisting in covalent bond formation with
antibody, chemotherapeutic agent or other biochemical entity [153,154], which can be combined with
their florescence properties (Figure 2) for multi-purpose theranostic applications.

C-dots have been shown to exhibit higher biocompatibility than other NPs [55]. N-doped C-dots
synthesized from BSA were well tolerated by zebrafish embryos immersed in them at concentrations
of 6 mg/L and retained fluorescence for up to 2 days, highlighting their low toxicity and stable
fluorescence emission [155]. In another study, embryos exposed to C-dots showed normal development
at concentrations of 2 mg/L (soaking) or 1.5 mg/mL (injection). However, at higher concentrations,
delayed development, inhibition of pigmentation, pericardial edema, and delayed hatching were
observed. GQDs also exhibited high biocompatibility, being readily excreted from adult zebrafish
without affecting growth significantly at a concentration lower than 2 mg/mL [54]. The GQDs were
found to accumulate in the digestive system, while the blood, muscle and other tissue showed no
obvious photoluminescence signal.
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Figure 2. Carbon nanodot-based drug delivery and tracking. Schematic representation showing
conjugation of carbon nanodots with drug molecules, and subsequent excitation to generate agents
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5. Conclusions

The nanotechnology industry is already large; it was estimated to be worth $39.2 billion in
2016 [156], and is growing rapidly. To facilitate this, efficient and effective testing of new products
is essential. Zebrafish represent an excellent in vivo model for testing nanoparticle toxicity and
biocompatibility. They are low cost and easy to maintain, and able to test agents efficiently via multiple
routes of exposure, including directly in the water, which is especially relevant for environmental
toxicology applications. In addition, specific physiological impacts can be assessed at multiple stages of
development. In this review, the toxicity of different metal and carbon-based NPs has been described,
identifying a range of parameters regarding exposure (concentration, route, length, life-stage, presence
of other molecules) and of physiochemical properties of the NPs (size, shape, surface charge/chemistry)
that impact on their biocompatibility.

There is now a growing consensus advocating the greater use of zebrafish models to reduce
reliance on rodent testing for financial, ethical and biological reasons [31]. Indeed, toxicity and safety
testing in zebrafish has been accepted by the Federal Drug Administration for new drug approval [25].
This will be greatly augmented by standardization of delivery protocols, methods of analysis and
strains of zebrafish used. Zebrafish also have great potential for pre-clinical studies and so represent an
ideal model to assist the further development of NPs as therapeutic agents, such as testing mitigation
strategies when a promising NP agent exhibits toxicity.
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