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Figure S1. Diffuse reflectance plots of DSSCs fabricated with gel electrolyte, D-WOs solid-state
electrolytes, and P-WOQOs solid-state electrolytes.

The amount of diffusely scattered light in D-WOs nanostructures and P-WO3 microstructures
based electrolytes as a result of a beam of irradiation on the ssDSSCs, can be quantified by diffuse
reflectance spectroscopy. Compared to the gel electrolyte based DSSCs, the ssDSSCs composed of P-
WOs solid-state electrolytes had a little higher diffuse reflection values in the visible light regions.
This result indicating that the incident light was well scattered within the P-WOs solid-state
electrolytes than gel electrolytes. Also, it should be noted that the presence of not only the electrolyte
but also the TiO: layer, sensitizer, FTO substrate in devices, leading to a decrease in the difference of
diffuse reflectance values, as a similar result was reported previously [1-3]. Therefore, we believe the
diffuse reflectance analysis of different electrolyte systems including the TiO2 layer, sensitizer, and
FTO substrate strongly supports our results.
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Figure S2. EIS curves of DSSCs fabricated with gel electrolyte, D-WQOs solid-state electrolytes, and P-
WO:s solid-state electrolytes measured at -0.65 V bias voltage in dark condition (100 kHz ~ 10 mHz).

The suppression of the electron recombination process by the P-WO:s solid-state electrolyte was

confirmed by EIS curves of ssDSSCs measured under dark conditions. As a result, there was an

improvement in the open-circuit voltage (Voc) for P-WOs solid-state electrolyte, which results from
the slower recapture of conduction band electrons by Is-, reduced interfacial charge recombination
loss and enhanced electron transport.
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Figure S3. IMVS of DSSCs fabricated with gel electrolyte, D-WOs solid-state electrolytes, and P-WOs

solid-state electrolytes.



Figure S3 shows that the electron lifetime values of the P-WOs solid-state electrolytes based
ssDSSCs are greater than those of the gel electrolytes. This result indicates enhanced electron
transport rate and reduced recombination or back reaction in the P-WOs solid-state electrolytes based
ssDSSCs than the gel electrolytes system.

20

— P-WO, solid-state electrolyte
——Iliquid electrolyte
15 4

Current density (mA cm'z)
S

0 +———F—— ——r—i

I I I
00 0.1 02 03 04 05 06 07 08
Voltage (V)

Figure S4. J-V curves DSSCs fabricated with liquid electrolyte and P-WOs solid-state electrolytes that
were obtained under one sun illumination (AM 1.5, 100mW cm2).2-

a Liquid electrolyte consisting of 1-butyl-3-methylimidazolium iodide, I>, guanidinium thiocyanate, and 4-tert-
butylpyridine in a mixture of acetonitrile and valeronitrile.

Our results show that ssDSSCs generated with a P-WOs solid-state electrolyte has a power
conversion efficiency of 6.8%, which is higher than that of DSSCs using a common liquid electrolyte
(5.5%).

Table S1. Comparison of photovoltaic parameters of DSSCs fabricated with polymer gel or solid-state
electrolytes reported in the literature.

Electrolyte Voc (V) Jse (mA/cm?) FF 77 (%) Reference

P-WQO, 0.71 14.6 0.61 6.3 This work
PEO/PEGDME 0.79 12.6 0.77 7.7 [4]
P-CNT-5 0.65 22.0 0.62 8.9 [5]
MOG 0.70 12.9 0.72 6.5 [6]
Unitary 0.60 15.5 0.65 6.1 [7]
Zeolite-XF12 0.74 13.7 0.60 6.0 [8]

The device efficiency of the DSSCs using the P-WQO:s solid-state electrolyte reached 6.3% at 100
mW cm?, which is again higher than that (4.2%) of the gel electrolyte based system and represents
one of the highest values reported for gel or solid-state DSSCs to date [4-8].



Table S2. Photovoltaic parameters of DSSCs fabricated with liquid electrolyte and P-WQOs solid-state
electrolytes that were obtained under one sun illumination (AM 1.5, 100mW cm?2).>

Electrolyte Voc (V) Jsc (mA/cm?) FF 1 (%)
liquid 0.71 12.2 0.64 5.5
P-WO, solid-state 0.71 14.6 0.61 6.3

2 A typical dye-sensitized solar cells had an active area of ca. 0.40 cm2and was masked using an
aperture of the identical area during the J-V measurements. And, thickness of the photoanode was
approximately 10 pm.

Table S3. DSSCs electrolyte formulations.

Electrolyte WOs PEG Lil MPII I Acetonitrile
gel - lg 015¢g 015¢g 0.03g 10 mL
D-WO, solid-state 001g 1 mL 0.15g 015¢g 0.03 g 10 mL
P-WO, solid-state 0.01g 1mL 0.15g 015g 0.03g 10 mL
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