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Abstract: Nowadays, developing a cost-effective, easy-to-operate, and efficient signal amplification
platform is of important to microfluidic paper-based analytical devices (µPAD) for end-use markets
of point-of-care (POC) assay applications. Herein, an ultrasensitive, paper-based photoelectrochem-
ical (PEC) bioassay platform is constructed by in situ grown ZnO/ZnIn2S4 heterojunctions onto
paper fibers, which acted as photoactive signal amplification probes for enhancing the sensitivity
of antibodies-based diagnostic assays, for the sensitive detection of alpha-fetoprotein (AFP) targets.
The crystalline flake-like ZnIn2S4 composited with hexagonal nanorods (NRs) morphology of ZnO
is an in situ grown, at the first time, onto cellulose fibers surface supported with Au nanoparticle
(Au NP) modification to improve conductivity of the device working zone. The obtained composites
on paper fibers are implemented as a flexible paper-based photoelectrode to realize remarkable
performance of the fabricated µPAD, resulting from the enhanced PEC activity of heterojunctions
with effective electron-hole pair separation for accelerating photoelectric conversion efficiency of
the sensing process under light irradiation. Once the target AFP was introduced into the biosensing
interface assistant, with a specific recognition interaction of AFP antibody, a drastically photocurrent
response was generated, in view of the apparent steric effects. With the concentration increase of
AFP targets, more immune conjugates could be confined onto the biosensing interface, eventually
leading to the quantitative decrease of photocurrent intensity. Combined with an ingenious origami
design and permitting the hydrophobic/hydrophilic conversion procedure in the bioassay process,
the ultrasensitive PEC detection of AFP targets was realized. Under the optimized conditions, the
level of AFP could be sensitively tracked by the prepared µPAD with a liner range from 0.1 to 100 ng
mL−1 and limit of detection of 0.03 ng mL−1. This work provides a great potential application for
highly selective and sensitive POC testing of AFP, and finally, developments for clinical disease
diagnosis.

Keywords: µPAD; photoelectrochemical; alpha-fetoprotein; point-of-care assay; immunosensing

1. Introduction

Recently, developing accurate, reliable, and user-friendly sensing devices for point-of-
care (POC) assay applications is one of the most important objectives in clinical
diagnosis [1–3]. This is based on the fact that, in any remote locations, an available
POC diagnostic device is extremely vital to aid disease diagnosis and treatment selec-
tions. Normally, POC assay devices with obvious advantages, such as low-cost, ease of
use, and real-time monitoring, are designed to be portable for fewer resources require-
ment than clinical diagnosis [4,5]. To meet the criterion in demanded for cost-effective
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POC diagnostic devices, various substrates with advantage of macro- and mesoporous
structures, ease of folded manufacturing, and well-established surface modification, have
been widely explored [6–8]. Among them, a microfluidic paper-based analytical device
(µPAD) has become one of the most generally employed POC assay devices applied in
many areas, such as, pregnancy testing, drug abuse, and blood infection diagnoses, which
is attribute to the intrinsic merits of cellulose paper, including easy functionalization, good
biodegradability, and acceptable biocompatibility, in the construction of portable diagnostic
devices [9–13]. So far, regarding the amount of appealing properties of paper substrate, the
µPAD integrated with different analytic technologies, such as colorimetric, electrochemilu-
minescence, and fluorescence, have been successfully exploited to produce paper-based
colorimetric biosensing platform, enzyme-based paper biosensing platform, paper-based
electrochemical biosensing platform, and even self-powered paper-based analytical device
for revolutionizing clinic diagnostics [14–20]. To realize it, by taking advantage of unique
properties of cellulose paper, various nanomaterials with certain functional properties can
be subtly modified onto the paper fibers surface, which is regarded as one of the most key
aspects in the development of highly effective signal approaches for fitting the bill as an
out-bound substrate to fabricate this kind of portable biosensing devices [21–25].

Alpha-fetoprotein (AFP), as one of the most basilic tumor biomarkers, with a molecular
weight about 70,000 Da, is normally used for routine cancer screening in clinical laboratories
because it is universally associated with many cancer incidences, including gastric, breast,
colorectal, and liver cancers [26–29]. Accordingly, it is valuable to explore sensitive, accurate,
and effective bioassays strategies in biological samples combined with various techniques
for AFP determination. Immunoassays, due to their highly biospecific interactions from
antibodies/antigens recognition, play a key role in the development of analytical techniques
for the quantitative determination of tumor biomarkers [30,31]. With these considerations,
it is highly reasonable to develop a paper-based immunoassay strategy for the accurate
quantification of AFP targets, in order to meet the pressing need of practical diseases
diagnosis, especially in resource-limited regions, where the medical infrastructures are
limited. To date, approaches such as electrochemiluminescence, electrochemical, and
fluorescence have been proposed for the timely detection of AFP [32–35]. There is no doubt
that those approaches have made significant progress in the fields of clinical applications.
However, many such proposed detection methods, with related diagnostics techniques,
still meet the challenge of the clinical applications, due to the high time consumption, low
detection efficiency, and expensive diagnostic instruments. Accordingly, there is a great
concern and pressing need to construct more sensitive, cost-effective, and efficient methods
for practical AFP quantification of clinical laboratories.

To address the concerns, paper-based photoelectrochemical (PEC) analytical devices,
which combined the advantage of PEC techniques and intrinsic merits of cellulose paper,
have presented potential advantages in clinical applications, including device portability,
facile operation, and high sensitivity, with a low signal background [36–39]. Compared with
that of a traditional electrochemical detecting scheme, where a special potential needs to be
applied to produce the readout signals, the sensing process of PEC is able to satisfactorily
reduce the bias dependence on the signal generation own to the improved redox properties
of photoactive nanomaterials, with their efficient carrier separation capability. Further-
more, two complete independence parts for excitation source (light) and sensing signal
(electricity) are designed in sensing scheme of PEC, potentially exhibiting a higher sensing
technique, due to its reduced signal background noise [40–42]. Regarding the requirement
of efficiently enhancing PEC device performance, the exploration of photoactive materials is
always actively pursued in the field of fabrication, as it plays a key role in the photoelectric
signal conversion in the PEC sensing process, resulting from the efficient charge transfer
and electron-hole pair separation of the prepared photoactive nanomaterials, under corre-
sponding light irradiation. Besides, an elaborate structure design with intrinsic property
improvement has also been pursued by scientists to achieve sensitive PEC bioassay via
varied photoactive materials, such as carbon-nanomaterials, perovskite nanomaterials, and
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organic-inorganic hybrid nanomaterials [43]. Generally, a semiconductor photoanode with
enhanced visible light-harvesting ability is able to suppress charge recombination in view
of easily facilitating the separation of electron-hole pairs.

As a typical semiconductor, ZnO, with its admirable photoelectric properties and
excellent chemical stabilities, has been widely utilized as an effective photoactive nano-
material to construct a device for PEC bioassay applications [44–48]. On the other hand,
the intrinsic broad band gap (3.37 eV) of electronic and undesired rapid recombination
rate of photo-induced electron/hole pairs of ZnO have highly limited its photocurrent
conversion efficiency, further inducing the reduced photo-current signal during PEC bioas-
say process. To solve this issue, one of efficient approaches is vacancy engineering, based
on the fabrication of binary heterojunctions by hybridizing ZnO, with semiconductors
possessing a narrow bandgap for enhancing the ZnO PEC performance [40,49–51]. ZnIn2S4,
as a typical ternary semiconductor chalcogenide material, has drawn considerable atten-
tion, in the context of PEC bioanalysis and biosensors, on account of its proper band gap
(2.34 eV–2.48 eV), non-toxic property, and lack of susceptibility to destruction from pho-
tocorrosion [52–54]. Consequently, it is decidedly desirable to construct a heterojunction
between ZnO and ZnIn2S4 to expand the light absorption spectrum, improve the electron
transfer efficiency, and accelerate photogenerated electron-hole separation and, thus, the
enhancing energy conversion efficiency. Combined with the unique merits of cellulose
paper, such as loose structure and muricate surface, it is highly desirable for the construc-
tion of ZnO/ZnIn2S4 heterojunction onto paper fibers for enhancing the performance of
paper-based PEC analytical devices [55].

Herein, we present an ultrasensitive PEC µPAD enhanced with the photoactive signal
amplification probes of ZnO/ZnIn2S4 heterojunctions onto the modified paper fibers
to successfully achieve the highly sensitive detection of AFP. The hexagonal nanorods
(NRs) of ZnO, composited with crystalline flake-like ZnIn2S4, were grown in situ onto
the modified paper fibers, of which, the Au nanoparticle (Au NP) layer was utilized to
improve the conductivity, the first time, and significantly boost the paper electrode active
area and facilitate the electron extraction from heterojunction interface. In this case, the
built-in electric field of interface between ZnIn2S4 and ZnO could effectually strengthen the
photoexcited electron/hole pairs conversion efficiency, thereby causing the descent of the
photocurrent signal. As elucidated in Scheme 1A, to further realize the PEC biosensing, the
AFP antibodies (Ab) were anchored onto the prepared ZnO/ZnIn2S4 heterojunctions at the
Au NP-modified paper working electrode (Au-PWE), with the assistance of glutaraldehyde
(GLD) and chitosan (CS) to bind the AFP. Then, the AFP can be specifically tied up onto
the surface of flexible paper-based photoelectrode via the specific recognition of antigen-
antibody, with the help of the introduction of bovine serum albumin (BSA) for staying
away from any possible nonspecific interaction. In this situation, the increase of AFP
concentration induces the quantifiable decrease of photo-current signal response from
the constructed paper-based photoelectrode. It is caused by the reduced electron donor
consumption of ascorbic acid (AA) and distinct steric hindrance during the PEC bioassay
process. As a result, the AFP target-dependent immunoassays could be realized by the
measurement of the photocurrent for the accurate quantification of AFP targets. In addition,
on the basis of a subtle design of µPAD, the flexible paper-based photoelectrode of the
proposed µPAD was developed to detect the human-blood serum sample, thus elucidating
a tremendous potential application in the exploration of POC diagnostic devices for clinical
disease diagnosis.
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Scheme 1. (A) Construction procedures of the proposed paper-based PEC bioassay platform.
(B) Schematic diagram for the PEC biosensing illustration of µPAD.

2. Materials and Methods
2.1. Chemicals and Reagents

Aqueous solutions of all experiments were prepared with ultrapure water. All reagents
were received without being further purified. Thioacetamide (TAA), ZnCl2, InCl3·4H2O,
ascorbic acid (AA), and K3 [Fe (CN)6] were supplied from Aladdin (Shanghai, China). Zn
(NO3)2·6H2O were received from Damao Chemical Reagent Company (Tianjin, China).
Hexamethylenetetramine was purchased from Sinopharm Chemical Reagent Co., Ltd.
(Shanghai, China). Chitosan (CS) was purchased from Solarbio Co., Ltd. (Beijing, China).
Glutaraldehyde (GLD; 50%) was ordered from Tianjin Chemical Plant Co., Ltd. (Tian-
jin, China). Na2HPO4, KH2PO4, KCl, bovine serum albumin (BSA), alpha-fetoprotein
(AFP) antigen, and antibody (Ab) were obtained from Sigma-Aldrich Chemical Co. Ltd.
(Shanghai, China). Chloroauric acid (HAuCl4·4H2O), carcinoembryonic antigen (CEA),
prostate-specific antigen (PSA), and squamous cell carcinoma antigen (SCC) were obtained
from Shanghai Linc-Bio Science Co., Ltd. (Shanghai, China). Human immunoglobulin G
(H-IgG) and human chorionic gonadotropin (HCG) were ordered from Shanghai Sangon
Biotech Co., Ltd. (Shanghai, China).

2.2. Apparatus

The PEC signals and electrochemical impedance spectroscopy (EIS) were measured us-
ing a typical CHI 660C electrochemical working station via a conventional three-electrodes
cell. ZnO/ZnIn2S4 photoelectrode was prepared as the working electrode. Ultroviolet-
visible (UV-vis) optical absorption spectra was performed via a Schimidzu UV-1800. Scan-
ning electron microscopic (SEM) and the energy-dispersive spectrum (EDS) elemental
mapping measurements were characterized via a QUANTA FEG 250 SEM (Oxford Co., Ox-
ford, UK). Infrared spectras were measured with a Fourier transformed infrared resonance
(FT-IR) spectrum RX (PerkinElmer Spectoment). X-ray diffraction (XRD) patterns were
recorded by a D8 advanced diffractometer system, equipped with Cu Kα radiation (Bruker
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Co., Bremen, Germ). X-ray photoelectron spectroscopy (XPS) spectra were acquired with
an ESCALAB MK II X-ray photoelectron spectrometer.

2.3. Sensing Mechanism of µPAD

The mechanism of the proposed PEC µPAD, based on in situ growth of ZnO/ZnIn2S4
heterojunctions on paper fibers, as a probe to amplify PEC signals, is shown in Scheme 1B.
Firstly, with electrodeposition strategy, the vertical distribution of ZnO was modified onto
the Au/paper substrate, which was for the preparation of paper-based ZnO. Then, the
crystalline flake-like ZnIn2S4, with narrow bandgaps, were further grown on paper-based
ZnO by a simple one-step hydrothermal method to form a paper-based ZnO/ZnIn2S4
heterojunction. Compared with ZnO alone, ZnO/ZnIn2S4 heterostructure enhances the
absorption capacity of light source, so as to significantly improve the utilization rate of
sunlight energy with the enlarged absorption range of light. Due to suitable band structure,
the binary composites (ZnO/ZnIn2S4) could form type-II heterojunction that can effectively
enhance the efficiency of photogenerated carrier separation. The heterojunction could
enhance photogenerated charge carries separation: the electronic (e−) on the valence band
(VB) of ZnIn2S4 could jump to conduction band (CB) by light illumination and flow to CB
of ZnO, due to the effect of electrostatic field. The excessive photogenerated hole (h+) could
accumulate on the CB of ZnIn2S4 and be consumed by AA of solution. As for the whole
mechanism of µPAD detection of AFP: the AFP is introduced on the surface of photoactive
material through specific reaction with Ab; after that, AFP not only impedes the transition
of photogenerated carries, but also influences the consumption of h+, due to the inherent
poor conductivity and space effect, thus realizing the PEC detection of AFP.

2.4. Preparation of the Proposed µPAD
2.4.1. Electrodeposition of Paper-Based ZnO

Firstly, the Au NPs layer was grown onto the paper working zone of the µPAD
to improve the electrical conductivity of cellulose fibers (the details were introduced in
Supporting Information). Then, the hexagonal NRs morphology of ZnO were grown
in situ onto the Au NP-modified paper working electrode (Au-PWE) of the µPAD by
electrodepositing method at −0.8 V for 7200s, within solution dissolved 0.16 mM Zn
(NO3)2·6H2O and 0.1 mM hexamethylenetetramine [56]. A frequently used, three-electrode
system, containing working (a 0.95 cm2 circular area paper electrode modified with the
Au NPs layer), counter (Pt wire), and reference (Ag/AgCl) electrodes, was adopted to
realize electrodeposition of hexagonal NRs ZnO onto paper working zone. Finally, the
obtained paper-based ZnO was rinsed thoroughly with distilled water and dried at 60 °C
for further usage.

2.4.2. Fabrication of Paper-Based ZnO/ZnIn2S4 Photoelectrode

The growth of the layer of crystalline flake-like ZnIn2S4 on the paper-based ZnO
by a solvothermal method is based on a protocol with a little modification [57]. Briefly,
ZnCl2 (0.17 mmol, 0.023 g) and InCl3·4H2O (0.33 mmol, 0.074 g) were dissolved in 30 mL
ultrapure water, under even stirring for 0.5 h. Afterwards, thioacetamide (TAA, 0.667 mmol,
0.050 g) was added to the just-mentioned liquid, stirring again. The obtained sample was
then shifted into two 50 mL Teflon-lined stainless-steel autoclaves, in which the prepared
paper-based ZnO was immersed using the modificatory side face down. Subsequently, the
autoclaves were hydrothermally treated at 150 ◦C in an electric oven for 1 h. Then, fully
cooled, the paper-based ZnO/ZnIn2S4 photoelectrodes were taken out, washed via ethanol
and ultrapure water, and fully dried at 60 ◦C.

2.4.3. Practical Structural Design and Analytical Steps of the µPAD

The characteristic patterns of µPAD were designed by Adobe Illustrator CS4 and
printed on Whatman No. 1 chromatography paper using a wax printer (Figure S1, Sup-
plementary Materials). The wax-printed paper devices need to bake at 200 ◦C for 30 s to
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melt the wax and form a 3D hydrophobic wall. Figure 1A shows the overall design and
size of the proposed µPAD, which consists of detection (the yellow tab, including a circle
1.1 cm in diameter and two holes 0.5 cm in diameter), hollow (the blue tab, including a hole
1.1 cm in diameter and three holes 0.5 cm in diameter), electrode (the green tab, including a
circle 1.2 cm in diameter, which printed counter electrode and reference electrode, as well
as a hole 0.5 cm in diameter), and washing (the dark blue tab consists of thumb control,
reference line, hydrophobic area, and waste pool (including two rectangles)) tabs. The
large and small grey circles in each tab are cut off by scissors to form holes, in order to
realize the connection of three-electrode system, when the electrolyte solution is added, and
further making it easier for the three electrodes to connect with electrochemical workstation.
The design of washing tab is shown, in detail, in Figure 1A, where the clever alternating
arrangement of hydrophobic tabs with waste pools can perfectly handle the excess waste
liquid during then modification of the flexible photoelectrode of µPAD. In addition, to
make for more friendly operation during this procedure, the reference lines are designed to
accurately control the movement of detection tab of µPAD, so as to easily accomplish the
washing process by simply dragging the washing tab.
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chip modification. (c) Paper chip washing. (d) PEC signal output.

The assembly process of µPAD from modification to the final PEC detection state is
shown in Figure 1B. (a) The folding state of the paper-based device. In this condition, the
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detection tab is placed above the washing Table Since the hydrophobic zone can ensure that
the liquid stays in the working zone for a longer time, it is conducive to obtaining better
modification results. (b,c) After modification, the detection tab was moved to waste pool
to realize cleaning process with the collection of waste liquid. In this case, the reference
line should coincide with the lower edge of the detection tab to achieve the efficient waste
liquid collection. When the cleaning is complete, the cleaning tab is dragged upwards, so
that the detection tab can be tested for further modification. (d) When all modifications
processes are completed, the µPAD is in this state (d of Figure 1B) for the PEC detection.
Electrolyte solution is added from working zone, and the hollow tab is used to realize
the connectivity of three electrodes to realize PEC detection. The corresponding physical
images mentioned above are shown in Figure S3.

3. Results and Discussion
3.1. Characterization of Obtained Samples

In order to confirm the successfully synthesized, paper-based ZnO/ZnIn2S4 hetero-
junctions, the techniques include SEM, EDS, XRD, UV-vis, FT-IR, and XPS, which were
applied. Firstly, the morphology of the prepared nanomaterials was characterized with the
SEM technique. As indicated in Figure 2A, the large-scale, bare paper substrate showed
a three-dimensional structure, with interconnecting cellulose fibers, offering a relatively
high surface area for the modification of nanomaterials. The inset of Figure 2A depicted a
single paper fiber of these thick and intricate cellulose fibers. To improve the conductivity
of the paper fibers, a layer of Au NPs was modified to the surface of paper substrate. Fig-
ure 2B presented the gold nanoparticles modified on the cellulose fibers, with a relatively
rough surface. After the electrodeposition, the orderly hexagonal NRs ZnO were uniformly
growth onto the cellulose fibers with a high density of coverage, as shown in Figure 2C and
D. The SEM images, with different scan ranges of ZnO/ZnIn2S4 heterojunction composites,
are shown in Figure 2E,F, respectively. Observed with the magnified SEM image, the crys-
talline flake-like ZnIn2S4, composited with hexagonal NRs morphology of ZnO, is modified
in situ onto the cellulose fibers surface of Au-PWE, in which crystalline flake-like ZnIn2S4
are almost fully covered on top of the hexagonal NRs ZnO, which makes it possible to
provide more catalytical photoactive sites for PEC reaction and facilitate the access diffusion
of reactants to biosensing interface, thus further promoting the PEC sensing performance.
The successful synthesis of paper-based ZnO/ZnIn2S4 heterojunction, with the structure
of a relatively large specific surface area, provides a guarantee for the construction of
an immune biosensing platform. Whereafter, the elemental mapping under SEM mode
was further employed for examining the distribution of Zn, O, In, and S in paper-based
ZnO/ZnIn2S4 heterojunctions. As presented in Figure 2G–K, it is clearly shown that the
ZnO/ZnIn2S4 composite was successfully synthesized, based on the presentation of the Zn,
O, In, and S distributions. Furthermore, the results of EDS in Figure S4 demonstrated the
presence of Zn, O, In, and S, which also validated the effective synthesis of ZnO/ZnIn2S4
heterojunctions. To further certify the crystalline texture and crystal phase composition of
the obtained ZnO/ZnIn2S4 heterojunctions, XRD was carried out to characterize the pure
ZnO, ZnIn2S4, and ZnO/ZnIn2S4 heterojunctions, as presented in Figure 2L. The character-
istic peaks at 2θ = 31.8◦, 34.8◦, and 58.5◦ were orderly attributed to the (100), (101), and (110)
planes diffractions of phase of ZnO. The characteristic peaks of pure ZnIn2S4 are at 2θ =
21.5◦, 27.9◦, and 47.3◦, and they are attributed to the (006), (102), and (110) crystal planes of
ZnIn2S4, which are consistent with the reported results in the literature [58]. Additionally,
the XRD curve of ZnO/ZnIn2S4 heterojunctions is consistent with the XRD patterns of pure
ZnO and ZnIn2S4, clearly indicating that the ZnO/ZnIn2S4 heterojunctions were success-
fully synthesized. To further study the synthesized ZnO/ZnIn2S4 heterostructures, UV-vis
absorption spectra, and FT-IR spectra were also performed. As shown in Figure 2M, The
UV-vis absorption spectrum of ZnO/ZnIn2S4 exhibits a broader range of absorption than
that of ZnO, thus indicating that the ZnO/ZnIn2S4 heterojunctions achieved the enhanced
light-harvesting ability. The FT-IR spectra obtained could be used to explore the structure
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vibrations and composition of the prepared composite, and the corresponding spectra
of the synthesized composites are illustrated in Figure 2N in the scale of 440–4000 cm−1.
The strong peaks at 3320, 1660, and 1388 cm−1, observed in all samples of ZnO, ZnIn2S4,
and ZnIn2S4, can be attributed to the surface adsorbed water and hydroxyl group. In the
spectra of pure ZnO, the peaks over the range of 600–400 cm−1 were attributed to the
fundamental vibration of Zn–O [59]. In the FT-IR spectra of pure ZnIn2S4, the observed
peaks were ascribed to the surface water molecules and hydroxyl groups [60]. Compared
with the spectra curves in Figure 2N, the FT-IR peaks of ZnO/ZnIn2S4 heterojunctions
were completely in accord with those of pure ZnO and ZnIn2S4, which further confirmed
the successfully synthesized ZnO/ZnIn2S4 heterojunctions.
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The XPS technique can be used for the identification of chemical states and the surface
elemental composition of ZnO/ZnIn2S4 heterostructures. Figure S5 shows the primary
binding energies of Zn2p, In3d, S2p, and O1s. As depicted in Figure 3, the diffraction peaks
appeared at 1042.3 and 1019.1 eV are ascribed to the Zn2p1/2 and Zn2p3/2 orbitals of Zn2+

in ZnO/ZnIn2S4 heterostructure [61]. The In3d orbitals are centered at 449.3 and 442.2 eV,
ascribing to the In3d3/2 and In3d5/2 orbitals of In3+ in ZnIn2S4, as exhibited in Figure 3B [62].
The diffraction peaks positioned at 160.1 and 159.0 eV are ascribed, respectively, to the
S2p1/2 and S2p3/2 orbitals of S2− in ZnIn2S4, as presented at Figure 3C [63]. The O1s peaks
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of the ZnO/ZnIn2S4 heterostructure are positioned at 530.2 and 529.2 eV, as shown in
Figure 3D, which attributes to the lattice and adsorbed oxygen in ZnO, respectively [64].
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3.2. Characterization of Photoelectric Properties of the Proposed µPAD

To explore the PEC performance of the proposed µPAD, the transient photocurrent
was characterized by a chronoamperometry technique with a chopped light illumination.
As depicted in Figure 4A, under the irradiation of a 500W xenon lamp, the PEC responses
recorded from various modified photoelectrodes of the µPAD, after completing several
different modification steps, are investigated, with the on–off cycles at an adscititious
potential of 0.4 V. For paper-based ZnO (a), 12.9 µA of photocurrent intensity is obtained.
While forming ZnO/ZnIn2S4 heterojunctions with ZnIn2S4, the photocurrent is increased
to 73.1 µA (b), which is 5.66 times stronger than that of paper-based ZnO, suggesting the
integration of ZnIn2S4 into paper-based ZnO photoelectrode could notably improve the
PEC performance, thus resulting from the built-in electric field of interface between ZnO
and ZnIn2S4, which could further enhance the photoexcited electron/hole pairs conversion
efficiency. After introducing biomolecules in each modification steps with CS, Ab, BSA, and
AFP onto the paper-based ZnO/ZnIn2S4 photoelectrode, it is notable that the PEC response
displays an obvious trend, with a gradual photocurrent signal response decline of paper-
based ZnO /ZnIn2S4/CS (c), ZnO /ZnIn2S4/CS/Ab (d), ZnO /ZnIn2S4/CS/Ab/BSA
(e), and ZnO /ZnIn2S4/CS/Ab/BSA/AFP (f), which is due to the relative insulative
proteins and distinct steric hindrance from them in the PEC bioassay process. On the
other hand, the gradual decline trend of photocurrent signals suggested that these different
proteins/biomolecules in each constructing step were successfully modified onto the
surface of paper-based ZnO /ZnIn2S4 photoelectrode. To further deliberate the construction
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procedure of the as-prepared µPAD and properties of photogenerated charge carrier of
relative paper-based photoelectrodes, the EIS method was performed in the phosphate
buffer solution (PBS) (0.1 mol L–1, pH 6.6), including 6 mM [Fe (CN)6]3–/4– as the redox
probe, as shown in the Figure 4B. The electron transfers resistance (Ret) is expressed by
observing the size of the semicircle diameter of the electrical impedance [65]. Interestingly,
compared with the pure paper-based ZnO (b), the electron transfer rate of the sensing
interface between ZnO/ZnIn2S4 is faster because of the formation of heterojunctions, based
on the specific semicircle of paper-based ZnO/ZnIn2S4 (a) conjugate, which is smaller
than paper-based ZnO. With the immobilization of CS (c), Ab (d), BSA (e), and AFP (f) in
sequence onto the paper-based ZnO/ZnIn2S4 photoelectrode, the Ret increased gradually
because each further modification of these biomolecules could impede the ferricyanide
diffusion to the surface of the prepared photoelectrode. Hence, the displayed EIS curves of
each modification process of the photoelectrode suggested the successful fabrication of the
µPAD for bioassays.
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Figure 4. (A) PEC signals of the different modified photoelectrodes of µPAD in PBS (0.1 M, pH 6.6) at
0.4 V: (a) paper-based ZnO, (b) ZnO/ZnIn2S4, (c) ZnO/ZnIn2S4/CS, (d) ZnO/ZnIn2S4/CS/Ab, (e)
ZnO/ZnIn2S4/CS/Ab/BSA, and (f) ZnO/ZnIn2S4/CS/Ab/BSA/AFP (cAFP = 0.1 ng mL−1). (B) EIS
for different modification procedure in PBS (0.1 M, pH 6.6) including [Fe (CN)6] 3-/4- (6.0 mM) and
KCl (0.2 M): (a) paper-based ZnO, (b) ZnO/ZnIn2S4, (c) ZnO/ZnIn2S4/CS, (d) ZnO/ZnIn2S4/CS/Ab,
(e) ZnO/ZnIn2S4/CS/Ab/BSA, and (f) paper-based ZnO/ZnIn2S4/CS/Ab/BSA/AFP (cAFP = 0.1 ng
mL−1).

3.3. Optimization of Conditions for the µPAD

To achieve the optimum PEC performance for the proposed µPAD, the experimental
parameters, such as the PH value of prepared electrolyte, incubation time of AFP, potential
of PEC performance, and synthesis temperature of ZnIn2S4 nanoflakes, have been fully
measured. Firstly, Figure S6 exhibits the optimum PEC signals of paper-based ZnO, ZnIn2S4,
and ZnO/ZnIn2S4. Obviously, the photocurrent responds of paper-based ZnO/ZnIn2S4 is
strongly enhanced, compared with the paper-based ZnO and ZnIn2S4, thus indicating that
the formation of this kind of type II heterostructures can facilitate the charge separation
of interface, which is normally crucial for the improvement of the proposed PEC µPAD
performance. Then, the pH of electrolyte with different conditions were tested. As shown
in Figure 5A, the intensity progressively increased with the increasing pH and arrived at an
inflection point at pH 6.6. Thus, pH 6.6 is used for future experiment operation. As shown
in Figure 5B, when the incubation time was within 40 min, the photocurrent response
reduced gradually with incremental time. Afterward, as the incubation time exceeded
40 min, and the photocurrent intensity tended to be stabilized for the longer incubation
time till 60 min. Hence, the 40 min was checked as the appropriate incubation time for
AFP. From Figure 5C, the photocurrent intensity ascended from 0.1 to 0.4 V, decreased
gradually with increasing potential, and reached 0.6 V. The maximum photocurrent is
about 25.1 µA at 0.4 V, when the potential is within the range of 0–0.6 V. Thus, the optimal
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potential of 0.4 V was determined to achieve the detection of AFP. Finally, the different
synthesis temperatures of crystalline flake-like ZnIn2S4 could influence the photocurrent
intensity of the photoelectrode. As shown in Figure 5D, when the synthesis temperature of
crystalline flake-like ZnIn2S4 was within 150 ◦C, the current response enhanced gradually
with the rising synthesis temperature of ZnIn2S4 nanoflakes. However, when the synthesis
temperature of ZnIn2S4 was further elevated to 170 ◦C, the photocurrent would decrease
with the increasing synthesis temperature of ZnIn2S4 nanoflakes. Therefore, the 150 ◦C was
selected as the optimal synthesis temperature of crystalline flake-like ZnIn2S4 and used in
the further investigations.
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(cAFP = 0.1 ng mL−1). (B) The incubation time of AFP (cAFP = 0.1 ng mL−1). (C) The potential of
PEC measurement (cAFP = 0.1 ng mL−1). (D) The photocurrent of different synthesis temperature of
ZnIn2S4 nanoflakes.

3.4. Specific Performance of the µPAD of PEC for AFP Immunosensing

To demonstrate the feasibility of the fabricated PEC µPAD for AFP detection, the
photocurrent response of it was measured for different AFP incubation concentrations.
Figure 6A presents the PEC signals under the optimum condition, after incubation using
a series of concentrations of AFP. With the addition of the concentration of AFP from 0.1
to 100 ng mL−1, more AFP targets would be progressively acquired onto the biosensing
interface of the detecting zone of the µPAD assistant, while the specifically recognizing
the interaction of Ab and accordingly introducing a weakened photocurrent tendency of
the PEC signals output, due to the apparent steric effect and inhibition of AA to contact
with paper-based photoelectrode surface, further realizing the quantitative sensing of AFP
targets. As described in Figure 6B, the matching calibration plot displayed that a progressive
decline of the PEC photocurrent intensity was explicitly proportional to the concentration
logarithmically of AFP within the range of 0.1–100 ng mL−1. The resulting linear correlation
equation is I = −4.47 log cAFP + 19.87 (R2 = 0.992), with the corresponding limit of detection
(LOD) of 0.03 ng mL−1 and a signal-to-noise ratio of 3. Compared with the previously
reported works (Table S1: comparison with other PEC-based AFP biosensors), the proposed
PEC immunosensor presented a wide detection and low LOD, which attributed to the
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in-situ grown ZnO/ZnIn2S4 heterojunctions onto cellulose fibers possessing good PEC
activity, thus indicating the proposed biosensor has further application potential in clinical
analysis. Furthermore, a comparison of the analytical performances for the detection of
various AFP different immunological methods is summarized in Table S2. Obviously, it
can be seen that the proposed immunosensor we prepared has a superior sensibility and
acceptable detection range. Figure 6C shows the stability of the µPAD on the premise of
optimization conditions. For the measurement, electrolyte solution is added from working
zone of the paper-based biosensor after incubation of AFP for 40 min. Then, the working
voltage was set to 0.4 V, and the hollow tab is used to realize the connectivity of three
electrodes to realize PEC detection. After the current was stable, the working electrode was
irradiated, and the light was switched on and off manually at a period of 10 s. The PEC
signals were recorded as the photo illumination was turned on and off for 10 s, about 17
cycles. Record 350 s later, the change of PEC signal was inconspicuous, compared with
its initial photocurrent value, suggesting the good photostability of the proposed PEC
µPAD. As for the ones depicted in Figure 6D, the photocurrent of AFP, carcinoembryonic
antigen (CEA), prostate-specific antigen (PSA), human immunoglobulin G (H-IgG), human
chorionic gonadotropin (HCG), and squamous cell carcinoma antigen (SCC) were tested to
assess the specificity of the prepared biosensor. AFP, CEA, PSA, H-IgG, HCG, and SCC
are common serum tumor markers [66,67]. Serum tumor markers refer to proteins in the
form of carbohydrate antigens, hormones, receptors, enzymes or metabolites, oncogenes,
tumor suppressor genes, and their related products; those increase with the appearance of
tumors. These biomolecules are produced by tumor cells and secreted into the serum and
detected, which can reflect the presence of tumors in the body, to a certain extent [68]. Only
the presence of AFP target causes the intuitive attenuation of PEC signals, and all those
interferential reagents are alike to the results of the blank group, with a marked increase
in the results of the AFP group, thus implying satisfactory and specific selectivity of the
as-prepared µPAD to detect AFP via the signal-off PEC readout strategy. Specifically, the
relative standard deviation (RSD) was calculated to be less than 2%, indicating the credible
of the constructed biosensor. In addition, to study the influence of longer storage time for
the µPAD, the PEC signals of the as-prepared sensor stored at 4 °C were performed every 4
days after incubation with 0.1 ng mL−1 AFP (Figure S7). After 24 days, the optimum PEC
intensity generated by the PEC µPAD could also reach 91.85% of the initial intensity, which
demonstrated that the as-prepared PEC µPAD has a high reliability.

3.5. Actual Samples Analysis

To investigate applicability of the proposed PEC µPAD toward real sample, the clinical
serum samples were detected. More specifically, real serum samples from the whole blood
of healthy people were collected by the operation of centrifugation (11000 rpm, 12 min),
so that the practicality and dependability of the proposed µPAD to detect AFP could be
verified. The samples were diluted, and the different AFP concentrations of the samples
were added by standard method. The experimental results (the average of five parallel
experimental findings) are summarized clearly in Table 1. The RSD of AFP detection
varied from 1.21% to 5.37%, and the AFP recovery rate ranged between 95.2% and 100.8%,
demonstrating that the proposed PEC could be further applied for the clinical diagnosis of
detecting AFP.
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Table 1. Assay results of real human serum by proposed µPAD.

Serum Sample Added,
a (ng mL−1)

Found,
(ng mL−1) Recovery, b % RSD, %

1 0.1 10.08 × 10−2 100.8 5.02
2 0.5 4.90 × 10−1 98.0 5.37
3 1 9.77 × 10−1 97.7 3.29
4 5 4.76 95.2 2.80
5 10 9.59 95.9 1.21

a AFP standards with different concentrations were added into the corresponding initial human serum samples.
b The recovery was estimated by the value (the found concentration subtracted that of PEC immunoassay), relative
to the addition of AFP amount.

4. Conclusions

In summary, this work was the first to demonstrate cellulose paper fibers mediated
in situ grown ZnO/ZnIn2S4 heterojunctions for PEC immunoassay of AFP targets. The
synthesized ZnO/ZnIn2S4 heterojunctions with crystalline flake-like ZnIn2S4 modified
with hexagonal NRs ZnO onto paper fibers was characterized and confirmed via differ-
ent techniques, including SEM, EDS, XRD, UV-vis, FT-IR spectroscopy, XPS, and PEC
measurements. Combined with a delicate design of µPAD, the evenly in situ generated
ZnO/ZnIn2S4 heterojunctions onto Au-PWE as a transducer material that remarkably
reduced the background of signal response and extended the absorption of light resource.
Consequently, a novel PEC immunoassay for AFP targets sensing platform was successfully
achieved, with the advantage of high sensitivity, good selectivity, and reproducibility, due
to the effective photoexcited electron-hole separation transfer path from the proposed
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composites onto paper fibers. The presented strategy confirmed the successful feasibility
of the PEC sensing system for the possibility of the rapid and efficient prediction of dis-
eases, based on the sensitive detection of AFP targets, and could pave a promising way for
the construction of paper-based biosensing platform in next-generation clinical diagnosis
applications.
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https://www.mdpi.com/article/10.3390/bios12100818/s1. The details of preparation of Au/paper
substrate; modification process of the working electrode. Table S1: Comparison of other PEC-based
AFP biosensors; Table S2: Comparison of methods for the detection of AFP; Figure S1: Wax-patterns
of the µPAD on a paper sheet (A4); A: before baking; B: after baking. Figure S2: Printing of electrode
of the µPAD on a paper sheet (A4). Figure S3: The physical picture of modification and detection of
µPAD. Figure S4: EDS spectrum of ZnO/ZnIn2S4. Figure S5: XPS spectra of ZnO/ZnIn2S4 wide scan.
Figure S6: Photocurrent of ZnO, ZnIn2S4, and ZnO/ZnIn2S4. Figure S7: Stability of the proposed
biosensor for different periods of storage. References [69–75] are cited in the supplementary materials.
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