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myname <- "enose"
name.folder <- "elmanouni sofia" 

mynam <- "/media/renee/Seagate Expansion Drive/"
mydir.base <- paste(mynam, "Projects/", sep="")
mydir <- paste(mydir.base, name.folder, sep="")

mydir.scripts <- paste(mydir, "scripts", sep="/")
mydir.data <-  paste(mydir, "data", sep="/")
mydir.output <-  paste(mydir, "output", sep="/")

setwd(mydir.scripts)

source(paste(mydir.base,"functions_wilcoxon_t_logistic
_fdr.R",sep="/")) # loads functions for FDR and graphs
source(paste(mydir.base,"mysplit.R",sep="/")) # loads 
functions for mt cor and graphs
source(paste(mydir.base,"plot_density_percolumn.R",sep
="/")) # function to make graphs of densities per colu
mn of a data matrix, with proper limits  
source(paste(mydir.base,"var_in_colour.R",sep="/")) # 
loads functions for mt cor and graphs

library(gplots)
#library(edgeR)
library(globaltest)

data.counts <- read.delim(paste(mydir.data, "/Kopie va
n 20200323 Data voor Renee.csv", 
                                sep=""), sep=";")
#pdata <- read.delim(paste(mydir.data, "/pdata.txt", s
ep=""))
data.ann <- data.counts[, 1:11]
data.sens  <- as.matrix(data.counts[, 12:ncol(data.cou
nts)])

The data read contains 154 cases measured with 32 sensors, plus 11
variables.

We start by looking at the empirical distributions of the measurements
per sensor:

pdensity.column(data.sens)
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One sensor has much larger values than the others, as we can confirm
in the plot of the maxima below:

plot(apply(data.sens, 2, max), pch=20, col=rainbow(nco
l(data.sens), start=0.1, end=0.9),
     xlab = "Sensor")
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We now replot the empirical densities by fixing the x-axis maximum as
the maximum of all data without measurements of the sensor with
extreme values (31).

max.x <- max(data.sens[, -31])
pdensity.column(data.sens, xlim = c(0, max.x))
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The best maximum seems to be around 0.01, as values above it are
rare and do not discriminate between sensors.

Using the value of 0.01 as maximum, we check whether or not there is
evidence of an association between the sensor data and clinical
variables, in particular the date the sample was collected. The number
of different dates, and number of cases collected on these dates, are:

table(data.ann$Date_of_sample_measurement)
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## 
## 15-1-2019 16-1-2019 17-1-2019 21-1-2019 22-1-2019 2
4-1-2019 25-1-2019 28-1-2019 
##        45        24        28         8        20        
18         2         8

myvar <- var.in.colour(data.ann$Date_of_sample_measure
ment)
heatmap.2(data.sens, trace = 'none', col = 'bluered', 
breaks = seq(0, 0.01, by =0.001),
          RowSideColors = myvar[[1]])
legend("topright", legend = myvar[[3]], fill = myvar[[
2]], cex=0.5)

# Note that large values of sensor 31 can be explained 
by the collection date. Indeed:

par(las=2)
cols <- rainbow(nlevels(data.ann$Date_of_sample_measur
ement), start = 0.5, end = 0.7)
plot(data.ann$Date_of_sample_measurement, data.sens[, 
"s31"], col = cols)

Now examining the relationship between measurements per sensor and
date:

par(las=2, mfrow = c(1, 2))
cols <- rainbow(nlevels(data.ann$Date_of_sample_measur
ement), start = 0.5, end = 0.7)
for(xc in 1:ncol(data.sens))
  plot(data.ann$Date_of_sample_measurement, data.sens[
, xc], 
       col = cols, main = paste(colnames(data.sens)[xc
]))
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# Note that large values of sensor 31 can be explained 
by the collection date. Indeed:

par(las=2)
cols <- rainbow(nlevels(data.ann$Date_of_sample_measur
ement), start = 0.5, end = 0.7)
plot(data.ann$Date_of_sample_measurement, data.sens[, 
"s31"], col = cols)

Now examining the relationship between measurements per sensor and
date:

par(las=2, mfrow = c(1, 2))
cols <- rainbow(nlevels(data.ann$Date_of_sample_measur
ement), start = 0.5, end = 0.7)
for(xc in 1:ncol(data.sens))
  plot(data.ann$Date_of_sample_measurement, data.sens[
, xc], 
       col = cols, main = paste(colnames(data.sens)[xc
]))
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From the above, we see that the date indeed explains variability from
sensor measurements. Specifically, we see that the mean measurement
is sensor-specific, but that the trend is similar across sensors, with all
sensors displaying the same trend between dates.

Other variables that may explain the split in samples are considered
below:

f.gesage <- factor(cut(data.ann$Gestational_age_days, 
breaks = c(0, 27*7, 30*7 )),
                   labels = c("<= 27w",  "> 27w"))
f.deliv <- factor(data.ann$Mode_of_delivery, labels = 
c("vaginal", "c-section"))
f.bw <- factor(cut(data.ann$Birth.weight_grams, breaks 
= c(0, 900, 1200, 2000)),
               labels = c("<= 900g", "900g < x <= 1200
g","> 1200g"))
data.ann$Feeding_mode_prior_day_of_life_analyzed[ data
.ann$Feeding_mode_prior_day_of_life_analyzed < 0] <- N
A
f.feed <- factor(data.ann$Feeding_mode_prior_day_of_li
fe_analyzed, 
                 labels = c(">= 75% breast milk", ">= 
75% formula milk", "combination"))

myvar <- var.in.colour(f.gesage, mystart=0.4, myend=0.
7)
heatmap.2(data.sens, trace = 'none', col = 'bluered', 
breaks = seq(0, 0.01, by =0.001),
          RowSideColors = myvar[[1]])
legend("topright", legend = myvar[[3]], fill = myvar[[
2]], cex=0.5)
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myvar <- var.in.colour(f.deliv, mystart=0.4, myend=0.7
)
heatmap.2(data.sens, trace = 'none', col = 'bluered', 
breaks = seq(0, 0.01, by =0.001),
          RowSideColors = myvar[[1]])
legend("topright", legend = myvar[[3]], fill = myvar[[
2]], cex=0.5)

myvar <- var.in.colour(f.bw, mystart=0.4, myend=0.7)
heatmap.2(data.sens, trace = 'none', col = 'bluered', 
breaks = seq(0, 0.01, by =0.001),
          RowSideColors = myvar[[1]])
legend("topright", legend = myvar[[3]], fill = myvar[[
2]], cex=0.5)
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myvar <- var.in.colour(f.feed, mystart=0.4, myend=0.7)
heatmap.2(data.sens, trace = 'none', col = 'bluered', 
breaks = seq(0, 0.01, by =0.001),
          RowSideColors = myvar[[1]])
legend("topright", legend = myvar[[3]], fill = myvar[[
2]], cex=0.5)

Gestational age is possibly the best variable to define a control group,
namely using the cases with gestational age closest to “normal”. We
check the observed gestational ages via a histogram:

normal.age <- 37*7 # normal gestational age (days)
hist(data.ann$Gestational_age_days, col = "blue", brea
ks = 15)
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Note that the longest observed gestational age, 208, is considerably
smaller than a gestational age of 37 weeks, or 259.

We now remake boxplots of sensor measurements according to
measurement date using only cases with gestational age >27 weeks.
Here we want to verify that the trend seen in the data is well captured
by the cases with longer gestational age, so that these can be used as
reference.

sel27 <- f.gesage == "> 27w"
par(las=2, mfrow = c(1, 2))
for(xc in 1:ncol(data.sens))
  plot(data.ann$Date_of_sample_measurement[sel27], dat
a.sens[sel27, xc], 
       col = cols, main = paste(colnames(data.sens)[xc
]))

Only boxplots of sensor 31 and sensor 32 shown.  
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These boxplots show that measurements for cases with gestational age
> 27 weeks occur less often for some measurement dates. Indeed, if
we examine the number of cases per measurement date this is clear:

par(mfrow=c(1, 3), las = 2)
barplot(table(data.ann$Date_of_sample_measurement[sel2
7]), col = "purple",
        main = "Cases with gest age > 27w")
barplot(table(data.ann$Date_of_sample_measurement), co
l = "blue",
        main = "All cases")
barplot(table(data.ann$Date_of_sample_measurement[!sel
27]), col = "darkgreen",
        main = "Cases with gest age <= 27w")
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So using this group as reference for fitting the regression may bias
results, as the average over just 2 measurements may be an unreliable
estimate of the mean for these dates. The best alternative seems to be
to center the date according to measurement date, using all cases.
Then effects that are linked to a single subset of cases (say, determined
according to gestational age) will not be eliminated, as the centering is
done using all cases.

Correct for date of measurement
We can correct for the measurement date effect either by fitting a
regression model of the sensor data, then using the residuals for further
analyses, or by adding the measurement date to the model when
studying other effects. The former is more convenient for displaying
results via graphs, whilst the latter is more elegant. I will use the former
for convenience.

norm.sens <- data.sens
for(xj in 1:ncol(data.sens))
{ 
  norm.sens[, xj] <- residuals(lm(data.sens[, xj] ~ da
ta.ann$Date_of_sample_measurement,
                                  na.action = "na.excl
ude"))
}
sel.nona <- rowSums(is.na(norm.sens)) < ncol(norm.sens
)

par(las=2, mfrow = c(1, 2))
for(xc in 1:ncol(data.sens))
  plot(data.ann$Date_of_sample_measurement, norm.sens[
, xc], 
       col = cols, main = paste(colnames(data.sens)[xc
], "date corr"))



 16 

 



 17 

 
 
  



 18 

 
 
 



 19 

 
 



 20 

 
  Sensitivity and gestational age

Then we make comparisons between sensor measurements for
different gestational ages. For each comparison, we take one time point
only at a time: 7 days after birth, 14 days after birth, 21 days after birth
(variable Day_of_life_measured ). These comparisons are done with
the global test first, using all sensors, and subsequently with an F-test
from a one-way anova.
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Sensitivity and gestational age
Then we make comparisons between sensor measurements for
different gestational ages. For each comparison, we take one time point
only at a time: 7 days after birth, 14 days after birth, 21 days after birth
(variable Day_of_life_measured ). These comparisons are done with
the global test first, using all sensors, and subsequently with an F-test
from a one-way anova.

# Define objects which will contain the results
gt.mat <- matrix(1, nrow = 4, ncol = length(unique(dat
a.ann$Day_of_life_measured)))
rownames(gt.mat) <- c("GesAge", "GesAge after Delivery
", "GesAge after BirthWeight",
                      "GesAge after Feed")
colnames(gt.mat) <- sort(unique(data.ann$Day_of_life_m
easured))
t.mat <- matrix(1, nrow = ncol(norm.sens), ncol = leng
th(unique(data.ann$Day_of_life_measured)))
rownames(t.mat) <- colnames(norm.sens)
colnames(t.mat) <- sort(unique(data.ann$Day_of_life_me
asured))
# Variables of interest: 
# f.gesage
# f.deliv 
# f.bw
# f.feed 
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myday <- 7
myname1 <- paste(myday,"afterBirth", sep="")
selday <- data.ann$Day_of_life_measured == myday
mydata <- norm.sens[selday, ]
f.g1 <- factor(as.character(f.gesage[ selday ]))
f.d1 <- factor(as.character(f.deliv[ selday ]))
f.bw1 <- factor(as.character(f.bw[ selday ]))
f.fe1 <- factor(as.character(f.feed[ selday ]))
#
# For the day of life chosen, run both the global test 
for all sensors
# and the Student's-t test per sensor, to explain norm
.sens variability
# by the variables of interest above
# 
gt.options(transpose = TRUE)
gt.g <- p.value(gt(f.g1, ~ mydata))
gt.del <- p.value(gt(f.g1, alternative = ~ mydata + f.
d1,  null = ~ f.d1))
gt.bw  <- p.value(gt(f.g1, alternative = ~ mydata + f.
bw1, null = ~ f.bw1))
gt.fe  <- p.value(gt(f.g1, alternative = ~ mydata + f.
fe1, null = ~ f.fe1)) 
t.pvals <- NULL
for(xj in 1:ncol(mydata)) t.pvals <- c(t.pvals, 
                                       anova(lm(mydata
[, xj] ~ f.g1))[ "Pr(>F)"][1,1])

### Storing results
t.mat[, colnames(t.mat) == myday] <- t.pvals
gt.mat[, colnames(gt.mat) == myday] <- c(gt.g, gt.del, 
gt.bw, gt.fe)
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myday <- 14
myname1 <- paste(myday,"afterBirth", sep="")
selday <- data.ann$Day_of_life_measured == myday
mydata <- norm.sens[selday, ]
f.g1 <- factor(as.character(f.gesage[ selday ]))
f.d1 <- factor(as.character(f.deliv[ selday ]))
f.bw1 <- factor(as.character(f.bw[ selday ]))
f.fe1 <- factor(as.character(f.feed[ selday ]))
#
# For the day of life chosen, run both the global test 
for all sensors
# and the Student's-t test per sensor, to explain norm
.sens variability
# by the variables of interest above
# 
gt.options(transpose = TRUE)
gt.g <- p.value(gt(f.g1, ~ mydata))
gt.del <- p.value(gt(f.g1, alternative = ~ mydata + f.
d1,  null = ~ f.d1))
gt.bw  <- p.value(gt(f.g1, alternative = ~ mydata + f.
bw1, null = ~ f.bw1))
gt.fe  <- p.value(gt(f.g1, alternative = ~ mydata + f.
fe1, null = ~ f.fe1)) 
t.pvals <- NULL
for(xj in 1:ncol(mydata)) t.pvals <- c(t.pvals, 
                                       anova(lm(mydata
[, xj] ~ f.g1))[ "Pr(>F)"][1,1])

### Storing results
t.mat[, colnames(t.mat) == myday] <- t.pvals
gt.mat[, colnames(gt.mat) == myday] <- c(gt.g, gt.del, 
gt.bw, gt.fe)
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myday <- 21
myname1 <- paste(myday,"afterBirth", sep="")
selday <- data.ann$Day_of_life_measured == myday
mydata <- norm.sens[selday, ]
f.g1 <- factor(as.character(f.gesage[ selday ]))
f.d1 <- factor(as.character(f.deliv[ selday ]))
f.bw1 <- factor(as.character(f.bw[ selday ]))
f.fe1 <- factor(as.character(f.feed[ selday ]))
#
# For the day of life chosen, run both the global test 
for all sensors
# and the Student's-t test per sensor, to explain norm
.sens variability
# by the variables of interest above
# 
gt.options(transpose = TRUE)
gt.g <- p.value(gt(f.g1, ~ mydata))
gt.del <- p.value(gt(f.g1, alternative = ~ mydata + f.
d1,  null = ~ f.d1))
gt.bw  <- p.value(gt(f.g1, alternative = ~ mydata + f.
bw1, null = ~ f.bw1))
gt.fe  <- p.value(gt(f.g1[!is.na(f.fe1)], 
                     alternative = ~ mydata[!is.na(f.f
e1), ] + f.fe1[!is.na(f.fe1)], 
                     null = ~ f.fe1[!is.na(f.fe1)])) 
t.pvals <- NULL
for(xj in 1:ncol(mydata)) t.pvals <- c(t.pvals, 
                                       anova(lm(mydata
[, xj] ~ f.g1))[ "Pr(>F)"][1,1])

### Storing results
t.mat[, colnames(t.mat) == myday] <- t.pvals
gt.mat[, colnames(gt.mat) == myday] <- c(gt.g, gt.del, 
gt.bw, gt.fe)



 25 

 

 

ANOVA results can be summarized in various ways. For example, we
look at the smallest p-value per day, across all sensors:

round(apply(t.mat, 2, min), 3)

##     7    14    21 
## 0.358 0.131 0.609

This already indicates that there is no effect of gestational age.

We also run a global test, which explains gestational age using all
sensors at once, first with only the sensor data, then checking the
added value of the sensor data after correcting for delivery, birth weight
and feed, one at a time. The p-values obtained are:

round(gt.mat, 3)

##                              7    14    21
## GesAge                   0.383 0.656 0.955
## GesAge after Delivery    0.422 0.667 0.973
## GesAge after BirthWeight 0.321 0.871 0.861
## GesAge after Feed        0.640 0.472 0.790

This confirms the results from ANOVA.

Mode of delivery and sensor data
We also looked at the effect of mode of delivery on sensor
measurements made at 7 days after birth, 14 or 21.

# Define objects which will contain the results
gt.mat <- matrix(1, nrow = 1, ncol = length(unique(dat
a.ann$Day_of_life_measured)))
rownames(gt.mat) <- c("Delivery")
colnames(gt.mat) <- sort(unique(data.ann$Day_of_life_m
easured))
t.mat <- matrix(1, nrow = ncol(norm.sens), ncol = leng
th(unique(data.ann$Day_of_life_measured)))
rownames(t.mat) <- colnames(norm.sens)
colnames(t.mat) <- sort(unique(data.ann$Day_of_life_me
asured))
# Variables of interest: 
# f.deliv 
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myday <- 7
myname1 <- paste(myday,"afterBirth", sep="")
selday <- data.ann$Day_of_life_measured == myday
mydata <- norm.sens[selday, ]
f.d1 <- factor(as.character(f.deliv[ selday ]))
#
# For the day of life chosen, run both the global test 
for all sensors
# and the Student's-t test per sensor, to explain norm
.sens variability
# by the variables of interest above
# 
gt.options(transpose = TRUE)
gt.g <- p.value(gt(f.d1, ~ mydata))
t.pvals <- NULL
for(xj in 1:ncol(mydata)) t.pvals <- c(t.pvals, 
                                       anova(lm(mydata
[, xj] ~ f.d1))[ "Pr(>F)"][1,1])

### Storing results
t.mat[, colnames(t.mat) == myday] <- t.pvals
gt.mat[, colnames(gt.mat) == myday] <- gt.g

myday <- 14
myname1 <- paste(myday,"afterBirth", sep="")
selday <- data.ann$Day_of_life_measured == myday
mydata <- norm.sens[selday, ]
f.d1 <- factor(as.character(f.deliv[ selday ]))
#
# For the day of life chosen, run both the global test 
for all sensors
# and the Student's-t test per sensor, to explain norm
.sens variability
# by the variables of interest above
# 
gt.options(transpose = TRUE)
gt.g <- p.value(gt(f.d1, ~ mydata))
t.pvals <- NULL
for(xj in 1:ncol(mydata)) t.pvals <- c(t.pvals, 
                                       anova(lm(mydata
[, xj] ~ f.d1))[ "Pr(>F)"][1,1])

### Storing results
t.mat[, colnames(t.mat) == myday] <- t.pvals
gt.mat[, colnames(gt.mat) == myday] <- gt.g
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myday <- 21
myname1 <- paste(myday,"afterBirth", sep="")
selday <- data.ann$Day_of_life_measured == myday
mydata <- norm.sens[selday, ]
f.d1 <- factor(as.character(f.deliv[ selday ]))
#
# For the day of life chosen, run both the global test 
for all sensors
# and the Student's-t test per sensor, to explain norm
.sens variability
# by the variables of interest above
# 
gt.options(transpose = TRUE)
gt.g <- p.value(gt(f.d1, ~ mydata))
t.pvals <- NULL
for(xj in 1:ncol(mydata)) t.pvals <- c(t.pvals, 
                                       anova(lm(mydata
[, xj] ~ f.d1))[ "Pr(>F)"][1,1])

### Storing results
t.mat[, colnames(t.mat) == myday] <- t.pvals
gt.mat[, colnames(gt.mat) == myday] <- gt.g

ANOVA results can be summarized in various ways. For example, we
look at the smallest p-value per day, across all sensors:

round(apply(t.mat, 2, min), 3)

##     7    14    21 
## 0.520 0.503 0.268

This already indicates that there is no effect of gestational age.

We also run a global test, which explains gestational age using all
sensors at once, first with only the sensor data, then checking the
added value of the sensor data after correcting for delivery, birth weight
and feed, one at a time. The p-values obtained are:

round(gt.mat, 3)

##              7    14    21
## Delivery 0.716 0.946 0.331

So, we also found no evidence that delivery can display association
with the sensor data.

Feed and sensor data
We also looked at the effect of food type on sensor measurements
made at 7 days after birth, 14 or 21.
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So, there is a suggestion of effect from the empirical p-value
distribution, but this is not reflected on the FDR itself, probably because
the number of tests (sensors) is small (32) per week.

We also run a global test, which explains food type using all sensors at
once, first with only the sensor data, then checking the added value of
the sensor data after correcting for delivery, birth weight and
gestational age, one at a time. The p-values obtained are:

round(gt.mat, 3)

##          7    14    21
## Feed 0.038 0.166 0.181

So, we found evidence that feed type can display association with the
sensor data, for week 7, but not for week 21.

Heatmaps normalized data
For completeness, we make heatmaps of the normalized sensor data.
First for all weeks together, with the week indicated.

myvar <- var.in.colour(f.gesage[ sel.nona ], mystart=0
.4, myend=0.7)
heatmap.2(norm.sens[ sel.nona, ], trace = 'none', col 
= 'bluered', #breaks = seq(0, 0.01, by =0.001),
          RowSideColors = myvar[[1]])
legend("topright", legend = myvar[[3]], fill = myvar[[
2]], cex=0.5)

Figure S1. Heatmap for corrected sensor data by gestational age at day 7 of life. Sensor outcomes 
are equally distributed between groups with most centered data close to 0 (white color). 
(GA ≤ 27 weeks: green, > 27 weeks: blue color). 
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Figure S2. Heatmap for corrected sensor data by mode of delivery at day 7 of life. Sensor outcomes 
are equally distributed between groups with most centered data close to 0 (white color). 
(vaginal delivery: green, C-section: blue color). 
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Figure S3. Heatmap for corrected sensor data by gestational age at day 14 of life. Sensor outcomes 
are equally distributed between groups with most centered data close to 0 (white color). 
(GA ≤ 27 weeks: green, > 27 weeks: blue color). 
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Figure S4. Heatmap for corrected sensor data by mode of delivery at day 14 of life. Sensor outcomes 
are equally distributed between groups with most centered data close to 0 (white color). 
(GA ≤ 27 weeks: green, > 27 weeks: blue color). 
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Figure S5. Heatmap for corrected sensor data by gestational age at day 21 of life. Sensor outcomes 
are equally distributed between groups with most centered data close to 0 (white color). 
(GA ≤ 27 weeks: green, > 27 weeks: blue color). 
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Figure S6. Heatmap for corrected sensor data by mode of delivery at day 21 of life. Sensor outcomes 
are equally distributed between groups with most centered data close to 0 (white color). 
(GA ≤ 27 weeks: green, > 27 weeks: blue color). 
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