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Abstract: In this work, we aim to study free vibration of functionally graded piezoelectric material
(FGPM) cylindrical nanoshells with nano-voids. The present model incorporates the small scale
effect and thermo-electro-mechanical loading. Two types of porosity distribution, namely, even and
uneven distributions, are considered. Based on Love’s shell theory and the nonlocal elasticity
theory, governing equations and corresponding boundary conditions are established through
Hamilton’s principle. Then, natural frequencies of FGPM nanoshells with nano-voids under different
boundary conditions are analyzed by employing the Navier method and the Galerkin method.
The present results are verified by the comparison with the published ones. Finally, an extensive
parametric study is conducted to examine the effects of the external electric potential, the nonlocal
parameter, the volume fraction of nano-voids, the temperature rise on the vibration of porous FGPM
cylindrical nanoshells.

Keywords: functionally graded piezoelectric nanoshells; nano-void; Love’s shell theory; nonlocal
elasticity theory; size effect; vibration

1. Introduction

Piezoelectric materials are characterized by the excellent coupling between the electric and
mechanical fields. Applying mechanical load to piezoelectric materials generates an electric field,
while putting piezoelectric materials in an electric field creates mechanical strain in them. This two-way
property has made piezoelectric materials ideal for making actuators and sensors [1–4]. Besides, the
two-way action of turning mechanical energy to electric energy and vice versa has made piezoelectric
materials useful in resonant ultrasonic inspection and micro/nano piezoelectric power generators [5–7].

Unfortunately, there are some deficiencies such as low resistance to external loads, creeping in
high temperature, and high stress concentration in homogeneous piezoelectric materials. In order to
eliminate these problems, functionally graded piezoelectric materials (FGPMs) were proposed. The
concept of functionally graded materials was first proposed in the 1980s [8]. Functionally graded
materials are generally composed of two different materials, and are characterized by continuous
variations in both mechanical properties and material composition in one or more dimension(s).
Likewise, FGPMs are generally composed of two different piezoelectric materials. They have many
advantages such as multifunctionality, ability to control deformation, and minimization or removal of
stress. Hence, FGPMs have received wide engineering applications [9–13]. In FGPMs, owing to the
technical issues, nano-voids or porosities may occur within materials. It is reported that a considerable
number of nanopores appeared in the functionally graded material during the preparation process
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by the non-pressure sintering technique [14]. Thus, it is necessary to consider the porosity effect on
vibration characteristics of porous FGPM structures.

With the rapid development in nanotechnology, the FGPMs have potential to be used in
functional and structural elements in micro/nano electromechanical systems. It is known that FGPM
nanostructures possess significant mechanical, thermal, electrical, and other physical properties.

Piezoelectric nanostructures have the dimension ranging from a few nanometers to several
hundred nanometers. On this scale, the size effect was observed in both experiments and
simulations [15–18]. One of effective nonclassical continuum theories considering size effect for
piezoelectric nanostructures is Eringen’s nonlocal theory [19–21]. Ke et al. [22] used this theory to
analyze free vibration of piezoelectric nanobeams subjected to thermo-mechanical-electro loading.
Afterwards, the vibration of functionally graded piezoelectric nanoplates using the nonlocal elasticity
theory was studied by Jandaghian and Rahmani [23]. The thermo-mechanical-electric vibration of
FGPM nanoplates was studied by Jandaghian and Rahmani [24]. The vibration and buckling analyses
of the piezoelectric nanobeams were carried out by Liang et al. [25]. Yan and Jiang [26] studied the
surface effects on the vibration and buckling of the piezoelectric nanoplates. It is noted that all the
above-mentioned studies concentrated on the piezoelectric nano beams or plates.

Cylindrical nanoshells possess specific functions in micro/nano electromechanical system. The
size-dependent dynamic analysis of nanoshells, however, is limited in the open literature. Among them,
the free vibration of magneto-electro-elastic cylindrical nanoshells was investigated by Ghadiri and
Safarpour [27]. Fang et al. [28] conducted the free vibration analyses of piezoelectric nano double-shells.
The instability and vibration of functionally graded nanoshells with internal fluid flow were analyzed
by Ansari et al. [29]. In framework of the nonlocal elasticity theory, Sun et al. [30] analyzed the bucking
of functionally graded cylindrical nanoshells. Ke et al. [31] studied the free vibration of piezoelectric
nanoshells under an electric voltage.

In this article, vibration behavior of porous FGPM nanoshells subjected to the thermal and
electrical loads is studied for the first time. Governing equations are derived from Hamilton’s principle
by using the nonlocal elasticity theory and Love’s thin shell theory. Then, natural frequencies of the
nanoshells are evaluated by the Navier technique and the Galerkin technique. Detailed results are
shown to explore the influences of several key factors on vibration characteristics of FGPM nanoshells
with nano-voids.

2. Preliminaries

2.1. Nonlocal Elasticity Theory for FGPMs

In Eringen’s nonlocal elastic theory [19–21], nonlocal constitutive equations are written as [19,32]:

σij =
∫

V
α0

(∣∣x′ − x
∣∣, e0a

le

)[
cijklεkl(x′)− ekijEk(x′)− βij∆T

]
dx′ (1)

Di =
∫

V
α0

(∣∣x′ − x
∣∣, e0a

le

)[
eiklεkl(x′) + sikEk(x′) + pi∆T

]
dx′ (2)

σij,j = ρ
..
ui Di,i = 0 (3)

Ei = −Φ̃,i εij =
1
2
(ui,j + uj,i) (4)

in which i, j, l, k = 1, 2, 3; εij, σij, ui, Ei and Di denote the components of the strain, stress, displacement,
electric field, and electric displacement, respectively; ekij, cijkl, pi, βij and sik represent the components of
the piezoelectric tensor, elasticity tensor, pyroelectric vector, thermal modulus tensor and the dielectric
tensor, respectively; denotes the mass density; Φ̃ and ∆T are the electric potential and temperature
change, respectively; α0(|x′ − x|, e0a/le) is the nonlocal kernel function; e0a/le represents the scale
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parameter; x’ represents all material point coordinates except x point in the area; |x′ − x| represents
the Euclidean Distance.

Equivalent differential forms can be used to represent the overall constitutive relation as
follows [20]:

σij − (e0a)2∇2σij = cijklεkl − ekijEk − βij∆T (5)

Di − (e0a)2∇2Di = eiklεkl + sikEk + pi∆T (6)

in which ∇2 is the Laplace Operator.

2.2. Nonlocal Porous FGPM Cylindrical Nanoshell Model

Consider a porous FGPM cylindrical nanoshell composed of PZT-5H and PZT-4. Figure 1
shows the geometry of the nanoshell with the thickness h, the middle-surface radius R and the
length L. The FGPM nanoshell is supposed to contain nano-voids that disperse evenly (FGPM-I)
or unevenly (FGPM-II) along the thickness direction. Additionally, the nanoshell is subjected to a
uniform temperature change ∆T and electric potential Φ̃(x, θ, z, t). U(x, θ t), V(x, θ, t) and W(x, θ, t) are
displacements of points at the middle plane of the shell in x-, θ- and z-axes directions, respectively.

The sum of PZT-5H and PZT-4 volume fractions is V4 + V5H = 1 [33]; For PZT-4, the volume
fraction can be written as [34–36]:

V4 =

(
2z + h

2h

)N
(7)

where the parameter N ∈ [0, ∞) represents the power-law index.
For the FGPM-I nanoshell, the general material properties are given by [37]

P(z) = (P4 − P5H)

(
z
h
+

1
2

)N
+ P5H − (P4 + P5H)

α

2
(8)

where z is the distance from the mid-surface of the FGPM cylindrical nanoshell; P4 and P5H are material
properties of PZT-4 and PZT-5H, respectively; α is the porosity volume fraction.

Therefore, the elastic constants cij, the piezoelectric constants eij, the mass density ρ, and the
dielectric constants sij of the FGPM-I nanoshell can be expressed as:

cij(z) =
(
c4ij − c5Hij

)( z
h + 1

2

)N
+ c5Hij −

(
c4ij + c5Hij

)
α
2

(i, j) = {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3), (6, 6)}
(9)

eij(z) =
(
e4ij − e5Hij

)( z
h + 1

2

)N
+ e5Hij −

(
e4ij + e5Hij

)
α
2

(i, j) = {(3, 1), (3, 2), (3, 3)}
(10)

sij(z) =
(
s4ij − s5Hij

)( z
h + 1

2

)N
+ s5Hij −

(
s4ij + s5Hij

)
α
2

(i, j) = {(1, 1), (3, 3)}
(11)

ρ(z) = (ρ4 − ρ5H)

(
z
h
+

1
2

)N
+ ρ5H − (ρ4 + ρ5H)

α

2
(12)
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Figure 1. Schematic of a porous functionally graded piezoelectric material (FGPM) circular
cylindrical nanoshell.

For the FGPM-II nanoshell, on the other hand, the material properties in Equations (9)–(12) can be
replaced by [38]

cij(z) =
(
c4ij − c5Hij

)( z
h + 1

2

)N
+ c5Hij − α

2
(
c4ij + c5Hij

)(
1− 2|z|

h

)
(i, j) = {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3), (6, 6)}

(13)

eij(z) =
(
e4ij − e5Hij

)( z
h + 1

2

)N
+ e5Hij − α

2
(
e4ij + e5Hij

)(
1− 2|z|

h

)
(i, j) = {(3, 1), (3, 2), (3, 3)}

(14)

sij(z) =
(
s4ij − s5Hij

)( z
h + 1

2

)N
+ s5Hij − α

2
(
s4ij + s5Hij

)(
1− 2|z|

h

)
(i, j) = {(1, 1), (3, 3)}

(15)

ρ(z) = (ρ4 − ρ5H)

(
z
h
+

1
2

)N
+ ρ5H −

α

2
(ρ4 + ρ5H)

(
1− 2|z|

h

)
(16)

According to the Kirchhoff–Love hypothesis, the displacement fields are [39]:

u(x, θ, z, t) = U(x, θ, t)− z
∂W(x, θ, t)

∂x
(17)

v(x, θ, z, t) = V(x, θ, t)− z
R

∂W(x, θ, t)
∂θ

(18)

w(x, θ, z, t) = W(x, θ, t) (19)

in which t is time, and u(x, θ, z, t), v(x, θ, z, t) and w(x, θ, z, t) are the displacements of an arbitrary
point along the x-, θ- and z-axes, respectively.

Using Love’s first approximation shell theory, the strain-displacement relations can be written
as [40]:

εxx =
∂U
∂x
− z

∂2W
∂x2 (20)
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εθθ =
1
R

∂V
∂θ

+
W
R
− z

R2

(
∂2W
∂θ2 −

∂V
∂θ

)
(21)

γxθ =
∂V
∂x

+
1
R

∂U
∂θ
− z

R

(
2∂2W
∂θ∂x

− ∂V
∂x

)
(22)

Following Wang [41], the distribution of electric potential along the thickness of the FGPM
nanoshell is assumed as:

Φ̃(x, θ, z, t) = − cos(βz)Φ(x, θ, t) +
2zV0

h
(23)

in which β = π/h; V0 represents the initial external electric voltage applied to the FGPM nanoshell;
Φ(x, θ, t) represents the spatial and time variation of the electric potential in the x-direction and
θ-direction.

Using Equation (23), the electric field components Ei are given by

Ex = −Φ̃,x = cos(βz)
∂Φ
∂x

(24)

Eθ = − 1
R + z

Φ̃,θ =
1

R + z
cos(βz)

∂Φ
∂θ

(25)

Ez = −Φ̃,z = −β sin(βz)Φ− 2V0

h
(26)

For the porous FGPM cylindrical nanoshell, the nonlocal constitutive relationship (5) and (6) can
be given by [42,43]

[
1− (e0a)2∇2

]


σx

σθ

σxθ

Dx

Dθ

Dz


=



c̃11εxx + c̃12εθθ − ẽ31Ez − β̃11∆T
c̃12εxx + c̃22εθθ − ẽ32Ez − β̃22∆T

c̃66γxθ

s̃11Ex

s̃22Eθ

ẽ31εxx + ẽ32εθθ + s̃33Ez + p̃3∆T


(27)

in which ∇2 = ∂2/∂x2 + ∂2/∂(Rθ)2; c̃ij, ẽij, s̃ij, β̃11, β̃22 and p̃3 are defined as:

c̃11 = c11 − c13
2

c33
, c̃12 = c12 − c13

2

c33
, c̃22 = c22 − c23

2

c33
, c̃66 = c66,

s̃11 = s11, s̃22 = s̃11, s̃33 = s33 +
e33

2

c33
, β̃11 = β11 − c13β33

c33
, β̃22 = β̃11

p̃3 = p3 +
e33β33

c33
, ẽ31 = e31 − c13e33

c33
, ẽ32 = e32 − c23e33

c33

(28)

The strain energy Πs of the porous FGPM cylindrical nanoshell is expressed as follows:

Πs =
1
2

∫ L

0

∫ 2π

0

∫ h
2

− h
2

(σxεxx + σθεθθ + σxθγxθ − DxEx − DθEθ − DzEz)Rdzdθdx (29)

Substituting Equations (20)–(22) and Equations (24)–(26) into Equation (29) gives

Πs =
1
2

∫ L
0

∫ 2π
0

∫ h
2
− h

2

[
Nx

∂U
∂x + Nθ

R

(
∂V
∂x + W

)
+ Nxθ

(
∂V
∂x + 1

R
∂U
∂θ

)
−Mx

∂2W
∂x2

−Mθ
R2

(
∂2W
∂θ2 − ∂V

∂θ

)
− Mxθ

R

(
2∂2W
∂x∂θ −

∂V
∂x

)]
Rdzdθdx

− 1
2

∫ L
0

∫ 2π
0

∫ h
2
− h

2

[
Dx cos(βz) ∂Φ

∂x + Dθ
cos(βz)

R+z
∂Φ
∂θ − Dz

(
β sin(βz)Φ + 2V0

h

)]
Rdzdθdx

(30)
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in which the resultant forces and the moments can be respectively calculated as

{Nx, Nθ , Nxθ} =
∫ h

2

− h
2

{σx, σθ , σxθ}dz (31)

{Mx, Mθ , Mxθ} =
∫ h

2

− h
2

{σx, σθ , σxθ}zdz (32)

The kinetic energy Πk is given by:

Πk =
1
2

∫ L

0

∫ 2π

0
I1

[(
∂U
∂t

)2
+

(
∂V
∂t

)2
+

(
∂W
∂t

)2
]

Rdθdx (33)

in which I1 =
∫ h/2
−h/2 ρ(z)dz, and the rotatory inertia term is neglected due to its slight impact.

Moreover, the work ΠF done by external forces can be written as:

ΠF =
1
2

∫ L

0

∫ 2π

0

[
(NTx + NEx)

(
∂W
∂x

)2
+

NTθ + NEθ

R2

(
∂W
∂θ

)2
]

Rdθdx (34)

in which (NEx,NEθ)and (NTx,NTθ) are the electrical and thermal forces induced by the uniform external
electric voltage V0 and uniform temperature rise ∆T, respectively. They are given by

{NTx, NTθ} =
∫ h

2

− h
2

{
β̃11, β̃22

}
∆Tdz, {NEx, NEθ} =

1
h

∫ h
2

− h
2

−2{ẽ31, ẽ32}V0dz (35)

Using Hamilton’s principle [44,45]:

∫ t

0
[δΠk − δΠs − δΠF]dt = 0 (36)

and applying Equations (29), (33), and (34), it yields the governing equations:

∂Nx

∂x
+

1
R

∂Nxθ

∂θ
− I1

∂2U
∂t2 = 0 (37)

∂Nxθ

∂x
+

1
R

∂Nθ

∂θ
+

1
R

∂Mxθ

∂x
+

1
R2

∂Mθ

∂θ
− I1

∂2V
∂t2 = 0 (38)

∂2Mx

∂x2 +
2
R

∂2Mxθ

∂x∂θ
+

1
R2

∂2Mθ

∂θ2 −
Nθ

R
− Nx1

∂2W
∂x2 −

Nθ1

R2
∂2W
∂θ2 − I1

∂2W
∂t2 = 0 (39)

∫ h
2

− h
2

[
∂Dx

∂x
cos(βz) +

cos(βz)
R + z

∂Dθ

∂θ
+ Dzβ sin βz

]
dz = 0 (40)

where
Nx1 = NTx + NEx, Nθ1 = NTθ + NEθ (41)

The corresponding boundary conditions are:

U = 0 or Nx nx +
Nxθ

R
nθ = 0 (42)

V = 0 or
(

Nxθ +
Mxθ

R

)
nx +

(
Nθ
R + Mθ

R2

)
nθ = 0 (43)

W = 0 or nx

(
∂Mx
∂x + 1

R
∂Mxθ

∂θ − Nx1
∂W
∂x

)
+nθ

(
1

R2
∂Mθ
∂θ + 1

R
∂Mxθ

∂x −
Nθ1
R2

∂W
∂θ

)
= 0

(44)
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∂W
∂x = 0 or Mx nx +

Mxθ

R
nθ = 0 (45)

∂W
∂θ = 0 or Mxθ

R nx +
Mθ

R2 nθ = 0 (46)

Φ = 0 or
∫ h

2
− h

2

[
cos(βz)Dxnx +

cos(βz)
R+z Dθnθ

]
dz = 0 (47)

where nx and nθ denote the direction cosines of the outward unit normal to the boundaries of
the mid-plane.

From Equation (27), we obtain the following equations:

Nx − (e0a)2∇2Nx = A11
∂U
∂x

+
A12

R

(
∂V
∂θ

+ W
)
− B11

∂2W
∂x2 −

B12

R2
∂2W
∂θ2 + F31Φ− Nx1 (48)

Nθ − (e0a)2∇2Nθ = A12
∂U
∂x

+
A22

R

(
∂V
∂θ

+ W
)
− B12

∂2W
∂x2 −

B11

R2
∂2W
∂θ2 + F32Φ− Nθ1 (49)

Nxθ − (e0a)2∇2Nxθ = A66

(
∂V
∂θ

+
1
R

∂U
∂θ

)
− 2B66

R
∂2W
∂x∂θ

(50)

Mx − (e0a)2∇2Mx = −D11
∂2W
∂x2 −

D12

R2

(
∂2W
∂θ2 −

∂V
∂θ

)
+ B11

∂U
∂x

+
B12

R
∂V
∂θ

+ E31Φ (51)

Mθ − (e0a)2∇2Mθ = −D12
∂2W
∂x2 −

D22

R2

(
∂2W
∂θ2 −

∂V
∂θ

)
+ B12

∂U
∂x

+
B11

R
∂V
∂θ

+ E32Φ (52)

Mxθ − (e0a)2∇2Mxθ = −D66

R

(
2∂2W
∂x∂θ

− ∂V
∂x

)
+ B66

(
1
R

∂U
∂θ

+
∂V
∂x

)
(53)

∫ h
2

− h
2

[
1− (e0a)2∇2

]
Dx cos(βz)dz = X11

∂Φ
∂x

(54)

∫ h
2

− h
2

[
1− (e0a)2∇2

]
Dθ

cos(βz)
R + z

dz =
X22

R
∂Φ
∂θ

(55)

∫ h
2
− h

2

[
1− (e0a)2∇2

]
Dzβ sin(βz)dz = −E31

∂2W
∂x2 − E32

R2

(
∂2W
∂θ2 − ∂V

∂θ

)
+ F31

(
1
R

∂V
∂θ + ∂U

∂x

)
− X33Φ

(56)

where
A11 =

∫ h
2
− h

2
c̃11(z)dz, B11 =

∫ h
2
− h

2
c̃11(z)zdz, D11 =

∫ h
2
− h

2
c̃11(z)z2dz

A12 =
∫ h

2
− h

2
c̃12(z)dz, B12 =

∫ h
2
− h

2
c̃12(z)zdz, D12 =

∫ h
2
− h

2
c̃12(z)z2dz

A22 =
∫ h

2
− h

2
c̃22(z)dz, B22 =

∫ h
2
− h

2
c̃22(z)zdz, D22 =

∫ h
2
− h

2
c̃22(z)z2dz

A66 =
∫ h

2
− h

2
c̃66(z)dz, B66 =

∫ h
2
− h

2
c̃66(z)zdz, D66 =

∫ h
2
− h

2
c̃66(z)z2dz

F31 =
∫ h

2
− h

2
ẽ31(z)β sin(βz)dz E31 =

∫ h
2
− h

2
ẽ31(z)βz sin(βz)dz

F32 =
∫ h

2
− h

2
ẽ32(z)β sin(βz)dz E32 =

∫ h
2
− h

2
ẽ32(z)βz sin(βz)dz

X11 =
∫ h

2
− h

2
s̃11(z) cos2(βz)dz, X22 =

∫ h
2
− h

2
s̃22(z)

[
cos(βz)

R+z

]2
dz

X33 =
∫ h

2
− h

2
s̃33(z)[β sin(βz)]2dz
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Substituting Equations (48)–(56) into Equations (37)–(40) gives

A11
∂2U
∂x2 + A12

R

(
∂2V
∂x∂θ +

∂W
∂x

)
− B11

∂3W
∂x3 − B12

R2
∂3W

∂x∂θ2 + F31
∂Φ
∂x

+ A66
R

(
1
R

∂2U
∂θ2 + ∂2V

∂x∂θ

)
− 2B66

R2
∂3W

∂x∂θ2 −
[
1− (e0a)2∇2

]
I1

∂2U
∂t2 = 0

(57)

A66

(
1
R

∂2U
∂x∂θ +

∂2V
∂x2

)
− 2B66

R
∂3W

∂x2∂θ
+ A12

R
∂2U
∂x∂θ +

A22
R2

(
∂2V
∂θ2 + ∂W

∂θ

)
− B12

R
∂3W

∂x2∂θ
− B11

R3
∂3W
∂θ3 + 1

R F31
∂Φ
∂θ −

D66
R2

(
2 ∂3W

∂x2∂θ
− ∂2V

∂x2

)
+ B66

R

(
1
R

∂2U
∂x∂θ +

∂2V
∂x2

)
− D12

R2
∂3W

∂x2∂θ
− D22

R4

(
∂3W
∂θ3 − ∂2V

∂θ2

)
+ E32

R2
∂Φ
∂θ + B12

R2
∂2U
∂x∂θ +

B11
R3

∂2V
∂θ2 −

[
1− (e0a)2∇2

]
I1

∂2V
∂t2 = 0

(58)

−D11
∂4W
∂x4 − D12

R2

(
∂4W

∂x2∂θ2 − ∂3V
∂x2∂θ

)
+ E31

∂2Φ
∂x2 + B11

∂3U
∂x3 + B12

R
∂3V

∂x2∂θ

+ 2
R

[
−D66

R

(
2 ∂4W

∂x2∂θ2 − ∂3V
∂x2∂θ

)
+ B66

(
1
R

∂3U
∂x∂θ2 +

∂3V
∂x2∂θ

)]
+ 1

R2

[
−D12

∂4W
∂x2∂θ2 − D22

R2

(
∂4W
∂θ4 − ∂3V

∂θ3

)
+ E32

∂2Φ
∂θ2 + B12

∂3U
∂x∂θ2 +

B11
R

∂3V
∂θ3

]
− 1

R

[
A12

∂U
∂x + A22

R

(
∂V
∂θ + W

)
− B12

∂2W
∂x2 − B11

R2
∂2W
∂θ2 + F31Φ

]
−
[
1− (e0a)2∇2

](
Nx1

∂2W
∂x2 + Nθ1

R2
∂2W
∂θ2

)
−
[
1− (e0a)2∇2

]
I1

∂2W
∂t2 = 0

(59)

X11
∂2Φ
∂x2 +

X22

R2
∂2Φ
∂θ2 − X33Φ− E32

R2

(
∂2W
∂θ2 −

∂V
∂θ

)
+ F31

(
∂U
∂x

+
1
R

∂V
∂θ

)
− E31

∂2W
∂x2 = 0 (60)

The electric potential at both ends of the FGPM nanoshell is assumed to be zero. Then, the
associated boundary conditions are expressed as

V = W = Φ =
∂U
∂x

=
∂2W
∂x2 = 0 (61)

for a simply-supported end, and

U = V = W = Φ =
∂W
∂x

= 0 (62)

for a clamped end.

3. Solution Procedure

3.1. Navier Procedure

For the porous FGPM cylindrical nanoshell with simply supported-simply supported (SS-SS)
boundary condition, analytical solutions of the free vibration problem can be obtained utilizing
Navier’s method. For this purpose, the following displacement functions which satisfy the SS-SS
boundary condition are introduced:

U(x, θ, t) = Umn cos
(mπx

L

)
cos(nθ)eiωt (63)

V(x, θ, t) = Vmn sin
(mπx

L

)
sin(nθ)eiωt (64)

W(x, θ, t) = Wmn sin
(mπx

L

)
cos(nθ)eiωt (65)

Φ(x, θ, t) = Φmn sin
(mπx

L

)
cos(nθ)eiωt (66)
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where Umn, Vmn, Wmn and Φmn represent the displacement amplitude components; m and n are mode
numbers; ω represents the natural circular frequency of the porous FGPM nanoshell.

Substituting Equations (63)–(66) into Equations (57)–(60), the following equation can be obtained
q11 q12 q13 q14

q21 q22 q23 q24

q31 q32 q33 q34

q41 q42 q43 q44




Umn

Vmn

Wmn

Φmn

 =


0
0
0
0

 (67)

The elements in the above matrix are given in the Appendix A. Equation (67) gives the
characteristic equation for the natural frequencies of the porous FGPM cylindrical nanoshell. To
obtain a nontrivial solution, the determinant of the coefficient matrix must be set to zero.

3.2. Galerkin Solution

For clamped-simply supported (C-SS) and clamped-clamped (C-C) boundary conditions, the
spatial displacement field of the porous FGPM nanoshell is expressed as [46]:

U(x, θ, t) = Umn
∂φ(x)

∂x
cos(nθ)eiωt (68)

V(x, θ, t) = Vmn φ(x) sin(nθ)eiωt (69)

W(x, θ, t) = Wmn φ(x) cos(nθ)eiωt (70)

Φ(x, θ, t) = Φmn φ(x) cos(nθ)eiωt (71)

Thereinto, the axial modal beam function φ(x) could be written as:

φ(x) = c1 cosh
(

λix
L

)
+ c2 cos

(
λix
L

)
− ζi

[
c3sinh

(
λix
L

)
+ c4 sin

(
λix
L

)]
(72)

where the constants c1, c2, c3, c4, ζi and λi (i = 1, 2, 3, 4 . . . ) are given in Table 1.

Table 1. Values of c1, c2, c3, c4, ζi and λi for different boundary conditions.

Boundary Condition c1 c2 c3 c4 ζi λi

C-SS 1 −1 1 −1 cosh(λi)−cos(λi)
sinh(λi)−sin(λi)

3.9266 7.0686 10.2102 13.3518 . . .

C-C 1 −1 1 −1 cosh(λi)−cos(λi)
sinh(λi)−sin(λi)

4.7300 7.8532 10.9956 14.1372 . . .

Inserting Equations (68)–(71) in Equations (57)–(60) and applying the Galerkin method, we obtain:

(
K−ω2M

)
Umn

Vmn

Wmn

Φmn

 =


0
0
0
0

 (73)

in which the matrices M and K are the mass matrix and stiffness matrix of the porous FGPM cylindrical
nanoshell, respectively.

To find the non-zero solutions, the determinant of the coefficient matrix must be equal to zero.
Then, natural frequencies of FGPM nanoshells with nano-voids can be determined [47–54].

4. Results and Discussion

For examining the validity of the present analysis, the comparison is performed on natural
frequencies of a PZT-4 piezoelectric cylindrical nanoshell. Tables 2–4 list the natural frequencies of the
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piezoelectric nanoshell under different boundary conditions with h = 1 nm, R/h = 50, L/R = 12, m = 1,
∆T = 0, and V0 = 0. Material properties of PZT-4 are shown in Table 5. It is found that the present
results match those given by Ke et al. [31] very well, bespeaking the validity of the present study.

Table 2. Comparison of natural frequency ω(GHz) of a SS-SS homogeneous piezoelectric nanoshell
(µ = e0a/L).

n
µ = 0.02 µ = 0.04

Ke et al. [31] Present Ke et al. [31] Present

1 0.4448 0.4448 0.4105 0.4105
2 0.2190 0.2190 0.1748 0.1748
3 0.4296 0.4296 0.3016 0.3016
4 0.7235 0.7235 0.4630 0.4630
5 1.0361 1.0361 0.6223 0.6223
6 1.3532 1.3532 0.7780 0.7780
7 1.6694 1.6694 0.9309 0.9309
8 1.9829 1.9829 1.0827 1.0827
9 2.2933 2.2933 1.2310 1.2310

10 2.6008 2.6008 1.3791 1.3791

Table 3. Comparison of natural frequency ω(GHz) of a C-SS homogeneous piezoelectric nanoshell
(µ = e0a/L).

n
µ = 0.02 µ = 0.04

Ke et al. [31] Present Ke et al. [31] Present

1 0.6189 0.6539 0.5710 0.6031
2 0.2701 0.2751 0.2155 0.2195
3 0.4357 0.4362 0.3058 0.3061
4 0.7247 0.7248 0.4637 0.4638
5 1.0365 1.0367 0.6225 0.6226
6 1.3534 1.3535 0.7781 0.7782
7 1.6695 1.6696 0.9309 0.9310
8 1.9830 1.9831 1.0817 1.0818
9 2.2934 2.2935 1.2310 1.2311

10 2.6008 2.6009 1.3791 1.3792

Table 4. Comparison of natural frequency ω(GHz) of a C–C homogeneous piezoelectric nanoshell
(µ = e0a/L).

n
µ = 0.02 µ = 0.04

Ke et al. [31] Present Ke et al. [31] Present

1 0.7987 0.8487 0.7368 0.7823
2 0.3386 0.3488 0.2702 0.2782
3 0.4458 0.4472 0.3129 0.3138
4 0.7266 0.7268 0.4649 0.4651
5 1.0371 1.0373 0.6228 0.6229
6 1.3536 1.3538 0.7782 0.7783
7 1.6696 1.6698 0.9310 0.9311
8 1.9830 1.9832 1.0818 1.0819
9 2.2934 2.2936 1.2310 1.2311

10 2.6008 2.6010 1.3791 1.3792
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Table 5. Material properties of PZT-4 and PZT-5H [31,55].

Material PZT-4 PZT-5H

Elastic constants (GPa) c11 = 132, c12 = 71, c13 = 73, c22 = 132,
c23 = 73, c33 = 115, c66 = 30.5

c11 = 126, c12 = 79.1, c13 = 83.9, c22 = 139,
c23 = 83.9, c33 = 117, c66 = 23.5

Piezoelectric constants (C/m2) e31 = −4.1, e32 = −4.1, e33 = 14.1 e31 = −6.5, e32 = −6.5, e33 = 23.3
Dielectric constants (10−9 C/Vm) s11 = 5.841, s33 = 7.124 s11 = 15.05, s33 = 13.02

Thermal moduli (105 N/km2) β11 = 4.738, β22 = 4.738, β33 = 4.529 β11 = 4.738, β22 = 4.738, β33 = 4.529
Pyroelectric constant (10−6 C/N) p3 = 25 p3 = 25

Mass density (kg/m3) ρ = 7500 ρ = 7500

In the following sections, free vibration of the porous FGPM cylindrical nanoscale shell shown in
Figure 1 is performed; the material properties of the nanoshell are displayed in Table 5. If not specified,
the following parameters are used:

h = 0.1 nm, R/h = 50, L/R = 6,
m = 1, N = 1, α = 0.1, V0 = 0, ∆T = 0, e0a = 2 nm

In Tables 6–8, the variation of natural frequency of the FGPM-I nanoshell against the
circumferential wave number is represented for different porosity volume fractions and different
boundary conditions, where N = 20. Among them, α = 0 corresponds to the FGPM cylindrical
nanoshell without nano-voids. The results reveal that the natural frequency decreases as the porosity
volume fraction increases. With the increase of the circumferential wave number, it is seen that the
natural frequency decreases first and then increases. In addition, under the same condition, the SS-SS
porous FGPM nanoshell has the lowest natural frequency while the C-C one has the highest natural
frequency. This is because the end support is the weakest (in terms of stiffness) for the SS-SS FGPM
nanoshell and the strongest for the C-C one. Under the SS-SS boundary condition, it is seen that the
minimum natural frequency occurs at n = 3. Therefore, the fundamental frequency of the SS-SS FGPM
nanoshell corresponds to mode (m = 1, n = 3). In the next studies, the SS-SS FGPM nanoshell is taken
as an example and the mode (1,3) is chosen as a representative mode.

Table 6. Variation of the natural frequency ω(GHz) against the circumferential wave number n for
different porosity volume fractions α of FGPM-I nanoshell (SS-SS).

n α = 0 α = 0.1 α = 0.2

1 12.216 12.120 11.998
2 4.212 4.176 4.131
3 3.575 3.554 3.528
4 5.129 5.109 5.084
5 6.934 6.912 6.884
6 8.737 8.712 8.680
7 10.514 10.486 10.450
8 12.267 12.235 12.195
9 14.000 13.965 13.920
10 15.718 15.679 15.630
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Table 7. Variation of the natural frequency ω(GHz) against circumferential wave number n for different
porosity volume fractions α of FGPM-I nanoshell (C-SS).

n α = 0 α = 0.1 α = 0.2

1 15.958 15.833 15.675
2 6.000 5.951 5.889
3 4.042 4.017 3.985
4 5.223 5.202 5.176
5 6.961 6.939 6.911
6 8.750 8.724 8.692
7 10.522 10.493 10.458
8 12.273 12.241 12.201
9 14.005 13.969 13.925
10 15.722 15.683 15.634

Table 8. Variation of the natural frequency ω(GHz) against circumferential wave number n for different
porosity volume fractions α of FGPM-I nanoshell (C-C).

n α = 0 α = 0.1 α = 0.2

1 18.371 18.228 18.048
2 7.670 7.609 7.531
3 4.657 4.626 4.587
4 5.365 5.343 5.314
5 7.000 6.977 6.948
6 8.763 8.738 8.706
7 10.529 10.500 10.464
8 12.277 12.245 12.205
9 14.008 13.972 13.928
10 15.724 15.685 15.636

Natural frequency against the radius-to-thickness ratio for different porosity volume fractions
is plotted for the FGPM-I nanoshell in Table 9. As the radius-to-thickness ratio increases, one can
see that the natural frequency decreases initially and then increases; the frequency does not change
monotonously with the radius-to-thickness ratio.

Table 9. Variation of natural frequency ω(GHz) against the radius-to-thickness ratio R/h for different
porosity volume fractions of FGPM-I nanoshell (n = 3, L = 300 h, N = 20).

R/h α = 0 α = 0.1 α = 0.2

50 3.575 3.554 3.528
55 3.353 3.332 3.304
60 3.239 3.217 3.189
65 3.211 3.187 3.158
70 3.248 3.223 3.192
75 3.333 3.307 3.274
80 3.452 3.425 3.390
85 3.594 3.565 3.529
90 3.751 3.721 3.683
95 3.917 3.885 3.845

100 3.575 3.554 3.528

Figure 2 presents the effect of temperature change on the natural frequency of the FGPM-I
nanoshell. The natural frequency decreases with the increase of temperature change. This is due to the
fact that the larger temperature change results in a reduction in the stiffness and hence leads to the
lower natural frequency of the porous FGPM nanoshell.
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Figure 2. Variation of natural frequency ω(GHz) against temperature change 4T (◦C) for different
porosity volume fractions of the FGPM-I nanoshell (n = 3, N = 20).

Table 10 illustrates the natural frequency against the circumferential wave number for different
power-law indexes of the FGPM-I nanoshell. The natural frequencies of the FGPM nanoshell decreases
with the increase of the power-law index. Additionally, it is seen that the fundamental natural
frequency occurs at mode (m = 1, n = 3), which does not change with the power-law index.

Table 10. Variation of the natural frequency ω(GHz) against circumferential wave number n for
different power-law indexes N of FGPM-I nanoshell.

n N = 0.3 N = 1 N = 5

1 13.474 12.852 12.305
2 4.437 3.982 3.967
3 3.422 2.950 3.088
4 5.027 4.656 4.735
5 6.929 6.602 6.630
6 8.822 8.512 8.503
7 10.680 10.376 10.336
8 12.508 12.203 12.135
9 14.312 14.002 13.908
10 16.097 15.779 15.661

Figure 3 gives the variation of the natural frequency against the length-to-radius ratio for different
power-law indexes. As a whole, it is observed that the natural frequency is quite susceptive to the
length-to-radius ratio when this ratio is small; the frequency drops quickly as the length-to-radius
ratio increases of the porous FGPM nanoshell. However, when L/R > 15, the natural frequency is no
longer sensitive to the length-to-radius ratio change.
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Figure 3. Variation of natural frequency ω(GHz) against length-to-radius ratio for different power-law
indexes N of FGPM-I nanoshell (n = 3).

Figure 4 presents the variation of natural frequency against the radius-to-thickness ratio for
different power-law indexes. The natural frequency decreases first and then increases as the
radius-to-thickness ratio increases. A trend can also be observed that the natural frequency decreases
gradually with the increase of the power-law index.

Figure 4. Variation of the natural frequency ω(GHz) against the radius-to-thickness ratio for different
power-law indexes N of FGPM-I nanoshell (n = 3, L = 300 h).

The variation of the natural frequency against external electric potential V0 for different power-law
indexes is presented in Figure 5. Here, N = 0 corresponds to the cylindrical nanoshell made of pure
PZT-4. As we can see, the natural frequency is quite sensitive to the applied external electric voltage.
The natural frequency decreases as the voltage changes from V0 = −0.0002 V to 0.0002 V. The reason is
that the axial and circumferential compressive and tensile forces are generated in the porous FGPM
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nanoshells by the applied positive and negative voltages, respectively. Thereinto, the applied positive
voltage reduces the nanoshell stiffness but the negative voltage increases the nanoshell stiffness.

Figure 5. Variation of natural frequency ω(GHz) against external electric potential V0 for different
power-law indexes of FGPM-I nanoshell (n = 1).

Table 11 presents the variation of nonlocal parameter against natural frequency of the FGPM-I
nanoshell. One can see that the frequency decreases gradually with the increasing nonlocal parameter.
This is because the nonlocal effect tends to decrease the stiffness of the nanoshell and hence decreases
the natural frequency. This phenomenon was also found in nano-beams and nano-plates [56–58].

Table 11. Variation of natural frequency ω(GHz) against the circumferential wave number n for
different nonlocal parameter e0a of FGPM-I nanoshell.

n e0a = 0 e0a = 1 nm e0a = 1.5 nm e0a = 2 nm

1 14.101 13.755 13.356 14.101
2 5.168 4.775 4.392 5.168
3 4.650 3.971 3.433 4.650
4 8.839 6.879 5.630 8.839
5 14.826 10.455 8.193 14.826
6 22.203 14.182 10.752 22.203
7 30.928 17.943 13.267 30.928
8 40.993 21.693 15.738 40.993
9 52.398 25.414 18.172 52.398

10 65.143 29.101 20.575 65.143

In order to reveal the porosity type effect, the natural frequency against the circumferential wave
number for FGPM-I and FGPM-II nanoshells is plotted in Figure 6. One can see that the natural
frequency of the FGPM-II nanoshell is close to that of the FGPM-I one at small circumferential wave
number. However, the natural frequency of the FGPM-II nanoshell becomes higher than that of its
FGPM-I counterpart with the rise of circumferential wave number. The difference between them gets
more and more obvious as the circumferential wave number increases further.
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Figure 6. Variation of the natural frequency ω(GHz) against the circumferential wave number of
different types of porous FGPM nanoshell.

Table 12 gives the natural frequencies of FGPM-I and FGPM-II nanoshells for various porosity
volume fractions. One can find that the larger nano-void volume fraction leads to the lower natural
frequency of the FGPM-I nanoshell, while it leads to the higher natural frequency of the FGPM-II
nanoshell. Therefore, it can be concluded that the porosity distribution type has a notable impact on
vibration characteristics of FGPM nanoshells.

Table 12. Variation of natural frequency ω(GHz) against length-to-radius ratio L/R of different types
of porous FGPM cylindrical nanoshell (n = 3, N = 20).

L/R
α = 0 α = 0.1 α = 0.2

Prefect FGPM-I FGPM-II FGPM-I FGPM-II

6 3.575 3.554 3.609 3.528 3.643
12 3.168 3.151 3.208 3.130 3.249
18 3.137 3.121 3.177 3.100 3.218
24 3.130 3.114 3.170 3.093 3.211
30 3.127 3.111 3.168 3.091 3.209
36 3.126 3.110 3.166 3.090 3.208
42 3.126 3.109 3.166 3.089 3.207
48 3.125 3.109 3.165 3.089 3.207

5. Conclusions

In this work, free vibration of porous FGPM nanoshells subjected to thermal and electrical loads
is studied in the framework of Love’s shell theory and nonlocal elasticity theory. Size-dependent
governing equations and boundary conditions are obtained based on Hamilton’s principle. Then,
natural frequencies of the porous FGPM cylindrical nanoshells are obtained via the Navier method as
well as the Galerkin method. The following conclusions were drawn:

(1) The fundamental natural frequency of the porous FGPM nanoshell decreases initially and then
increases as the radius-to-thickness ratio increases. Furthermore, the fundamental frequency
decreases with the rise of the length-to-radius ratio; especially, the frequency changes notably
when the length-to-radius ratio is small;

(2) Applying positive voltage decreases the stiffness while applying negative voltage increases the
stiffness of the porous FGPM cylindrical nanoshell. Furthermore, the temperature rise results in
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a reduction in the stiffness. In addition, the larger power-law index leads to the lower natural
frequencies of the porous FGPM cylindrical nanoshell;

(3) The nonlocal parameter has a softening effect on the free vibrations of the porous FGPM
nanoscale shells;

(4) The Galerkin solution procedure is an alternative method, which can give numerical results with
satisfactory accuracy;

(5) Increasing the porosity volume fraction has a different effect on the natural frequencies of the
FGPM-I and FGPM-II nanoshells, which shows that the porosity distribution type plays a notable
role on vibration characteristics of the FGPM nanoscale shells.
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Appendix A

q11 =
(−A66n2−A11km

2R2+a2e0
2 I1n2ω2+I1R2ω2+a2e0

2 I1km
2R2ω2)

R2

q12 = (A12kmnR+A66kmnR)
R2

q13 =
(B12kmn2+2B66kmn2+A12kmR+B11km

3R2)
R2

q14 = F31km

q21 = − (−A12kmn−A66kmn−B12kmn−B66kmn)
R

q22 = − 1
R4

(
D22n2 + B11n2R3 + D66km

2R2 + A22n2R2 + B66km
2R3

+ A66km
2R4 − a2e0

2 I1n2R2ω2 − I1R4ω2 − a2e0
2 I1km

2R4ω2)
q23 = − (D22n3+B11n3R+A22nR2+D12km

2nR2+2D66km
2nR2+B12km

2nR3+2B66km
2nR3)

R4

q24 = − (E32nR2+F31nR3)
R4

q31 = − (−B12kmn2−2B66kmn2−A12kmR−B11km
3R2)

R2

q32 = − 1
R4

(
D22n3 + B11n3R + A22nR2 + D12km

2nR2

+2D66km
2nR2 + B12km

2nR3 + 2B66km
2nR3)

q33 = − 1
R4

(
D22n4 + B11n2R + A22R2 + 2D12km

2n2R2 + 4D66km
2n2R2 − n2Nθ1R2

− a2e0
2km

2n2Nθ1R2 + B12km
2R3 + D11km

4R4 − km
2Nx1R4 − a2e0

2km
4Nx1R4

−a2e0
2 I1n2R2ω2 − I1R4ω2 − a2e0

2 I1km
2R4ω2)

q34 = − (E32n2+F31R+E31km
2R2)

R2

q41 = −F31km

q42 = − (−E32n−F31nR)
R2

q43 = − (−E32n2−E31km
2R2)

R2

q44 = −
(
km

2X11 + n2X22 + X33
)

(A1)

where km = mπ/L.
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