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Abstract: Magnetic iron oxide (Magnetite, Fe3O4) nanoparticles are widely utilized in magnetic
resonance imaging (MRI) and drug delivery applications due to their superparamagnetism.
Surface coatings are often employed to change the properties of the magnetite nanoparticles or
to modulate their biological responses. In this study, magnetite nanoparticles were fabricated
through hydrothermal synthesis. Hydrophobicity is often increased by surface modification with
oleic acid. In this study, however, hydrophobicity was introduced through surface modification
with n-octyltriethoxysilane. Both the uncoated (hydrophilic) and coated (hydrophobic) individual
nanoparticle sizes measured below 20 nm in diameter, a size range in which magnetite nanoparticles
exhibit superparamagnetism. Both types of nanoparticles formed aggregates which were
characterized by SEM, TEM, and dynamic light scattering (DLS). The coating process significantly
increased both individual particle diameter and aggregate sizes. We tested the neurotoxicity of newly
synthesized nanoparticles with two mammalian cell lines, PC12 (rat pheochromocytoma) and ReNcell
VM (human neural stem cells). Significant differences were observed in cytotoxicity profiles, which
suggests that the cell type (rodent versus human) or the presence of serum matters for nanoparticle
toxicology studies. Differences in nanoparticle associations/uptake between the two cell types were
observed with Prussian Blue staining. Finally, safe concentrations which did not significantly affect
neuronal differentiation profiles were identified for further development of the nanoparticles.

Keywords: nanoparticles; magnetite; Fe3O4; hydrothermal synthesis; surface functionalization; stem
cells; neuronal differentiation; biocompatibility; neurotoxicity; cytotoxicity

1. Introduction

Magnetic nanoparticles (NPs), usually made from iron (II, III) oxide (magnetite, Fe3O4), are widely
utilized in various biomedical applications such as targeted drug delivery [1,2] and as contrast agents
in magnetic resonance imaging (MRI) [3–5]. Materials that are ferromagnetic and ferrimagnetic possess
spontaneous magnetic domains, which are regions within the materials where the individual atom’s
magnetic moments are aligned. At a small enough size, only a single domain will be formed, leading to
strong magnetization within a magnetic field. This phenomenon, called superparamagnetism, occurs in
nanoparticles of a certain size. The size required to induce superparamagnetism is material-dependent,
but is frequently found within the range of 10–20 nm [6]. A notable property of superparamagnetic
materials is that they are unable to retain their magnetization when the magnetic field is removed.
This lack of magnetic memory allows the nanoparticles to not aggregate due to magnetic polarity,
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allowing them to maintain their colloidal stability and avoid any embolization of the blood vessels
when they are utilized in vivo [6,7].

Initial investigations on superparamagnetic NPs have limited reports on biological responses,
but rather focused on synthesis routes and characterization of the physicochemical properties [7].
Crystallinity, size control, and shape are among the important considerations for selecting a process
for the chemical synthesis of magnetic nanoparticles [8,9]. This study uses hydrothermal synthesis,
which produces particles through the process of subjecting a high temperature aqueous solution to
high vapor pressure [10]. The size of the resulting NPs produced by this method can be controlled
by reactant concentration, reaction time, and temperature [11,12]. Compared to other methods, such
as chemical and biosynthesis of magnetite [13–15], hydrothermal synthesis can be performed as a
one-pot reaction. In addition, using ethylene glycol as the solvent alleviates the oxidation of Fe2+,
allowing the reaction to proceed in the presence of oxygen [16]. When coated with various functional
groups, Fe3O4 NPs can present differences in cytotoxicity and genotoxicity to different cell types [17].
In addition, when injected in vivo, protein coronas are more likely to form on TiO2 and Au-coated
magnetite NPs compared to polyvinyl alcohol (PVA) and SiO2-coated NPs [18]. In this study, we
investigate the changes to cytotoxicity in vitro after surface coating with n-octyltriethoxysilane. The use
of silane-based coatings for magnetite nanoparticles has been reported to enhance biocompatibility [19].

The toxic effects of magnetic NPs, especially on neural-type cells, have been of strong interest due
to increased use as MRI contrast agents [20–23]. Moreover, these NPs have been reported to possess
the ability to cross the blood-brain barrier (BBB) and directly reach the brain tissue [24,25]. In the
literature, neurotoxicity of magnetic NPs has been evaluated utilizing a variety of neural-type cells
including neuronal cancer and neural progenitor cells, from non-human mammals and humans [26–30].
Ultimately, while a certain degree of neurotoxicity has been observed from these nanoparticles, it is
difficult to compare existing biological results between studies due to differences in NP synthesis
conditions, surface modifications, and cell types. As seen in Figure 1, the main objective of this study
was to evaluate the neurotoxicity of magnetite NPs synthesized via hydrothermal synthesis with PC12
rat pheochromocytoma and ReNcell VM, an immortalized human neural stem cell line [31]. Compared
to neural stem cells, the PC12 cell line is an inexpensive model for neuronal studies and has been
utilized for nanoparticle toxicology studies [32]. Additionally, we evaluate how biological results
are affected when iron oxide nanomaterials are coated with n-octyltriethoxysilane, which results in
hydrophobic surfaces.
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Figure 1. Schematic flow chart for the synthesis of magnetite nanoparticles and biological testing.

2. Materials and Methods

Hydrochloric acid (HCl, A144-500), ferric chloride hexahydrate (I88-100), Hoechst 33342 (62249),
PrestoBlue™ cell viability reagent (A13261), LIVE/DEAD viability/cytotoxicity kit (L3224), and
donkey anti-rabbit IgG Alexa Fluor 488 (A-21206) were purchased from Thermo Fisher Scientific
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(Waltham, MA, USA). Potassium ferricyanide (20150) was purchased from Electron Microscopy
Sciences (Hatfield, PA, USA). Aluminum potassium sulfate dodecahydrate (36288) was purchased
from Alfa Aesar (Haverhill, MA, USA). Ethylene glycol (044710) was purchased from Oakwood
Chemical (Estill, SC, USA). Ethanol (2701) was purchased from Decon Laboratories, Inc. (King of
Prussia, PA, USA). Glacial acetic acid (423220025), dichloromethane (D37-500), n-octyltriethoxysilane
(338080250), Nuclear Fast Red (211980010), and paraformaldehyde (PFA, 416785000) were purchased
from Acros Organics (part of Thermo Fisher Scientific, Waltham, MA, USA). Deionized water ASTM
Type II (9765-10L) was purchased from Aqua Solutions (Deer Park, TX, USA). RPMI 1640 with
L-glutamine (10040CV), Trypsin-EDTA (25-053-CI), type I rat tail collagen (354236), and 100 ×
penicillin-streptomycin were purchased from Corning, Inc. (Corning, NY, USA). ReNcell VM (RVM,
SCC008), EmbryoMax® Dulbecco’s phosphate buffered saline (PBS) without calcium and magnesium
(BSS-1006-B), ReNcell Maintenance Medium (RMM, SCM005), basic fibroblast growth factor (bFGF,
GF003), epidermal growth factor (GF144), Accutase (SCR005), Dulbecco’s modified Eagle’s medium
with Ham’s F12 supplement (DMEM/F12, DF-041-B), laminin (CC095), β-III tubulin antibody (AB9354),
growth associated protein-43 antibody (GAP-43, AB5220), and FITC-conjugated donkey anti-chicken
IgY secondary antibody (AP194F) were purchased from Millipore Sigma (Burlington, MA, USA).
Type I rat tail collagen was purchased from BD Biosciences (San Jose, CA, USA). BenchMark™
fetal bovine serum (100–106) was purchased from Gemini Bio-Products (Sacramento, CA, USA).
HyClone™ heat-inactivated horse serum (SH30074.02HI) was purchased from GE Life Sciences
(Pittsburgh, PA, USA). Donkey serum (D9663), Triton™ X-100 (X100), nerve growth factor beta (N2513),
sodium acetate trihydrate (S7670-250G), and laminin (L2020) were purchased from Sigma-Aldrich
(St. Louis, MO, USA). Donkey anti-rabbit IgG (H + L) Alexa Fluor 488 secondary antibody and cell
culture plastics including BioLite 96-well plates and 25 (or 75) cm2 flasks were purchased from Thermo
Fisher Scientific (Waltham, MA, USA). The PC12 cell line was kindly provided by Temple University’s
Department of Bioengineering (Philadelphia, PA, USA).

2.1. Hydrothermal Synthesis of Magnetite Nanoparticles

Ferric chloride hexahydrate (405 mg, 1.50 mmol) and sodium acetate trihydrate (1.08 g, 7.9 mmol)
were added to an autoclave vessel (Parr Instrument Company, Moline, IL, USA) along with ethylene
glycol (15 mL, 269 mmol). The autoclave vessel was assembled and placed into a furnace (Barnstead
Thermolyne FB1415M, Waltham, MA, USA) at 200 ◦C for 24 h. After 24 h had passed, the vessel
was removed from the furnace with tongs and allowed to cool to room temperature. Excess ethylene
glycol was removed, and the nanoparticles were transferred to a 50 mL conical tube with 20 mL
of 50% (v/v) ethanol in water. The nanoparticles were dispersed by ultrasonication at 185 W for
5 min (Fisher Scientific FS110D), followed by pelletization via centrifugation at 1000 × g for 5 min.
A magnet was used to pull the smaller magnetic particles to the bottom of the tube. The supernatant
liquid was removed, and the nanoparticles were washed with 20 mL of 50% (v/v) ethanol in water
two more times. After the final wash, nanoparticles were air dried in a chemical fume hood. These
non-functionalized nanoparticles were designated as hydrophilic nanoparticles.

2.2. Hydrophobic Functionalization of Magnetite Nanoparticles

For surface functionalization, the nanoparticles were dispersed in 20 mL of 50% (v/v) ethanol
in water prior to air drying. The coating process utilized to surface modify the nanoparticles with
n-octyltriethoxysilane is based on the Stöber method [33]. The samples were placed on an orbital
shaker (Fisherbrand Incubating Mini-Shaker 02217753) fitted with a 50 mL tube holder. While the
sample was shaking (400 rpm, room temperature), n-octyltriethoxysilane (60 µL, 0.191 mmol) was
added. The sample was left to shake for 24 h. The functionalized nanoparticles were washed and dried
following the protocol above for non-functionalized nanoparticles. The functionalized nanoparticles
were designated as hydrophobic nanoparticles.
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2.3. Electron Microscopy and Nanoparticle Sizing

For scanning electron microscopy (SEM), dried hydrophilic and hydrophobic nanoparticles were
attached to a piece of glass slide using double-sided carbon tape and further dried under vacuum for
1 h. The glass slide was then mounted on an SEM stub using copper tape and sputter coated with gold.
An Agilent 8500 FE-SEM was used to obtain SEM images.

For transmission electron microscopy (TEM), dried hydrophilic and hydrophobic nanoparticles
were suspended at a concentration of 100 µg/mL (in 50/50% v/v ethanol/water) and 2 µL of this
suspension was added to a TEM grid. The sample was air dried overnight and then imaged with a JEOL
JEM 1400 TEM microscope fitted with a GATAN UltraScan 1000 CCD camera. The ImageJ software [34]
was used to size the diameters of individual nanoparticles from TEM images and aggregate sizes were
measured from SEM images. In total, 240 individual nanoparticles were sized across 8 TEM images for
both the hydrophilic and hydrophobic nanoparticles. For aggregate sizing, over 50 aggregates were
sized from across 5 SEM images for both hydrophilic and hydrophobic nanoparticles.

2.4. Dynamic Light Scattering and ζ-Potential

Dynamic light scattering (DLS) and ζ-potential (zeta potential) measurements were conducted on
a Zetasizer Nano ZS (Malvern Panalytical, Malvern, Worcestershire, UK) to assess the hydrodynamic
radii and colloidal stability of nanoparticles, respectively, in aqueous media (pH 7.0). Nanoparticles
were prepared at 0.1 mg/mL concentrations, diluted from a 10 mg/mL stock suspension. Immediately
before measurements, the nanoparticle suspensions were ultrasonicated at 185 W for 5 min (Fisher
Scientific FS110D). Following ultrasonication, the nanoparticle suspensions were transferred into 1 mL
disposable cuvettes with 1 cm path length for DLS and disposable folded capillary cells (DTS1060) for
ζ-potential measurements.

2.5. X-Ray Diffraction

Hydrophilic and hydrophobic nanoparticles samples were probed for Fe3O4 crystal structure
using powder X-ray diffraction. Samples were ground into fine powder using a glass tissue grinder in a
50 mL conical tube. Spectra was obtained using a Bruker D8 Advance instrument (Billerica, MA, USA)
fitted with a copper X-ray source and a LYNXEYE XE detector. Scattering was attenuated with an
anti-scatter screen and a nickel foil filter to attenuate Kβ radiation. The spectra were obtained using
DIFFRAC.SUITE software and post-analysis was done using DIFFRAC.EVA software.

2.6. Nanoparticle Sterilization

Dried nanoparticles were weighed and suspended in 70% (v/v) ethanol in water. Nanoparticles
were dispersed by ultrasonication at 185 W (Fisher Scientific FS110D) for 5 min, followed by vortexing
for 15 s. The particles were then centrifuged at 7000 × g for 10 min and decanted in a sterile biosafety
cabinet. This was repeated a total of three times. Afterwards, the nanoparticles were washed three times
with sterile deionized water using the same protocol. After the final water wash, the nanoparticles
were dispersed at a final concentration of 10 mg/mL in sterile deionized water.

2.7. Cell Culture

PC12 rat pheochromocytoma cells from adrenal medulla were maintained in RPMI 1640
medium supplemented with 10% heat-inactivated horse serum, 5% fetal bovine serum, and 1%
penicillin-streptomycin (PC12 proliferation medium). The cells were cultured at standard incubation
conditions (5% CO2 at 37 ◦C). Cells were passaged at 70% confluency by incubating the cells with
Trypsin-EDTA. Cells were pelletized by centrifugation at 200 × g and the media were changed every
24 to 48 h. Tissue culture plastic for PC12 culture was collagen-coated prior to cell seeding. Type I
rat tail collagen was diluted to 50 µg/mL in 0.02 M acetic acid, which was filter sterilized through a
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0.22 µm membrane. The collagen solution was incubated for at least 2 h at 37 ◦C. After removing the
collagen solution, the tissue culture plastic was rinsed twice with PBS.

ReNcell VM (RVM) human stem cells were cultured in ReNcell maintenance media supplemented
with 20 ng/mL EGF, 20 ng/mL bFGF, and 1% penicillin-streptomycin (RVM proliferation medium).
Cell culture medium was changed every 24 to 48 h. RVMs were passaged when the flask reached 70%
confluency by treating the cells with Accutase at room temperature for 5 min. Cells were pelletized by
centrifugation at 200 × g for 5 min. Tissue culture plastic for RVM culture was laminin-coated prior to
cell seeding. The laminin was diluted to 20 µg/mL in DMEM/F12 medium and incubated for at least
4 h at 37 ◦C. After removing the laminin solution, the tissue culture plastic was air dried for 5 min.

2.8. Cell Viability and LIVE/DEAD Staining

PC12 and RVM cells were seeded in 96-well plates at a density of 1 × 104 cells per well with 100 µL
proliferation media. The cells were stabilized for 16 to 24 h and media changed prior to treatment
with varying amounts of nanoparticles. After sonication, the sterile 10 mg/mL nanoparticle stock
suspension was diluted to 1 mg/mL with sterile deionized water. Starting at 64 µL (64 µg nanoparticles,
corresponding to approximately 0.39 mg/mL), serial dilutions were performed using sterile deionized
water (1:2 per dilution down to 0.5 µg nanoparticles, corresponding to approximately 0.003 mg/mL).
To each well containing 100 µL proliferation medium, 64 µL of diluted nanoparticle suspensions
were added directly (total final volume 164 µL per well). Sterile deionized water (64 µL) without
nanoparticles was added to control wells. After 24 h, cells were washed three times with PBS. For
quantitative viability analysis, the cells were treated with PrestoBlue™ cell viability reagent following
the manufacturer’s protocol. For LIVE/DEAD staining, 10 µL LIVE/DEAD solution was added to
each well without washing the cells (final concentrations: 2 µM Calcein AM and 4 µM Ethidium
Homodimer-1). After incubation for 30 min, the cells were washed three times with proliferation
medium and imaged with an Olympus IX83-DSU microscope equipped with a Hamamatsu ORCA-R2
CCD camera and a Chamlide LCI live cell imaging stage-top incubator.

2.9. PC12 and RVM Differentiation with Nanoparticles

PC12 cells and RVMs were seeded onto 96-well plates at a density of 1 × 104 cells per well with
100 µL proliferation media. After stabilizing for 16 to 24 h, cells were treated with 1 µg hydrophilic or
hydrophobic nanoparticles, corresponding to a final concentration of approximately 0.006 mg/mL
(164 µL total well volume). After 24 h, nanoparticle-containing medium was removed, and all
wells were washed three times with proliferation media. PC12 cells were differentiated by treating
with 50 ng/mL NGF diluted in RPMI 1640 supplemented with 1% heat-inactivated horse serum
and 1% penicillin-streptomycin (PC12 differentiation medium). RVM cells underwent spontaneous
differentiation upon withdrawal of growth factors, EGF and bFGF, from the proliferation medium
(RVM differentiation medium). The differentiation medium was refreshed every 48 h. The cells were
differentiated for 7 days and then fixed by treating with 4% (w/v) PFA for 10 min. The cells were
washed with PBS three times and were stored at 4 ◦C in PBS until antibody staining.

2.10. Immunocytochemistry

Fixed cells were permeabilized and blocked with a solution of 5% (v/v) donkey serum and 0.3%
(v/v) Triton™ X-100 in PBS for 30 min at room temperature. The samples were then washed three
times with PBS. Primary antibodies (β-III tubulin; AB9354, GAP-43; AB5220) were diluted 1:200 in
blocking solution and samples were incubated for 2 h at room temperature or overnight at 4 ◦C.
Samples were then washed again with the protocol above, followed by incubation with 1:200 diluted
fluorophore-conjugated secondary antibodies for 1 h at room temperature. After another PBS wash,
nuclei were stained with 1 µg/mL Hoechst 33342 in PBS for 15 min at room temperature. The samples
were washed a final time with PBS and were kept hydrated in fresh PBS for imaging on an Olympus
IX83-DSU microscope equipped with a Hamamatsu ORCA-R2 CCD camera.
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ImageJ was used to quantify the expression of β-III tubulin or growth associated protein 43
(GAP-43) from immunocytochemistry samples. The channels for each image were separated and
the nuclei were counted using an in-house programmed ImageJ macro for consistency. Briefly,
the nuclei channel was background subtracted and contrast enhanced, followed by conversion to
binary. The resulting image was analyzed with the particle analysis plug-in with watershed enabled.
The β-III tubulin and GAP-43 fluorescence was background corrected by first duplicating the channel.
A 200-pixel Gaussian blur was applied to the copy, which was then subtracted from the original
image. The resulting image was auto contrast enhanced and merged with the blue nuclei channel.
The number of cells expressing β-III tubulin or GAP-43 was manually counted using the cell counter
plug-in. Total positive expression was calculated from the ratio of β-III tubulin or GAP-43 positive
cells to total nuclei in each individual image.

2.11. Prussian Blue and Nuclear Fast Red Staining

Prussian blue staining was carried out on fixed, differentiated cells using a previously published
procedure by Miyoshi et al. [35]. Identical to the differentiation protocol, cells were treated with
1 µg nanoparticles for 24 h prior to differentiation. This amount of nanoparticles corresponds to
approximately 0.006 mg/mL (164 µL total well volume). A solution of 4% (w/v) potassium ferricyanide
and 4% (v/v) HCl in water were separately prepared by dissolving overnight at room temperature
using a magnetic stirrer. These solutions were then combined at a 1:1 ratio and added to differentiated,
fixed PC12 and RVM cells. The samples were incubated at 37 ◦C for 20 min and then washed three
times with PBS. A solution of 0.1% (w/v) nuclear fast red and 5% (w/v) aluminum sulfate was added
to each well. The samples were incubated for 20 min, followed by sequential washing with PBS three
times and deionized water three times. Images were obtained using an Olympus CKX-41 microscope
equipped with an Infinity1-2CB camera. Using the Prussian blue and nuclear fast red images, the
number of positively stained cells was determined. Positively stained cells were defined as cells with
the Prussian blue stain overlapping the cell body.

2.12. Statistical Analysis

Data analysis was performed using JMP, MATLAB, and Microsoft Excel. A Student’s t test with an
α = 0.05 was performed to compare nanoparticle sizes. For cytotoxicity experiments, treatment groups
were compared by one-way ANOVA and Dunnett’s test against the control group. A p-value less than
0.05 was considered statistically significant. To compare hydrophilic and hydrophobic particles at the
same treatment condition, a Student’s t test with an α = 0.05 was performed.

3. Results

Magnetite nanoparticles were successfully synthesized using the hydrothermal method and
surface functionalized with n-octyltriethoxysilane. The XRD spectra show representative peaks for
magnetite (Fe3O4) in both hydrophilic and hydrophobic nanoparticle samples, as shown in Figure 2.
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The functionalization with n-octyltriethoxysilane increased the hydrophobicity of the magnetite
nanoparticles. In a mixture of 50/50% (v/v) DCM/water, the hydrophobic nanoparticles settle in the
organic phase, while the hydrophilic nanoparticles remain in the aqueous phase, as shown in Figure 3.
Furthermore, the hydrophobic nanoparticles retain their magnetic properties.
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Figure 3. Surface functionalization of iron oxide nanoparticles using n-octyltriethoxysilane.
(First photograph) Hydrophobic magnetite nanoparticles (NPs) phase separate into organic medium.
Left: hydrophilic nanoparticles. Right: hydrophobic nanoparticles. (Second photograph) Hydrophobic
Fe3O4 attracted by a set of magnets.

Electron micrographs of the nanoparticles were acquired for size analysis, as shown in
Figure 4A–D. Diameters of individual nanoparticles dispersed by ultrasonication were measured using
the TEM images, as shown in Figure 4C,D (TEM analysis). The hydrophilic nanoparticles synthesized
using the 24 h hydrothermal synthesis method resulted in an average diameter (±standard deviation)
of 17.9 ± 3.9 nm, as shown in Figure 4E. After hydrophobic coating with n-octyltriethoxysilane,
nanoparticles had an average diameter of 18.7 ± 4.4 nm, as shown in Figure 4F. Although the average
diameters were very similar, the size of individual nanoparticles, as shown in Figure 4C,D after the
n-octyltriethoxysilane surface coating, were found to have a statistically significant increase in diameter
(Student’s t test, p < 0.05, directional test, N = 240 per sample).
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distributions of individual (E) hydrophilic and (F) hydrophobic nanoparticles. Dynamic light 
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nanoparticles. 
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observed in 4, 8, 16, and 32 µg nanoparticle treatment groups (corresponding to approximately 0.024, 
0.049, 0.098, and 0.195 mg/mL, respectively) for RVM cells. At 64 µg (corresponding to approximately 
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Figure 4. Electron microscopy images and size distribution histograms for the synthesized iron oxide
nanoparticles. SEM images of (A) hydrophilic and (B) hydrophobic nanoparticles agglomerations
35,000× with a scale bar of 1 µm. TEM images show agglomerated (left, 30,000×, scale bar = 200 nm)
and individual (right, 100,000×, scale bar = 50 nm) (C) hydrophilic and (D) hydrophobic nanoparticles.
Agglomerated nanoparticles are observed if the sample is not sonicated. After sonication, the majority of
nanoparticles are dispersed. A statistically significant difference was observed in the size distributions
of individual (E) hydrophilic and (F) hydrophobic nanoparticles. Dynamic light scattering (DLS) results
show the aggregation states of (G) hydrophilic and (H) hydrophobic nanoparticles.

Aggregations of nanoparticles were observed by low magnification SEM analysis, as shown
in Figure 4A,B (SEM analysis). Hydrophilic nanoparticle aggregates measured 164.6 ± 33.4 nm in
diameter. After the surface passivation of a hydrophobic component (n-octyltriethoxysilane), the
aggregate size increased to 221.5 ± 52.0 nm, as shown in Figure 4B (SEM analysis). These results
were confirmed with TEM analysis of aggregates at lower magnification, as shown in Figure 4C,D
(TEM analysis). This increase was statistically significant when analyzed via a Student’s t test (N = 52
per sample, p < 0.0001). DLS measurements at 0.1 mg/mL in deionized water indicate formations of
nanoparticle aggregates, as shown in Figure 4G,H. The hydrophilic nanoparticles had a Z-average of
154.9 ± 1.5 nm with a PDI (polydispersity index) of 0.35. In comparison, hydrophobic nanoparticles
had a Z-average of 594.1 ± 36.5 nm with a PDI of 0.47. The ζ-potential for hydrophilic nanoparticles
measured −16.1 ± 5.4 mV while the hydrophobic nanoparticles measured −27.7 ± 8.2 mV.

The nanoparticles were applied to 10,000 RVM and PC12 cells for 24 h, and cell viabilities were
measured using PrestoBlue™, as shown in Figure 5. Both hydrophilic and hydrophobic nanoparticles
were toxic to PC12 cells starting at 2 µg (per 10,000 cells and 164 µL total volume, corresponding to
approximately 0.012 mg/mL) resulting in 82.5% and 90.1% viability values, respectively. For RVM cells,
significant cytotoxicity was observed at 1 µg (corresponding to approximately 0.006 mg/mL) with
only 88.5% and 81.8% viability values after treatment with hydrophilic and hydrophobic nanoparticles,
respectively. For both cell lines, the hydrophobic coating attenuated cytotoxic effects at various
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concentrations. In PC12 cells, 64 µg of hydrophobic nanoparticles (corresponding to approximately
0.39 mg/mL) resulted in 71.8% viability values while the hydrophilic nanoparticles only showed
37.5% viability. The reduced cytotoxicity from the hydrophobic coating was also observed in 4, 8, 16,
and 32 µg nanoparticle treatment groups (corresponding to approximately 0.024, 0.049, 0.098, and
0.195 mg/mL, respectively) for RVM cells. At 64 µg (corresponding to approximately 0.39 mg/mL),
this effect was not observed in RVM cells due to low viabilities at 7.0% and 9.7% for hydrophilic and
hydrophobic nanoparticle treatment groups, respectively.Nanomaterials 2019, 9, x FOR PEER REVIEW   9 of 19 
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*** p < 0.001.

Cells were, in addition, stained with the LIVE/DEAD assay for live-cell fluorescence imaging,
as shown in Figures 6–9. At 0.5 µg (not shown, corresponding to approximately 0.003 mg/mL),
no discernible changes to cell viability were detected and morphological differences were not
observed. Some changes in cell morphology occur as nanoparticle amount is increased from 1 to 16 µg
(corresponding to 0.006 and 0.098 mg/mL, respectively). There were more rounded cells and less
neurites were observed in the RVM cells. With PC12 cells, the normal morphology is more rounded, so
it is difficult to assess morphological changes. The 32 and 64 µg treatments (not shown, corresponding
to 0.195 and 0.39 mg/mL, respectively) formed dense aggregations in the medium which did not allow
for a clear visualization of cell morphology. LIVE/DEAD fluorescence results indicate large quantities
of dead cells with increasing nanoparticle amount. The hydrophobic nanoparticles were also seen
to form denser aggregates compared to hydrophilic nanoparticles, corresponding to SEM and DLS
aggregate size analysis results.
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counting more than 1,100 cells per condition over multiple plates and images, it was determined that 
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Figure 9. LIVE/DEAD assay results of RVM cells treated with hydrophobic iron oxide nanoparticles
after 24 h. Calcein (green) indicates live cells while ethidium homodimer-1 (red) indicates dead cells.
Scale bar = 50 µm.

To further investigate the neurotoxic effects of the nanoparticles, neuronal differentiation was
carried out after exposing the cells to nanoparticles for 24 h. After 7 days in differentiation medium,
PC12 cells were stained for GAP-43 (neuronal growth cone marker) and RVM cells were stained
for β-III tubulin (early neuronal differentiation marker). Fluorescence images were obtained, and
the number of positively-stained cells were manually counted in ImageJ, as shown in Figure 10.
After counting more than 1,100 cells per condition over multiple plates and images, it was determined
that 24 h treatment with 1 µg nanoparticles (corresponding to 0.006 mg/mL) presented no statistical
significance in differentiation characteristics compared to control group cells (for each cell line).
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Figure 10. Immunocytochemistry of PC12 and RVM differentiated for 1 week after 24 h treatment with 
nanoparticles. PC12 cells were stained for GAP-43, a neuronal growth cone marker and RVM were 
stained for β-III tubulin, a neuronal differentiation marker. No significant differences were observed 
between the treatment and control groups. N ≥ 1,100 cells counted per condition and cell line. Scale bar 
= 50 µm. 

Prussian blue staining was performed to locate the iron oxide nanoparticles relative to the cells 
after differentiation, as shown in Figure 11. Nuclear fast red was used as a counterstain. The 
hydrophilic nanoparticles were observed in 18.7 ± 6.2% of PC12 cells compared to 41.5 ± 16.7% for 
hydrophobic nanoparticles. On the other hand, no statistical significance was observed between 
hydrophilic and hydrophobic particles for RVM cells which resulted in 31.4 ± 14.0% and 34.0 ± 9.7% 
associations, respectively. When comparing the two cell types, however, the RVM cells had a 
significantly increased association of hydrophilic nanoparticles while PC12 cells had a significantly 
higher association of hydrophobic nanoparticles. These results suggest that iron oxide nanoparticles 
are, in fact, interfaced to the mammalian cells that underwent cellular differentiation, but we cannot 
necessarily distinguish whether the nanoparticles have been internalized or not. The goal of this 
study was to treat the cells with the synthetic iron oxide nanoparticles and determine if neuronal 
differentiation was affected. Based on the immunofluorescence staining for differentiation markers 
as shown in Figure 10, iron oxide nanoparticles at 1 µg per 10,000 cells (regardless of their 
hydrophilicity or hydrophobicity) did not alter the differentiation profiles for PC12 and RVM cells 
(no neurotoxicity is observed at this concentration). 
  

Figure 10. Immunocytochemistry of PC12 and RVM differentiated for 1 week after 24 h treatment
with nanoparticles. PC12 cells were stained for GAP-43, a neuronal growth cone marker and RVM
were stained for β-III tubulin, a neuronal differentiation marker. No significant differences were
observed between the treatment and control groups. N ≥ 1,100 cells counted per condition and cell
line. Scale bar = 50 µm.

Prussian blue staining was performed to locate the iron oxide nanoparticles relative to the
cells after differentiation, as shown in Figure 11. Nuclear fast red was used as a counterstain.
The hydrophilic nanoparticles were observed in 18.7 ± 6.2% of PC12 cells compared to 41.5 ± 16.7%
for hydrophobic nanoparticles. On the other hand, no statistical significance was observed
between hydrophilic and hydrophobic particles for RVM cells which resulted in 31.4 ± 14.0% and
34.0 ± 9.7% associations, respectively. When comparing the two cell types, however, the RVM cells had
a significantly increased association of hydrophilic nanoparticles while PC12 cells had a significantly
higher association of hydrophobic nanoparticles. These results suggest that iron oxide nanoparticles
are, in fact, interfaced to the mammalian cells that underwent cellular differentiation, but we cannot
necessarily distinguish whether the nanoparticles have been internalized or not. The goal of this
study was to treat the cells with the synthetic iron oxide nanoparticles and determine if neuronal
differentiation was affected. Based on the immunofluorescence staining for differentiation markers as
shown in Figure 10, iron oxide nanoparticles at 1 µg per 10,000 cells (regardless of their hydrophilicity
or hydrophobicity) did not alter the differentiation profiles for PC12 and RVM cells (no neurotoxicity
is observed at this concentration).
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Figure 11. Brightfield microscopy images of PC12 and RVM cells after 24 h of nanoparticle treatment 
followed by 7 day differentiation. (A) Prussian blue visualizes the remaining iron oxide and nuclear 
fast red is used as the counterstain. Black arrows indicate iron oxide particles associated with the cells. 
Scale bar = 10 µm. (B) Prussian blue positive cell count analysis results. N ≥ 460 cells over 25 images 
per condition. * p < 0.05, *** p < 0.001. 
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Hydrothermal synthesis has been utilized for synthesizing magnetite particles [10]. A source of 
Fe3+ ions, such as ferric chloride in water, is heated in the presence of ethylene glycol, which acts as a 
reducing agent to produce Fe2+ ions [36,37]. Both Fe2+ and Fe3+ ions must be present because both ions 
are within the structure of iron (II, III) oxide. An electrostatic stabilizer such as sodium acetate is also 
needed to prevent particle agglomeration during synthesis [10,38]. The method presented in this 
paper involves hydrated forms of ferric chloride and sodium acetate in ethylene glycol. The reaction 
mixture is placed within an autoclave vessel and nanocrystals form as the vessel is heated to 200 °C 
and kept constant for 24 h [38]. This process produces iron oxide (magnetite) nanoparticles through 
the following series of reactions (Scheme 1) [39]: 

Figure 11. Brightfield microscopy images of PC12 and RVM cells after 24 h of nanoparticle treatment
followed by 7 day differentiation. (A) Prussian blue visualizes the remaining iron oxide and nuclear
fast red is used as the counterstain. Black arrows indicate iron oxide particles associated with the cells.
Scale bar = 10 µm. (B) Prussian blue positive cell count analysis results. N ≥ 460 cells over 25 images
per condition. * p < 0.05, *** p < 0.001.

4. Discussion

Hydrothermal synthesis has been utilized for synthesizing magnetite particles [10]. A source of
Fe3+ ions, such as ferric chloride in water, is heated in the presence of ethylene glycol, which acts as a
reducing agent to produce Fe2+ ions [36,37]. Both Fe2+ and Fe3+ ions must be present because both
ions are within the structure of iron (II, III) oxide. An electrostatic stabilizer such as sodium acetate is
also needed to prevent particle agglomeration during synthesis [10,38]. The method presented in this
paper involves hydrated forms of ferric chloride and sodium acetate in ethylene glycol. The reaction
mixture is placed within an autoclave vessel and nanocrystals form as the vessel is heated to 200 ◦C
and kept constant for 24 h [38]. This process produces iron oxide (magnetite) nanoparticles through
the following series of reactions (Scheme 1) [39]:
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iron oxide nanoparticles, as shown in Figure 3, but it also resulted in the formation of significantly 
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A critical reaction step is the formation of acetaldehyde by the dehydration of ethylene glycol
in a pinacol rearrangement [40]. Acetaldehyde is most commonly known as a byproduct of alcohol
metabolism in the body. In excess, acetaldehyde has been suggested to be carcinogenic [41,42].
The major byproduct of this reaction, however, has been reported to be diacetyl which forms after
the reduction of Fe(III) to Fe(II) by acetaldehyde [43]. Recently, exposure to acetyls has been linked to
the development of obliterative bronchiolitis [44]. Although the presence of acetaldehyde and acetyls
were not tested in this study, care should be taken during synthesis to avoid exposure. The autoclave
vessel must be allowed to cool to room temperature, and reaction products should be handled in a
chemical fume hood with proper personal protective equipment.

The size of the individual magnetite nanoparticles is of great importance since
superparamagnetism occurs in a specific size range, as previously stated in the introduction. Using
the hydrothermal synthesis method, magnetite nanoparticles could be prepared in a size range with
superparamagnetic properties. The size of the nanoparticles also play a vital role in uptake by
cells, with larger nanoparticles generally exhibiting reduced uptake [45]. Aggregations (such as the
ones seen in Figure 4) can affect biological results such as cytotoxicity and stem cell differentiation
and must be taken into consideration when interpreting these results [46,47]. We observed that
the bulk of the as-prepared nanoparticles were agglomerates as seen in Figure 4, which was
confirmed by SEM, TEM, and DLS. Such agglomerated iron oxide nanoparticles have been reported
by others [36,37,48,49]. We, however, as detailed in the sterilization process, went through a series
of ultrasonication steps prior to cell testing, so we needed to fully characterize what was actually
tested with the cells. It is important to point out that the tested samples contained a mixture
of dispersed and agglomerated nanoparticles as seen in Figure 4. Based on volume calculations,
hydrophilic nanoparticle agglomerates were made of approximately 9 individual nanoparticles, while
the hydrophobic nanoparticle agglomerates were made of approximately 31 individual nanoparticles.
Surface functionalization with n-octyltriethoxysilane led to increased hydrophobicity of the magnetic
iron oxide nanoparticles, as shown in Figure 3, but it also resulted in the formation of significantly
larger aggregates as seen in the DLS data. The heterogeneity of particle sizes was difficult to hypothesis
test against cytotoxicity since both hydrophilic and hydrophobic nanoparticles were mixtures of
agglomerates and dispersed particles. To find a potential reason for our cytotoxicity data difference
between PC12 and RVM cells as shown in Figure 5, we looked further into utilizing DLS and
ζ-potential measurements.

The uncoated hydrophilic Fe3O4 nanoparticles had a ζ-potential measured within previously
reported value ranges (−2 to −17 mV) at neutral pH [50–52]. The ζ-potential depends heavily
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on pH and electrolytes in the medium, as well as material properties resulting from synthesis,
leading to variations. Based on our ζ-potential measurements, the silica-coated hydrophobic
nanoparticles had higher net negative-charge (−27.7 ± 8.2 mV) in aqueous medium compared
to the uncoated hydrophilic Fe3O4 nanoparticles. This is likely due to hydrophilic Fe3O4 having
less deprotonated surface hydroxy (OH) groups compared to the network silica resulting from the
n-octyltriethoxysilane reactions. There have been reports that higher negative-charge on nanoparticles
affect uptake properties [53]. It is widely agreed that aside from size and surface charge, hydrophobicity
plays an important role in the cytotoxicity of nanoparticles. There are conflicting results in the
literature regarding hydrophobic coatings and their effects on cytotoxicity. For example, some
studies have shown that adding a hydrophobic coating such as oleic acid can reduce the cytotoxicity
of nanoparticles [54], while other studies have suggested that cytotoxicity and genotoxicity are
induced [26,55]. Thus, modulating the hydrophobicity of the nanoparticles is an important factor for
biological applications. In the future, we plan to investigate hydrophilic coatings as a way to reduce
aggregation [56]. The changes in biocompatibility as shown in Figure 5 may be due to increased
interactions of nanoparticles and/or aggregates from increased associations with the lipid-based cell
membrane [57,58]. In this study, the hydrophilic nanoparticles significantly associated less with PC12
but not with RVM cells. One potential explanation for this is the use of non-serum media for the
culture of RVM cells, meaning that protein adsorption to nanoparticles will not be an issue. Increasing
concentration of serum has been shown to produce protein coronas, which can have significant effects
on cell-nanoparticle interactions [59]. The formation of a protein corona in the presence of serum
can lead to decreased cytotoxicity [60], and may explain the cytotoxicity differences when comparing
PC12 versus the RVM cell lines at equal nanoparticle treatment amounts. Thus, it is possible that
differences in cytotoxicity and associations may be due to either cell-type differences, hydrophobicity,
or the presence of serum (biomacromolecules).

The major goal of this study was to assess the neurotoxicity of the as-prepared metal oxide
nanoparticles. Neurodegenerative diseases are associated with loss of neurons, leading to loss of
mental and/or physical functions. Neural stem cells, or progenitor cells which can differentiate into
neural-type cells, are under heavy investigation for transplant into the patients to reverse disease
progression [61]. One of the most important challenges in stem cell transplantation is real-time
monitoring of transplanted cells to assess survival, migration, and differentiation. The nanoparticles in
this study were able to label a significant amount of PC12 and RVM cells, even with just one treatment
at a low concentration. Additionally, it is important to understand that the differentiation timelines
for PC12 and RVM cells to acquire functional neurons are vastly different. PC12 cells are derived
from rats, which have a fully developed brain in approximately 15 days [62]. In comparison, human
neural stem cells can take several months to reach a fully mature neuronal phenotype [63]. The results
presented in this study show a one-week differentiation profile (for each cell type) that can be used as
a model for testing the effects during early neuronal differentiation processes. Long-term experiments
(e.g., 2–6 weeks) are eventually necessary to conclude if there are any negative effects on neuronal
maturation. For future biological characterizations (involving human cell lines such as RVM), utilizing
the presented iron oxide nanoparticles should be performed with and without serum to accurately
identify nanoparticle interactions to streamline the clinical translation process.

5. Conclusions

Magnetite nanoparticles were successfully synthesized using the hydrothermal methods that
produced aggregated nanoparticles. The nanomaterials were further surface functionalized with
n-octyltriethoxysilane to increase hydrophobicity which resulted in decreased cytotoxic effects.
The hydrophobic coating significantly altered the size of the individual nanoparticles as well as the
size of the aggregates. It was also important to analyze the iron oxide particle samples before and after
the sterilization process. Regarding biological studies, significant differences in toxicological profiles
were observed in two mammalian cell lines (that can differentiate into neuronal cells). The hydrophilic
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nanoparticles had decreased cellular association in PC12 rat pheochromocytoma cells, but not in RVM
human neural stem cells, which may be due to serum adsorption. We identified a safe treatment dose
in which no significant changes to neurite outgrowth and differentiation profiles were observed in the
two tested cell lines. We currently utilize these hydrophobic nanoparticles to engineer hydrophobic
microspheres (for tissue engineering) and defining the toxic potential of the incorporating iron oxide
species was an important and necessary characterization step with long-term effects in mind for future
clinical studies.
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