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Abstract: Gait phase recognition is of great importance in the development of assistance-as-needed
robotic devices, such as exoskeletons. In order for a powered exoskeleton with phase-based control
to determine and provide proper assistance to the wearer during gait, the user’s current gait phase
must first be identified accurately. Gait phase recognition can potentially be achieved through input
from wearable sensors. Deep convolutional neural networks (DCNN) is a machine learning approach
that is widely used in image recognition. User kinematics, measured from inertial measurement unit
(IMU) output, can be considered as an ‘image’ since it exhibits some local ‘spatial’ pattern when the
sensor data is arranged in sequence. We propose a specialized DCNN to distinguish five phases in
a gait cycle, based on IMU data and classified with foot switch information. The DCNN showed
approximately 97% accuracy during an offline evaluation of gait phase recognition. Accuracy was
highest in the swing phase and lowest in terminal stance.

Keywords: gait phase recognition; convolutional neural network; IMU

1. Introduction

Exoskeletons are mechanical devices that can help augment a person’s strength or assist movement
in people with motor disorders. The use of exoskeletons during rehabilitation can reduce the physical
burden of therapists, accommodate data collection during training, and enable a quantitative evaluation
of recovery in a controllable manner [1]. The purpose of rehabilitation for patients with lower limb
disability is to help them regain lower limb motor function [2]. Gait, or walking, is a cyclic movement
exhibiting reoccurring patterns while maintaining static and dynamic balance [3]. A typical gait cycle
begins when one foot strikes the ground and ends when the same foot strikes the ground again. A gait
cycle can be divided into stance when the foot is in contact with the ground and swing when the
limb has no contact with the ground, and further demarcated by gait events, such as ispilateral foot
contact, contralateral foot off, etc. Gait phases are defined as durations between consecutive gait
events. Accurate identification of gait phases is crucial for metabolically-efficient control of lower
limb exoskeletons; inaccurately detected gait phases tend to either increase the user’s effort or exert
improper joint torque [4]. When a patient wears an exoskeleton, a gait phase-modulated torque is
commonly provided to assist the patient. Martini et al. [5] described hip flexor assistance during swing
to reduce the total energy cost of walking with a powered hip exoskeleton called the Active Pelvis
Orthosis. Kazerooni et al. [6] divided an entire gait cycle into a loaded stance phase and an unloaded
swing phase in the hybrid control of the BLEEX exoskeleton. Position control was used in stance and
positive feedback control was applied in swing. Several investigators have focused on a two-phase
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(stance and swing) classification during one gait cycle [4,7–9]. To provide a subtle and continuous
control during walking, classifying more specific gait phases is required.

There are numerous methods to identify gait phases, such as camera-based motion capture,
force-based systems, and inertial measurement units (IMUs). Most commonly, gait analysis
is conducted in a motion analysis laboratory with force platforms and optical motion systems.
Such motion capture systems are not easily portable, operate best in controlled environments, and are
consequently not optimal to analyze consecutive gait cycles for realistic mobility scenarios. Force-based
systems, such as foot switches or force-sensitive resistors, are generally considered the gold standard
for detecting gait events, yet they are prone to mechanical failure, unreliable due to weight shifting
and provide no details about the swing phase. In the past decade, IMUs have become more common
due to their small-size, portability, and high processing power [10–12]. Bejarano et al. [13] proposed
an adaptive algorithm based on inertial and magnetic sensors to detect gait events. They reported
excellent performance from their proposed algorithm in both able-bodied persons and in persons with
a gait pathology. Qi et al. [14] sensed foot displacement with IMUs to classify heel strike, heel off,
toe off and mid-swing gait phases under different walking speeds, and found no significant variation
in recognition accuracy between different walking speeds. Seel et al. [15] proposed a real-time method
to detect gait events using accelerometers and gyroscopes. This algorithm was based on setting the
exact threshold of foot acceleration and angular velocity for each gait event. They reported that 95%
gait events were correctly identified despite the variation between subjects and walking velocity.

Computational methodology has been used to identify gait phases, including threshold-based
finite state machine and machine learning approaches [16–18]. Threshold-based approaches require
laborious work to remove sensor errors and noise, and are inclined to error. These methods depend
heavily on crafting the vital features during gait and grows in difficulty when the number of sensors
increases [19]. Villarreal et al. [20] expressed difficulty in identifying discrete gait events, especially
in the presence of disturbance, in their study of subjects walking on a perturbation platform that
randomly moved the stance leg forward or backward. Models have also been proposed to estimate gait
phases, such as coupled [21,22] and adaptive oscillators [23], which depend on additional measurement
of the system state. Machine learning approaches are data-driven methods that take advantage of a
large amount of data and reduce the need to create meaningful features to perform the classification
task. Various machine learning approaches, such as K nearest neighbors (KNN) [24], decision trees
(DT) [25], Bayesian network classifier (NB) [26], linear discriminant analysis (LDA) [27] etc., have been
used for a wide range of gait recognition applications. They can similarly be applied to distinguish
gait phases [28]. Bae and Tomizuka [29] proposed a Hidden Markov Model (HMM) to analyse gait
phases with the help of ground reaction forces obtained by shoes instructed with air-bladder sensors.
Highest accuracy (99%) was achieved in swing and lowest (89%) in terminal stance. Attal et al. [30]
presented a Multiple-Regression HMM to automatically segment a gait cycle into six gait phases
in an unsupervised manner, and reported the highest overall accuracy of 84%. Deep convolutional
neural networks (DCNN) are specialized for processing data that have a grid-like topology, largely
applied in feature extraction and image recognition, and have been successfully used to identify
human motion and activity from the signal of wearable sensors such as IMUs [31–34]. A key attribute
of the DCNN is its ability to pass the input data through different processing units (e.g., convolution,
sigmoid, rectifier and normalization), in contrast to the aforementioned machine learning approaches.
The versatile processing units can produce an effective representation of local salience of the signals.
Therefore, the features extracted by the DCNN are task-dependent and free from human crafting.
Feature extraction and classification are integrated in a single model so their performances are mutually
enhanced [33]. Moreover, these features also show more discriminatory power, since the CNN can
learn the internal representation through the input-output pairs [35,36]. When the IMU sensor data
are put together to form a grid-shape ’image’ as the input matrix, the DCNN should be able to map
the input to an output vector of gait phases, thereby potentially avoiding manually programmed
algorithms that capture engineered features of the sensors.
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The objectives of this study are to present and evaluate a deterministic machine learning approach
DCNN for segmenting gait cycles into five phases based on experimental IMU data in subjects walking
in different speeds. The proposed DCNN approach is primarily introduced to analyze the performance
on single time frames, which is simpler to implement as an online classifier. The DCNN model can
also be a baseline for further comparison if the sequential aspect is considered in the future.

2. Experiment Setup and Methods

A convenience example of 12 able-bodied subjects (6 males and 6 females) between 25 and 30 years
old were recruited among students and colleagues. Each subject was asked to walk on a treadmill at
five different speeds that correspond to mean, mean ±1 standard deviation (SD), and mean ±2 SDs,
based on reported comfortable walking speeds normalized to subjects’ ages and height [37]. For men
between 20 and 30 years, the mean height-normalized comfortable gait speed and SD are 2840 h−1 and
330 h−1 respectively. For women between 20 and 30 years, the mean height-normalized comfortable
gait speed and SD are 3080 h−1 and 350 h−1 respectively. Data were collected for 300s for each walking
speed, for a total of between 1500 and 1700 gait cycles per person. The order of the speeds were
randomized in data collection.

Subjects were equipped with seven IMUs (Myon/Cometa aktos-T), attached with tape to the
thighs, shanks, feet and pelvis, as well as with foot switches. The foot switches are piezoresistive
sensors, and are taped to the sole of the foot at positions that allow a precise measurement of
foot contact, support, heel off and toe off phases. They are primarily used to detect gait cycle
events. Data was collected at 2000 Hz and down-sampled to 50 Hz to save computational power.
Data collection for this study was approved by the Swedish Ethical Review Authority (Dnr. 2020-02311).
All subjects gave informed written consent to participate.

Each IMU sensor can record acceleration, angular velocity and magnetic field intensity on three
orthogonal axes, for a total of 63 IMU channels. The signal noise of the IMU based measurements may
be dependent on the placement and the interconnection to the human body. We placed the IMU inside
of a pocket on straps on top of the thighs, shanks, feet and pelvis according to the recommendation
from the hardware company (Figure 1). The foot switches were placed under the sole of the feet to
detect contact events. Each foot switch consists of four piezoresistive sensors which were placed under
the hallux, the first metatarsus, the fifth metatarsus and the heel (Figure 1). The sensors registered
contact when pressure was applied, specifically when each sensor returned voltage values of 2.13 V,
1.07 V, 0.53 V, 0.27 V, respectively. The value of a foot switch (VFS) is the sum of its 4 force sensors’
voltages and ranged from 0 V (swing) to 4 V (whole foot contact).

Figure 1. Placement of IMU sensors and foot switches.
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The labeling procedure of each gait phase was implemented by defining the phases detected
by foot switches as the “ground truth” for 5 gait phases: loading response (LR), midstance (MS),
terminal stance (TS), pre-swing (PSw) and swing (SW). The 5 gait phases were defined according to
Gage et al. [38] and labelled with left and right VFS (VFSL and VFSR) as (described here for the right
side): (Figures 2 and 3):

1. Loading response: begins at ipsilateral foot contact and ends at contralateral foot-off.

• VFSL > VFSR but VFSR 6= 0.

2. Mid-stance: begins at contralateral foot off and ends at ipsilateral heel rise.

• VFSL = 0 and VFSR = 4 V.

3. Terminal stance: begins at ipsilateral heel rise and ends at contralateral foot contact.

• VFSL = 0 and VFSR = 3.73 V.

4. Pre-swing: begins at contralateral foot contact and ends at ipsilateral foot off.

• VFSL 6= 0 and VFSL < VFSR.

5. Swing: begins at ipsilateral foot off and ends at ipsilateral foot contact.

• VFSR = 0.

Acquired IMU time series from each subject were concatenated into an i × j × k matrix,
where i= number of time frames, j = number of IMUs, and k = number of IMU channels, in effect
transforming the data into a j× k ‘image’ for each frame. In the present study, j is always 7 and k is
always 9. The time period of two adjacent time frames during the testing is 0.02 s.

Figure 2. An example of gait phase labeling from VFSR and VFSL in a right gait cycle.

Figure 3. A gait schematic describing 5 gait phases for the right side: loading response (LR), mid-stance
(MS), terminal stance (TS), pre-swing (PSw), and swing (Sw). This figure was generated in the
open-source software SCONE [39].
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3. DCNN Architechture

3.1. Deep Convolutional Neural Networks (DCNN)

DCNNs have been largely applied in the task of feature extraction, image recognition and time
series data classification due to the advance of computational power and large amounts of labelled data.

DCNNs can be considered as feed-forward networks where information flows only in one
direction from the input to the output. In a DCNN, the input, commonly a three-dimensional tensor,
goes through a sequence of processing, usually called a layer. This can be a convolution layer, a pooling
layer, a normalization layer, a fully connected layer, a loss layer, etc. [40].

Ideally the DCNN can extract prominent feature from the IMU ‘image’ by applying filters in the
convolution layer. After the convolution, the fully connected layers performs the classification task of
gait phase detection. In the current study, the DCNN can be seen as a black box with an IMU “image”
input on the top and a matching gait phase on the bottom (Figure 4).

Figure 4. An illustration of DCNN structure classifying IMU “image” into gait phase.

The input size of the DCNN is 7× 9× 1. A convolution kernel is an order 3 tensor with size
H ×W × D. The input and the convolution kernel always have the same depth. The kernel chosen in
our DCNN has a size of 3× 3× 1. When the convolution layer is applied, the kernel slides over all
spatial locations in the input ‘image’, outputting one number at each location by computing dot product
between the kernel and a H ×W × D chunk of the input ‘image’. In our model, the filter convolves
the input ‘image’ by shifting one unit at a time, and no padding is used, the input ‘image’ is padded
with zeros around the border and maintained the same size after convolution . By applying multiple
convolution layers, we can get multiple response maps. In our model, we have four convolution layers
therefore the output S after the convolution has a size of 7× 9× 4.

A Rectified Linear Unit (ReLU) activation was included in the convolution layer in our DCNN to
capture the nonlinear relationship of the features. A ReLU layer does not change the size of the input,
which means S and R have the same size (7× 9× 4).

R(N) = max(0, S(N)) (1)

After a convolution layer with the ReLU activation, we introduced a flatten layer which removed
all dimension except for one. In our case, the input size of the flatten layer was 7× 9× 4 whose
size became 252 after the flatten. The output of the flatten layer contains distributed representations
for the input image, and all these features in the current layer can be used to build features with
stronger capabilities in the next layers. We then introduced a fully connected layer that gives the final
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probabilities for each gait phase. The number of nodes in the fully connected layer is 5, which matches
the number of the predicted gait phases, therefore the output s is an array of 5. To transform the
values in s to probability p, we used a Softmatrix activation (Equation (2)) which maps non-normalized
output to the probability distribution over predicted classes.

p =
esi

∑j esj
(2)

Finally the predicted class is assigned to the label with the highest probability:

k∗ = arg max
1≤k≤K

{p1, ..., pK} (3)

The input with respect to this study is generated from the seven IMUs and nine channels, which
form a 7× 9 matrix. The data have been normalized by the mean and standard deviation (Z score
normalization, i.e., each value minus the mean, then divided by the standard deviation) of each channel.
The row order follows the IMU number from 1 to 7, corresponding to their predefined order in the
software. The column order of acceleration, angular velocity and magnetic intensity field corresponds
to the order of the raw data. The order of the rows and columns is thus only a convention and does not
indicate any rationality. As this convention is adopted for all frames, individual variables will exhibit
similarity for the same phase. As the size of ‘image’ can be considered small, we preliminarily tested
the use of only an FC layer without a convolution layer. After early observations of poor prediction
accuracy of the TS phase, a convolution layer was then added. Example IMU frames from five gait
phases are illustrated in Figure 5; the nine IMU channels (acceleration, angular velocity and magnetic
field intensity in three directions) are shown on the x-axis, and the seven IMUs are shown on the y-axis.
The raw data thus can be visualised as an ‘image’ at each point in time. The discrepancy of images
corresponding to different gait phases can be readily identified while the similarity of the same phase
at different time moments (Sw phase at time frames 100 and 149) cannot be omitted.

Figure 5. Images representing the IMU features at 6 different time frames, during 5 gait phases.



Biosensors 2020, 10, 109 7 of 18

3.2. DCNN Performance Evaluation

The DCNN was implemented three different ways:

1. Intra-subject I: trained the first 70% gait data, and tested on the last 30% data for each speed
individually for each subject. This implementation was designed to investigate whether the
walking speed affects the recognition accuracy of the gait phases.

2. Intra-subject II: pooled data of all five speeds, then randomly trained on 70% data and tested
on the remaining 30% data for each subject individually. This implementation was designed to
evaluate the performance of the proposed DCNN classifier when trained with pooled data.

3. Inter-subject: pooled data of all five speeds and all subjects but one, tested on the remaining
subject, then iterated for each subject. The training data were measurements from 11 subjects,
and test data were from one “unseen” subject, i.e., not included in the training data.
This implementation was designed to investigate the reliability of a general model.

Accuracy was computed for each implementation as the proportion of correctly classified phases,
i.e., classified phases that matched the true phases. Instead of presenting the F1 scores which usually
reflects the false positive (FP) and false negative (FN) rates in binary classification, confusion matrices
were introduced to attain FP and FN rates directly for representative subjects.

3.3. Other Machine Learning Approaches

The DCNN architecture was trained and tested on a laptop computer (Thinkpad T470p) with an
Intel i7-7700HQ CPU @ 2.8GHz and 8GB RAM. The DCNN’s hyperparameters were determined with
the grid search approach, including number of batch size, layers and cells. The optimal model was then
trained for 100 epochs with an early stop if the model performance did not increase in 10 consecutive
epochs, and performance was evaluated on the test set using accuracy. The proposed DCNN in the
inter-subject implementation was then compared to some conventional machine learning approaches
that are common for solving classification problems, as stated in [41]:

1. K nearest neighbours (KNN) is a non-parametric method that is classified by the majority vote of
its neighbors. Among its k nearest neighbors, the object is classified as the most common class.

2. Decision tree (DT) is a way to visually represent and make decisions. The tree is constructed by
choosing the best question and splitting the input data into subsets. It terminates with unique
class label leaves.

3. Naive Bayes (NB) assumes that all features are independent of each other according to Bayes’
theorem. First, the NB classifier creates a probabilistic model that estimates the probability that
an input sample belongs to a certain class. For biomechanical gait data, the probabilistic model is
commonly implemented by means of a normal distribution. Then, a decision rule is applied to
attribute the data to the most likely class.

4. Linear Discriminant Analysis (LDA) projects all data examples on a line by lowering the
dimension of the dataset. Then the examples are classified into classes based on the their
distance from a chosen point or centroid.

Since the source code and hyperparameters for the classifier are not well revealed, the above
conventional classifiers were implemented using standard packages from Scikit-learn, a widely-used
machine learning library, with adjusted parameters to maximize the performance. In the case of KNN,
the number of neighbours was set to 3, after preliminarily testing between 1 and 10 neighbors. In the
case of DT, the default configuration was adopted. For NB, the Gaussian Naive Bayes algorithm
was chosen for classification. For LDA, We chose a least squares solution combined with automatic
shrinkage using the Ledoit–Wolf lemma.
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4. Results

For intra-subject I implementation, the computational time for training and testing was
approximately 21 s and 0.12 s, respectively, for each speed and each subject. For intra-subject II
implementation, the computational time for training and testing was approximately 101 s and 0.34 s,
respectively, for each subject. For inter-subject implementation, the computational time for training
and testing was approximately 300 s and 0.54 s, respectively. For each implementation, recognition
accuracy is showed in the Figures 7–9 as boxplots of median and interquartile range box (IQR).

4.1. Intra-Subject I Implementation

Gait phase recognition accuracy was computed for five walking speeds separately (Figure 6) as
well as together. Overall, the DCNN detected Sw with the highest classification accuracy (99.3%),
followed by PSw (96.2%), MS (95.8%) and LR (95.8%). The lowest recognition accuracy was observed
for TS (92.9%). Walking speed had a very small influence on recognition accuracy of LR and TS
(Figure 6, Appendix A Figure A1), wherein recognition of TS was slightly lower in the slowest (87.3%)
than in the mean (92.9%) walking speed. In contrast, recognition of LR was somewhat lower in the
fastest (91.4%) than in the mean (95.8%) walking speed. The overall accuracy on all gait phases is
approximately 96.8%. The recognition variability was higher in LR and TS than in MS, PSw or Sw
(Figure 7).

Figure 6. Gait phase recognition accuracy for each phase and overall. The five walking speeds are
illustrated separately.

Figure 7. Boxplot displaying the recognition accuracy distribution of five phases and the overall
accuracy in the intra-subject I implementation. The line inside the box represents the median accuracy.
The box represents the middle 50% of the accuracy. The whiskers represent the ranges for the bottom
25% and the top 25%, and bullets indicate outliers.
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4.2. Intra-Subject II Implementation

When data from all speeds were pooled for each subject, the DCNN again most accurately
detected Sw (99.4%), followed by LR (97.3%), PSw (95.9%), TS (95.4%), and MS (95.1%), for an overall
accuracy of 97.1%. Recognition variability was highest in LR, TS and PSw (Figure 8).

Figure 8. Boxplot displaying the recognition accuracy distribution of five phases and the overall
accuracy in the intra-subject II implementation. The line inside the box represents the median accuracy.
The box represents the middle 50% of the accuracy. The whiskers represent the ranges for the bottom
25% and the top 25%, and bullets indicate outliers.

4.3. Inter-Subject Implementation

When data from speeds and subjects were pooled, the DCNN again most accurately detected SW
(99.0%), followed by LR (95.5%), PS (95.0%), MS (93.4%) and TS (90.0%), for an overall accuracy of
95.6% (Figure 9).

Figure 9. Boxplot displaying the recognition accuracy distribution of five phases and the overall
accuracy in the inter-subject implementation. The line inside the box represents the median accuracy.
The box represents the middle 50% of the accuracy. The whiskers represent the ranges for the bottom
25% and the top 25% of the accuracy, excluding outliers. The bullets indicate the outliers.

Several confusion matrices are provided to illustrate subjects in whom the best and worst overall
recognition accuracy were observed (Figure 10). It can be seen here that when misclassification did
occur, it was typically between adjacent gait phases.
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(a) Subject 11 (b) Subject 12

(c) Subject 10 (d) Subject 8
Figure 10. Confusion matrices showing the overall recognition accuracy in 4 example subjects in the
inter-subject implementation. The true gait phase is shown on the y-axis and the predicted phase is on
the x-axis. A strong diagonal indicates very accurate recognition, and misclassifications are indicated
off the diagonal. The highest accuracy was seen in Subjects 11 and 12 (over 90% accuracy), and lowest
in Subject 10 and 8, in whom MS was detected with 83% and TS, with 79% accuracy, respectively.
These two subjects are the outliers in Figure 9. In general, it can be observed that when phase detection
was incorrect, the DCNN often misclassified a gait phase as adjacent to the true phase.

4.4. Other Machine Learning Approaches

In the inter-subject implementation, among traditional classifiers the DCNN had the highest
recognition accuracy (Table 1). It particularly outperformed the other classifiers in detecting TS.
Recognition accuracy was next best with LDA and lowest with the NB.

Table 1. Gait phase recognition accuracy for the deep convolutional neural networks (DCNN), as well
as for other traditional classifiers: K nearest neighbours (KNN), Decision tree (DT), Naive Bayes (NB)
and Linear Discriminant Analysis (LDA).

Classifiers Overall LR MS TS PSw Sw

DCNN 0.951 0.952 0.927 0.898 0.940 0.990
KNN 0.910 0.947 0.877 0.745 0.957 0.986

DT 0.910 0.929 0.914 0.744 0.930 0.980
NB 0.906 0.962 0.905 0.713 0.993 0.966

LDA 0.926 0.960 0.895 0.797 0.977 0.980
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5. Discussion

The proposed DCNN network can accurately and effectively identify gait phases with IMU
data fixed to the lower body of able-bodied subjects; approximately 5000 ‘images’ can be classified
per second. Although gait is a periodic movement with a repetitive nature and temporal pattern,
we explored in this study the treatment of gait phases as discrete events in which strong correlations
may exist among measured sensor data within the same gait phases, as well as large difference between
different gait phases. The DCNN has been widely used for image classification which means it can
also capture the features of the IMU ‘images’ by recognizing the similarity of the same phases and
distinguishing the discrepancy of different gait phases. Using different signals (acceleration, angular
velocity, magnetic field intensity individually as well as combined) as the feature ‘images’ results in
different recognition accuracy of the gait phases, wherein the combined signals presented the best
performance in Appendix A Table A1. It is reasonable to infer that the combined signals represent a
more comprehensive picture of gait characteristics.

The DCNN was trained by raw IMU ‘images,’ each containing a label that specified which to
which gait phase it belongs. The advantage of applying the DCNN approach on raw IMU data instead
of first transforming it into 3D joint angles is the time lag potentially avoided from such computations.
In the study by Jiang et al. [42], labelling of gait phases was performed by experienced lab engineers or
physiotherapists. While that approach has it merits, it is more time-consuming and subjective than an
automated approach. In the current study, labelling of gait phases was performed automatically from
foot switch data, in which hundreds of gait cycles can be labelled practically instantaneously.

The properties in the DCNN’s structure that describe what it will “learn” during training are called
hyperparameters. The hyperparameters of the DCNN network such as the kernel in the convolution
layers, weight matrix, and bias in the fully connected layer were initially randomly generated, thus the
DCNN approach was unlikely to accurately predict the gait phases before training. During the training
process, these tunable parameters were updated periodically to minimize the loss between predicted
gait phases and true phases until the desired classification accuracy was achieved. Although we cannot
observe the internal process by which the DCNN learns to identify the corresponding gait phases
through IMU ‘images’, it most likely captures the inner feature representation of linear acceleration,
angular velocity and heading reference between different gait phases. Figure 11 illustrates normalized
raw IMU data from a representative subject at one walking speed. Some characteristics, namely
local maxima/minima and inflection points of the the raw data coincide with phase transitions.
The magnetic field intensity, for instance, can be characterized by local maxima that coordinate well
with the phase changes to PSw and to Sw. These relationships were not specifically coded inside
the DCNN network; this approach creates feature maps to identify gait phases from the acceleration,
angular velocity and magnetic field intensity data of IMUs, and thus likely uses such changes in gait
phase detection.

Overall, the accuracy varied among gait phases in all implementations. Walking speed did not
have a major effect on the overall accuracy of gait phase recognition for people with a typical gait
pattern. However, phase recognition of Sw was overall the most accurate, and of TS overall, the least
accurate, even more so at lower speeds. TS is the last sub-phase of single support during which the
center of mass advances over the foot until double support. The definition of TS used in the current
study, as per Gage et al. [38], is that TS begins at heel rise and ends at contralateral foot contact.
The relatively low recognition accuracy of this phase can be attributed to the observation that there
are few characteristic acceleration or angular velocity changes during TS (Figure 11) probably leading
to ambiguity for the DCNN classifier. This ambiguity in distinguishing TS from MS can be seen in
Figure 10. In lower walking speed the boundary between TS and MS may be blurred. Our results were
consistent with the study by Hebenstreit et al. who reported that walking speed affects the durations of
gait sub-phases. They reported particularly high speed dependence in MS and TS, wherein TS duration
decreases and MS increases in slower walking speeds [43]. Perry and Davids suggested MS is normally
between 12% and 31% and TS is between 31% and 50% of the gait cycle [44]. Our findings showed
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a longer MS (an average of 12–35% at average speed) and shorter TS (35–47%). This discrepancy
might be due to the method by which heel-off is detected, which is supported by [43], who used a
heel velocity threshold perpendicular to the treadmill plane to perform event detection. Normally a
gait cycle begins as the heel strikes the ground. The whole foot then rotates about the heel. Next the
foot remains flat and the tibia rotates over the foot. Then as the fulcrum of the pivot moves anteriorly
to the metatarsal heads, the foot rotates about the forefoot. Perry et al. [44] referred these phases
as the heel rocker, ankle rocker and forefoot rocker. Gage et al. [38] have described these phases as
coinciding with LR, MS and TS, respectively, and we have adopted this this terminology to define gait
phases. However, the rockers may not be mutually independent; some overlap may exist between
them. For example, the heel rocker starts when the heel strikes the ground and ends with flat foot
which constitutes 8% of the gait cycle. The ankle rocker should begin from the minimum dorsiflexion
which normally occurs at around 5% of the gait cycle. There is a period in which heel rocker and ankle
rocker overlap. Similar overlap is observed between other gait phases, such as MS and TS. There is
thus some ambiguity between LR and MS and between MS and TS, to which we can attribute the
DCNN’s lower accuracy in detecting LR and TS, particularly when trained and tested on different
people. Despite the misclassifications of MS and TS, the overall accuracy in the current study is still
higher than that reported earlier [45–47]. Unlike an approach that directly specifies a precise threshold
of foot acceleration and angular velocity for each gait event [15], the DCNN approach can potentially
capture the internal representation of the feature images to perform phase recognition.

Figure 11. Z-score normalized raw IMU data from a representative subject (Subject 11) at a speed
of 6.4 km/h, from IMUs. Mean ±1 SD acceleration (Acc), angular velocity (Ang Vel), and magnetic
field intensity (Mag) in the three directions are illustrated for a selection of the 63 available channels.
The detected gait phases are indicated. Some characteristics, namely local maxima/minima and
inflection points of the raw data coincide with phase transitions.

For the intra-subject I implementation, the model was trained and tested at each speed
separately. It displays high accuracy (96.8% overall), suggesting that the intra-individual variability
at a constant walking speed is small, and that the performance of the DCNN is not specifically
dependent on walking speed. By pooling the data of all speeds for each subject in the intra-subject II
implementation, the overall recognition accuracy was also high (97.1% overall), which suggests that the
characteristics in individual IMU channels are still present at different walking speeds. The intra-subject
implementations may introduce overfitting as they exploits the gait characteristics in the training
subjects’ data, and may thus tend to cause more error in unseen subjects (e.g., in inter-subject
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implementation). However, the intra-subject implementations support a flexible application of a
generic DCNN model trained at collected IMU data at varying walking speeds, rather than necessarily
training multiple models for each walking velocity. This also argues for the robustness of the DCNN
model since people generally walk at varying speeds throughout the day. A generic model can
potentially be formed not only in an experimental environment but also in realistic conditions.

For the inter-subject validation, the DCNN achieved an overall accuracy of 95.1%, which is similar
to the performance in the two intra-subject implementations. The accuracy in predicting Sw was higher
than in any other phase, in all three implementations. While it is difficult to know the exact reason
due to the hidden layers, the main features during Sw were easier for the algorithm to distinguish.
One likely factor is the rapid change in foot angular velocity as the foot transitions from stance to
swing. This finding is consistent with the results found by [4]. In our data, a rapid change in the
foot’s magnetic field intensity can be observed during the transition between PSw and Sw (Figure 11).
The accuracy in MS and TS, however, was much lower than that in intra-subject evaluations. This can be
attributed to the inherent variation of natural gait patterns between individuals. This finding supports
to some extent the concept that gait can seen as a biometric identity in some research applications [48].
The inter-subject variability is large enough that a small subject group (n = 12) might not be adequate
to generate a general model.

Several other machine learning algorithms achieved a high recognition accuracy. The NB and the
KNN both predicted LR and PSw slightly better than the DCNN, but the overall accuracy was highest
in the DCNN. KNN measures the mathematical distance of the IMU data points between different
gait phases to find similarities. These distances, however, seems to be small during the transition
between gait phases. DT ‘prunes’ the tree by selecting the best attributes to make classifications, but no
particular attributes are well known for identifying gait phases. NB had the lowest overall accuracy
(90.6%) among all classifiers. NB is based on probability theory which is under the assumption that
independent and identically distributed (i.i.d.) data are used. However IMU data are time series data,
which may violate the i.i.d. assumption. LDA achieved the best overall accuracy (92.6%) among the
four traditional classifiers. LDA is a linear classifier which is believed to outperform DT when data
has numerours features.

There are some limitations in the current study to consider. The gait phase recognition approach
is based on discrete samples extracted from continuous time series data, which does not take into
account the time dimension in the continuous data, namely the time dimension in continuous data.
Furthermore, the current DCNN model only considers the data in the current time frame to classify
the corresponding gait phase; a model that includes data from previous time frames may detect with
even higher accuracy. The true gait phases were labelled through foot switch measurement, which
may potentially induce errors due to mechanical failure or false activation. Foot switches provide
satisfactory results in identifying gait phases for normal walking, but sensor attachment proves difficult
when assessing amputees or subjects with foot deformity [49]. Another system using insoles with
a matrix of pressure sensors has been reported to have a high reliability in evaluating gait phase
durations in normal gait, which could be an alternative to increase the applicability in pathological
gait [50]. In addition, it is possible that similar phase recognition accuracy could be achieved with
fewer IMUs. Furthermore, the approach in this study was only evaluated on able-bodied, relatively
young adults. The achieved results and conclusions might not extrapolate to other age groups and
people with disability. Finally, our analyses were performed offline, whereas gait phase detection must
be performed in real-time for any applications in exoskeletons or rehabilitation. Future work should
thus focus on determining the minimum number of IMUs required, should investigate the possibility
of incorporating past and current time frames in the model, and should focus on detecting gait phase
in real-time, and in relevant patient populations.
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6. Conclusions

The presented DCNN model can recognize five gait phases from raw data of seven IMUs
attached to the pelvic, thighs, shanks and feet. The proposed model can capture the inner kinematic
representation of linear acceleration, rotational velocity and IMU magnetic field between different
gait phases, and achieve an overall recognition accuracy of 97.5% on a well-trained model, with up
to 99.6% accuracy in detecting the swing phase. This model focuses on a sample-based gait phase
recognition approach. Generally, the DCNN performed better when trained and tested on the same
individual than when trained on some individuals and tested on others.
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DCNN Deep convolutional neural networks
IMU Inertial measurement unit
VFS Value of a foot switch
VFSL Value of the left foot switch
VFSR Value of the right foot switch
LR Loading response
MS Midstance
TS Terminal stance
PSw Pre-swing
SW Swing
ReLU Rectified linear unit
FC Fully connected
KNN K nearest neighbours
DT Decision tree
NB Naive Bayes
LDA Linear Discriminant Analysis
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Appendix A

Figure A1. Phase recognition accuracy overall and in the 5 phases, shown for each individual at a
walking speed of (a) µ − 2σ, (b) µ − σ, (c) µ, (d) µ + σ, (e) µ + 2σ.
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Table A1. Gait phase recognition accuracy for the deep convolutional neural networks (DCNN) using
the signals of separate accelerometer, gyroscope, magnetometer and all above.

Signals Overall LR MS TS PSw Sw

Acc 0.956 0.951 0.938 0.903 0.950 0.990
Ang Vel 0.963 0.965 0.939 0.933 0.963 0.990

Mag 0.951 0.954 0.931 0.889 0.923 0.993
All 0.971 0.973 0.951 0.959 0.954 0.994
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