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Experimental section 

Reagents and Materials 

Ti(i-OPr)4 (titanium isopropoxide) and H4DOBDC (2,5-dihydroxyterephthalic acid) 

were purchased from Aladdin Reagent Co. Ltd. (Shanghai, China). Acetic acid, 

ethanol, and Al(NO3)3·9H2O were purchased from the Sinopharm Chemical Reagent 

Co. Ltd. (Shanghai, China). Milli-Q Milipore 18.2 MΩ.cm water was used as the 

solvent throughout the whole experiments. All other metal ions were prepared from 

their nitrate, sulfate, or chloride salts. 

 

Characterization 
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The as-synthesized Ti-MOFs nanoflowers were characterized by scanning electron 

microscopy (SEM, FEI Sirion 200), High resolution transmission electron microscopy 

(HTEM, JEOL-2010 at 200 kV). The phase structures of the products were 

characterized by X-ray diffractometer (Philips, X’Pert-PRO, Netherlands) with using 

the Ni-filtered monochromatic Cu-Kα radiation (λKα1=1.5418 Å) at 40 keV and 40 

mA. X-ray Photoelectron Spectroscopy (XPS) analysis were performed on an Thermo 

Scientific ESCALAB 250 X-ray photoelectron spectrometer (Thermo, America) with 

Al Kα1,2 monochromatized radiation at 1486.6 eV X-rays source. Fourier transformed 

infrared (FT-IR) spectra were measured on a Thermo Nicolet NEXUS FI-IR 

spectrophotometer (Thermo-Nicolet Inc., America). Fluorescence spectra for the 

samples were acquired by a FluoroMax-4 fluorescence spectrophotometer (Horiba 

Jobin Yvon Inc., France). The luminescence decay profile of the sample was obtained 

by a time-correlated single-photon-counting (TCSPC) technique under a lifetime 

fluorescence spectrometer (DeltaFlex, Horiba Jobin Yvon, France) equipped with a 

370 nm NanoLED as an excitation source (200 ps pulse duration, HORIBA). The 

UV-vis absorption spectra were carried out with a UV-2700 spectrophotometer 

(Shimadzu, Japan). All pH measurements were made with a S220 SevenCompact™ 

pH meter (Mettler-Toledo Instruments (Shanghai) Co. Ltd., China).  
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Figure S1. HRTEM images of hierarchical Ti-MOF nanoflowers through secondary 

hydrothermal synthesis 

 

Figure S2. SEM image of pseudo-spherical Ti-MOF by direct hydrothermal reaction 
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Figure S3. Photostability of Ti-MOF nanoflowers under UV lamp irradiation. 

 

 

Figure S4. Relative fluorescence intensity (F/F0) of Ti-MOF nanoflowers at (A) 

different ionic strengths (0‒1000 mM NaNO3) and (B) pH values (4.0‒9.0) 
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Figure S5. Fluorescence response – time profile of Ti-MOF nanoflowers before and 

after adding 10 μM Al(III). 

 

 

Figure S6. Job’s plot for stoichiometric determination of Ti-MOF and Al(III) 

 

 



S6 
 

 

Figure S7. (A) Fluorescence spectra of Ti-MOF in the presence of Al3+ and AA, and 

(B) Fluorescence spectra of Ti-MOF in the presence of Fe2+, Fe3+ and AA.  

 

 
Figure S8. PXRD pattern of Ti-MOF nanoflowers after treatment with Al3+ ions 
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Figure S9. SEM image of Ti-MOF nanoflowers after treatment with Al3+ ions 

 

Table S1. Comparison of different fluorescent material sensors for Al(III) 

determination. 

Fluorescence sensors 
Linear range 

(μM) 

Detection 

limit  (μM) 

Responsive 

time 
Reference 

MSA-AgAu NCs 2 – 30 0.8 5  min [1] 

RG-HN 0.2 – 1.4 0.026 – [2] 

PFE/sodium citrate complex 0.5 – 9 0.37 – [3] 

RBMSiO2-20 20 − 100 0.13 – [4] 

Coumarin-based fluorescent 

probe 
0 – 10 0.1 – [5] 

3D Cd-MOF 0 – 50 0.56 30 seconds [6] 

((E)-N′-((8-hydroxy-1,2,3,5,6,

7-hexahydropyrido[3,2,1-ij]q

uinolin-9-yl)methylene)benzo

hydrazide) 

50 – 110 0.193 – [7] 

Paper-based strips of 

c-dots-R6G 
0 – 1000 38.9 5 min [8] 

Salicylimine (L) 0 – 10 0.0294 – [9] 

[Co2(dmipm)(nda)2]n 35 – 150 0.7 seconds [10] 

Rhodamine-Furan type 

chemosensor (RF) 
2 – 24 1.6 15 min [11] 

DTT-CuNCs 0.01 – 7 0.01 1 min [12] 

Tyrosine-Au NCs 0 – 1000 0.3 5 min [13] 
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hierarchical Ti-MOF 

nanoflowers 
0 – 15 0.075 2 min This work 

 

 

Table S2. Comparison of the Al(III) adsorption capacities for different adsorbent 

materials  

Adsorbents 

Adsorption 

capacity (mg 

g-1) 

Experimental 

condition Reference 

pH T(K) 

Streptomyces rimosus biomass 11.76 4–4.25 298 [14] 

RBMSiO2-20 23.2 – – [4] 

Fe3O4/TEOS/AMEO/GA 24.8 5.0 308 [15] 

Beach cast seaweed 22.5 9±0.1 298 [16] 

BDH activated carbon 6.562 4.0 295 [17] 

MIP beads 3.315 5.0 293 [18] 

GBH functionalized XAD-16 

resin 

24.28 
9±0.01 300±0.2 [19] 

PAN-based adsorbents 0.71 5.6 293 [20] 

pseudo-spherical Ti-MOF NPs 20.86 4.7 298 This work 

hierarchical Ti-MOF 

nanoflowers 
26.65 4.7 298 This work 

 

Table S3. ICP-OES analysis of the content of Ti4+ and Al3+ in the solid MOF and 

supernatant after Ti-MOF treatment with different concentration of Al3+ ions.  

 

Initial concentration of Al3+ Samples Al3+ (ppm) Ti4+(ppm) 

10 ppm supernatant 2.24 0.14 

solid MOF 7.91 99.77 

20 ppm supernatant 9.05 0.18 

solid MOF 11.07 100.23 

50 ppm supernatant 25.5 0.25 

solid MOF 24.9 101.08 
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