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Abstract: Early-stage uric acid (UA) abnormality detection is crucial for a healthy human. With
the evolution of nanoscience, metal oxide nanostructure-based sensors have become a potential
candidate for health monitoring due to their low-cost, easy-to-handle, and portability. Herein,
we demonstrate the synthesis of puffy balls-like cobalt oxide nanostructure using a hydrothermal
method and utilize them to modify the working electrode for non-enzymatic electrochemical sensor
fabrication. The non-enzymatic electrochemical sensor was utilized for UA determination using
cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The puffy balls-shaped cobalt
oxide nanostructure-modified glassy carbon (GC) electrode exhibited excellent electro-catalytic
activity during UA detection. Interestingly, when we compared the sensitivity of non-enzymatic
electrochemical UA sensors, the DPV technique resulted in high sensitivity (2158 µA/mM.cm2)
compared to the CV technique (sensitivity = 307 µA/mM.cm2). The developed non-enzymatic
electrochemical UA sensor showed good selectivity, stability, reproducibility, and applicability in the
human serum. Moreover, this study indicates that the puffy balls-shaped cobalt oxide nanostructure
can be utilized as electrode material for designing (bio)sensors to detect a specific analyte.

Keywords: cobalt oxide; puffy balls nanostructure; cyclic voltammetry; high sensitivity; uric acid;
differential pulse voltammetry

1. Introduction

Uric acid (UA) is a waste product in human fluids (i.e., blood and urine). It is produced
when the chemical known as purine nucleotides (natural substances present in the body) is
broken down by the body. The normal ranges of uric acid in urine and serum for healthy
individuals are 1.40–4.40 mM and 0.30–0.50 mM, respectively [1]. The abnormal presence
of UA concentration in the body is harmful [2–4]. When the UA concentration in the blood
increases from the normal level, it causes diseases like gout and other related ailments,
such as tumor lysis syndrome, diabetes, uric acid stone formation, and many more. On the
other hand, a decrease in UA concentration from the normal level leads to hypouricemia,
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which in turn leads to chronic kidney failure, multiple sclerosis, etc. [5–7]. Therefore, early
diagnosis of abnormal UA levels is necessary to prevent certain health issues.

Several standard methods are available for UA detection, like mass spectrometry/chr-
omatography, electrochemical enzymatic/non-enzymatic technique, and phosphotungstic
acid reduction [8–12]. Mass spectrometry/chromatography is a suitable choice because
of its high sensitivity and good reliability, but the major drawback of this method is the
high cost of the instrument. The reduction of phosphotungstic acid is a simple and easy
approach compared to other methods, but its operation is restricted due to interference
effects. Therefore, electrochemical sensing approaches are preferred over other methods in
analytical chemistry for the accurate quantitative estimation of parameters like sensitivity,
selectivity, and responsivity. In addition, these electrochemical sensors offer small size,
minimum cost, long-term sustainability/storage, reliability, and eco-friendliness as im-
portant factors [13–15]. On the other hand, the electrochemical enzyme-based sensors are
highly specific but not a good choice because of their complicated enzyme immobilization
techniques, high enzyme costs, low repeatability rate, long-term storage/stability issues,
and severe operating conditions [16–18]. Therefore, the researcher’s focus has switched
towards non-enzymatic electrochemical sensing devices that utilize special properties of
metal/metal oxide nanostructures [19–21]. The non-enzymatic sensors, when fabricated
with desired metal/metal oxide nanostructures, show exceptional capability and sensing
performance for detecting analytes like glucose, ascorbic acid, dopamine, hydrazine, uric
acid, etc. [22–28].

The metal oxide nanomaterials (e.g., zinc oxide (ZnO), nickel oxide (NiOx), manganese
oxide (Mg2O), zirconium oxide (Zr2O), iron oxide (Fe2O3), and cobalt oxide (Co3O4))- based
electrochemical sensors are catching the interest of researchers due to their extraordinary
physical properties like reliability, stability, small packaging, and minimum cost [29–34].
Nanostructures of cobalt oxide are being used to construct non-enzymatic electrochemical
sensors due to simple and low-cost synthesis processes, chemical stability, and fast charge
transfer property [29,30,35]. Recently, nano-berry, porous, and hexagonal nanosheet-like
nanostructures of cobalt oxides were utilized to fabricate non-enzymatic UA sensors [36–38].
Kogularasu et al. synthesized polyhedron-shaped Co3O4 nanostructures to construct a
high-sensitivity hydrogen peroxide sensor [39]. Zhang et al. described the effect of Co3O4
nanosheets on enzymeless glucose detection [40]. Kang et al. investigated the effect of
nanowire shapes like Co3O4 nanostructures on the glucose sensor [41]. Mondal et al.
reported an enzymeless glucose sensor by utilizing various nanostructures of Co3O4 (i.e.,
nanoflowers, porous nanorods, and spherical nanoparticles) [42]. Chang et al. employed
several structures of Co3O4, for example, nanowire, lump, and flower-like morphologies, to
detect lactic acid [43]. However, till now, there are no reports on puffy balls-shaped Co3O4
nanostructures based on non-enzymatic electrochemical UA sensing.

In this work, we designed a non-enzymatic electrochemical UA sensor using puffy
balls-like cobalt oxide nanostructure. First, puffy balls-like cobalt oxide nanostructures
were synthesized using a low-cost hydrothermal method and characterized with different
techniques for structural and morphological analysis. Then, the non-enzymatic electro-
chemical UA sensor (cobalt oxide puffy balls/GCE) was fabricated, and the sensing activity
of the as-prepared nanostructured-based sensor was investigated using electrochemical
techniques (i.e., CV, electrochemical impedance spectroscopy (EIS), and DPV). The cobalt
oxide puffy balls/GCE sensor using the DPV technique exhibited excellent sensitivity
(2158 µA/mM.cm2) towards UA detection. In addition, selectivity, stability, reproducibility,
and UA detection in human serum were conducted to establish the feasibility of the sensor
for future applications.

2. Materials and Methods
2.1. Chemicals

Cobalt nitrate hexahydrate (purity ≥ 99.99%, Co(NO3)2.6H2O), urea (purity 99%),
ethanol (laboratory reagent), 2-(2-Butoxyethoxy) ethyl acetate (purity ≥ 99.2%, binder),
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uric acid (purity ≥ 99%), potassium chloride (KCl), sodium chloride (NaCl), potassium
hexacyanoferrate (purity ≥ 99%, K3[Fe(CN)6]), and phosphate buffer saline (pH = 7.4, PBS)
solution were purchased from Sigma-Aldrich. All analytical grade chemicals were used for
this work.

2.2. Synthesis of Puffy Balls-like Cobalt Oxide Nanostructures

A low-cost and low-temperature hydrothermal method has been utilized for the
growth of puffy balls-shaped cobalt oxide nanostructures. Precisely, 1.45 g of cobalt nitrate
hexahydrate and urea were dissolved separately in 20 mL of DI water. Both prepared
solutions were thoroughly mixed (total 40 mL) using magnetic stirring for 10 min at
450 rpm. The as-prepared homogeneous solution was poured into a stainless-steel lined
autoclave and maintained at 150 ◦C for 4 h. When the autoclave was cooled to room
temperature, the black solution was washed using ethanol and DI water to remove the
impurities. After washing, the black precipitate sample was vacuum dried at 60 ◦C for 24 h.
In the end, the black powder sample was vacuum annealed at 500 ◦C for 3 h at a ramp rate
of 10 ◦C/minute before characterization.

2.3. Non-Enzymatic Electrochemical UA Sensor Fabrication

To fabricate a non-enzymatic electrochemical UA sensor, the GC electrode was first
polished and then cleaned using ultrasonication several times in nitric acid, ethanol, and DI
water. Then, a slurry of puffy balls-shaped cobalt oxide nanostructure (0.02 g) was prepared
in 100 µL binder (2-(2-Butoxyethoxy) ethyl acetate) with the help of ultrasonication for
10 min to get a uniform suspension. Further, an optimized 6 µL slurry was drop-casted
onto the working GC electrode and kept for drying in the oven for 6 h. A detailed sensor
fabrication procedure is shown in Figure 1.
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2.4. Material Characterization and Electrochemical Sensing Analysis Equipment

The field-emission-scanning-electron-microscope (FESEM; Zeiss, Oberkochen, Ger-
many) was used to characterize the morphology of the puffy balls-shaped cobalt oxide
nanostructure. The crystal structure and phase purity integrity were characterized using
an X-ray diffractometer (XRD; Rigaku). XRD machine was equipped with Cu-Kα radi-
ation source of wavelength (1.5418 Å), operating voltage (40 kV), and current (30 mA).
The ASAP 2010 analyzer was utilized for BET (Brunauer–Emmett–Teller) analysis at 77 K.
The UA electrochemical sensing ability of fabricated cobalt oxide puffy balls/GC non-
enzymatic electrochemical UA sensor was tested via a portable potentiostat “Palmsense4”
connected with a conventional 3-electrode (working (GC), counter (Pt wire), reference
(Ag/AgCl, 3M KCl)) electrochemical workstation. The electrochemical analysis was per-
formed using EIS, CV, and DPV measurements. We utilized the previously optimized
cobalt oxide amount and pH to get the optimum sensing response of the fabricated
sensor [36–38]. The CV was performed in a 5 mM probe solution of potassium hexacyano-
ferrate (purity ≥ 9 9%, K3[Fe(CN)6]) in 0.1 M KCl under varying scan rates from 10 mVs−1

to 200 mVs−1. The EIS was studied in the frequency range of 0.1 to 10−5 Hz. The UA
analyte sensing was performed using CV (voltage range = −0.20 V to +0.80 V) and DPV
(voltage range = +0.20 V to +0.70 V).

3. Results
3.1. Analysis of Cobalt Oxide Nanostructure

The morphology of synthesized cobalt oxide nanostructures is shown in FESEM
images (Figure 2a–c), which depicts the successful formation of puffy balls-like cobalt oxide
nanostructures. These nanostructures are synthesized in uniform shape, evident from the
low-magnification FESEM image, shown in Figure 2a. The high-resolution FESEM image
shows many pine needle-like nanostructures joined at the top to form a chrysanthemum-like
hierarchical structure (Figure 2c). The energy-dispersive X-ray (EDX) analysis confirms this.

Biosensors 2023, 13, x FOR PEER REVIEW 5 of 13 
 

 
Figure 2. FESEM images at different magnifications (a–c), EDX analysis (d), XRD pattern (e), and 
BET analysis (f) of puffy balls-like cobalt oxide nanostructure. 

The composition of puffy balls-like cobalt oxide nanostructure (Figure 2d). The EDX 
shows only two elements (i.e., oxygen and cobalt). Further, the XRD pattern was investi-
gated to study the crystallinity and crystal phase of puffy balls-like cobalt oxide 
nanostructures, as shown in Figure 2e. The synthesized crystal structure and obtained 
diffraction peaks are in good agreement with standard JCPDS card# 42-1467 [39,42]. The 
different diffraction (2θ values) planes with corresponding miller indices (220), (311), 
(4000), (511), and (440) were obtained. A clear peak for the (311) plane is of the highest 
intensity, indicating the crystalline nature of synthesized cobalt oxide nanostructures [44]. 
Additionally, we analyzed the surface area of the cobalt oxide puffy balls-like nanostruc-
ture using BET analysis (Figure 2f). The specific surface area was ~93 m2/g, which suggests 
cobalt oxide puffy balls-like nanostructures are suitable nanomaterials as high-perfor-
mance catalysts. 

3.2. Electrochemical Sensing Analysis of Cobalt Oxide Puffy Balls/GC Electrodes 
The EIS and CV studies were performed in the potassium hexacyanoferrate 

(K3[Fe(CN)6]; 5 mM) and 0.1 M KCl solution to investigate the electron transfer capability 
of the puffy balls-shaped cobalt oxide nanostructure-modified sensor electrode. The 
Nyquist plots of obtained EIS spectra profile for bare GC and cobalt oxide puffy balls/GC 
electrodes (Figure 3). The Nyquist plot has a semicircle in a high-frequency region corre-
sponding to the charge transfer-controlled process and a straight line corresponding to 
the mass transfer diffusion-controlled process. The charge transfer resistance value was 
determined by the semicircle diameter intercept value on the x-axis. The calculated charge 
transfer resistance for bare GC electrode (~2230 Ω) is higher compared to cobalt oxide 
puffy balls/GC electrode (~980 Ω), indicating better charge transfer capabilities of cobalt 
oxide puffy balls nanostructures. 

To further validate the electron transfer of cobalt oxide puffy balls/GC electrodes, the 
CV response was measured at varying scan rates (10 to 200 mVs−1) (Figure 4). The CV 
response shows the increase in peak current with an increasing scan rate. This increase is 

Figure 2. FESEM images at different magnifications (a–c), EDX analysis (d), XRD pattern (e), and
BET analysis (f) of puffy balls-like cobalt oxide nanostructure.



Biosensors 2023, 13, 375 5 of 13

The composition of puffy balls-like cobalt oxide nanostructure (Figure 2d). The EDX
shows only two elements (i.e., oxygen and cobalt). Further, the XRD pattern was in-
vestigated to study the crystallinity and crystal phase of puffy balls-like cobalt oxide
nanostructures, as shown in Figure 2e. The synthesized crystal structure and obtained
diffraction peaks are in good agreement with standard JCPDS card# 42-1467 [39,42]. The
different diffraction (2θ values) planes with corresponding miller indices (220), (311), (4000),
(511), and (440) were obtained. A clear peak for the (311) plane is of the highest intensity, in-
dicating the crystalline nature of synthesized cobalt oxide nanostructures [44]. Additionally,
we analyzed the surface area of the cobalt oxide puffy balls-like nanostructure using BET
analysis (Figure 2f). The specific surface area was ~93 m2/g, which suggests cobalt oxide
puffy balls-like nanostructures are suitable nanomaterials as high-performance catalysts.

3.2. Electrochemical Sensing Analysis of Cobalt Oxide Puffy Balls/GC Electrodes

The EIS and CV studies were performed in the potassium hexacyanoferrate (K3[Fe(CN)6];
5 mM) and 0.1 M KCl solution to investigate the electron transfer capability of the puffy
balls-shaped cobalt oxide nanostructure-modified sensor electrode. The Nyquist plots
of obtained EIS spectra profile for bare GC and cobalt oxide puffy balls/GC electrodes
(Figure 3). The Nyquist plot has a semicircle in a high-frequency region corresponding
to the charge transfer-controlled process and a straight line corresponding to the mass
transfer diffusion-controlled process. The charge transfer resistance value was determined
by the semicircle diameter intercept value on the x-axis. The calculated charge transfer re-
sistance for bare GC electrode (~2230 Ω) is higher compared to cobalt oxide puffy balls/GC
electrode (~980 Ω), indicating better charge transfer capabilities of cobalt oxide puffy
balls nanostructures.
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Figure 3. Nyquist plots of bare GC and cobalt oxide puffy balls/GC sensors in probe solution (5 mM,
K3[Fe(CN)6] and 0.1 M KCl); frequency range = 0.1 Hz to 10−5 Hz. Insets show the schemes of bare
(above inset) and modified (below inset) GC electrodes.

To further validate the electron transfer of cobalt oxide puffy balls/GC electrodes, the
CV response was measured at varying scan rates (10 to 200 mVs−1) (Figure 4). The CV
response shows the increase in peak current with an increasing scan rate. This increase
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is linear when drawing a plot for anodic/cathodic current vs. square root of scan rate
plot (inset of Figure 4). The cobalt oxide puffy balls/GC electrodes showed a typical
diffusion-controlled process for the reversible system [36]. Both CV and EIS measurements
in the probe solution confirm the fast electron transfer capability of cobalt oxide puffy
balls/GC electrode.
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3.3. Detection of UA Using CV

To investigate the electrochemical non-enzymatic sensing of fabricated cobalt oxide
puffy balls/GC sensor, the CV response was measured in PBS buffer solution (pH = 7.4)
having UA at 50 mVs−1 scan rate. Figure 5a depicts the CV response curve of the cobalt
oxide puffy balls/GC sensor for 0 mM and 25 mM UA concentrations. A sharp increase in
current response is seen in the presence of UA due to the UA oxidation, where the p-type
nature of the cobalt oxide semiconductor plays a crucial role in swift electron transfer to
the electrode surface by providing excess hole concentration [30,36,37]. A detailed UA
sensing mechanism over cobalt oxide is proposed by Hu et al. [45]. Furthermore, a detailed
study of the sensor performance was conducted by measuring UA concentrations from
0 µM to 1500 µM in PBS buffer solution (Figure 5b). With increasing UA concentration
in the buffer solution, the non-enzymatic cobalt oxide puffy balls/GC sensor showed an
enhanced current response. The peak current vs. UA concentration plot is plotted in
Figure 5c, which shows a linear current increase up to 1000 µM of UA. Further increase
in UA concentration shows a non-linear curve due to saturation of the cobalt oxide puffy
balls/GC sensor surface. Similarly, we repeated these electrochemical non-enzymatic
sensing experiments three times, and their calibration plot of the linear range is plotted
in Figure 5d. The calibration plot shows the slope of 0.0263 µA/µM with high regression
coefficient (R2) of 0.9907. The fabricated cobalt oxide puffy balls/GC sensor exhibited a
sensitivity of 370 µA/mM.cm2. Additionally, the limit of detection was calculated to be
2.4 µM based on the signal and noise ratio of 3. The sensing performance of the cobalt
oxide puffy balls/GC sensor is compared in Table 1. The high sensitivity is due to the large
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surface area to volume ratio and p-type semiconducting nature of puffy balls-like cobalt
oxide nanostructures [36,37].
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Figure 5. (a) CV response of cobalt oxide puffy balls/GC sensor towards 0 µM and 25 µM UA
concentration and (b) CV response for 0 to 1500 µM UA concentration in PBS buffer (pH = 7.4).
(c) current response vs. UA concentration plot, and (d) calibrated plot showing slope (0.0263 µA/µM)
and regression coefficient (R2) of 0.9907. Inset b presents CV response at a low-concentration range
(0 to 100 µM) of UA.

Table 1. Comparison of electrochemical non-enzymatic UA sensing performance of cobalt oxide
puffy balls/GC sensor with previously published literature.

Modified Electrode Sensing
Method

Detection Range
(µM)

Limit of Detection
(µM)

Sensitivity
(µAcm−2mM−1) Ref.

g-C3N4 NSs/GCE DPV 100–1000 4.45 - [7]

Ag-Fe2O3@PANI DPV 0.001–0.90 0.000102 128290 [21]

Au/RGO/GCE DPV 8.8–53 1.8 - [22]

Cubic Pd/RGO/GCE DPV 4–469.5 1.6 - [23]

RGO/PB 100/GCE CV 40–415 8.0 - [24]

PCN/MWCNT/GCE DPV 0.2–20 0.139 - [25]

B-MWCNT/GCE CV 60–250 0.65 - [26]

PtNi@MoS2 NSs/GCE DPV 0.5–600 0.1 - [27]

Cysteic acid/GCE DPV 1.0–19 0.36 - [28]
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Table 1. Cont.

Modified Electrode Sensing
Method

Detection Range
(µM)

Limit of Detection
(µM)

Sensitivity
(µAcm−2mM−1) Ref.

PPy-CB-Co3O4/GCE CV 0.75–305 0.46 0.8786 [30]

Cu2O/ferrocene/uricase/GCE DPV 0.1–1000 0.0596 1.9 [33]

Co3O4 nano berries/GCE CV 5–3000 2.4 206 [36]

Co3O4 porous NSs/GCE CV 0–2500 10 470 [37]

Silky Co3O4 nanomaterial/GCE CV 500–3500 100 - [46]

MnO2 NFs/NG/GCE SDLSV 10–100 0.039 - [47]

Co3O4 puffy balls/GCE CV 0–1000 2.4 307 This work

Co3O4 puffy balls/GCE DPV 0–1500 1.6 2158 This work

Abbreviations: Graphitic carbon nitride—g-C3N4; nanosheets—NSs; glassy carbon electrode—GCE; gold—Au;
differential pulse voltammetry—DPV; silver—Ag; iron oxide—Fe2O3; polyaniline—PANI; reduced graphene
oxide—RGO; palladium—Pd; Prussian blue—PB; cyclic voltammetry—CV; porous carbon nitride—PCN; multi-
wall carbon nanotube—MWCNT; platinum—Pt; nickel—Ni; molybdenum disulfide—MoS2; polypyrrole—Ppy;
carbon black—CB; cobalt oxide—Co3O4; cuprous oxide—Cu2O; manganese dioxide—MnO2; nanoflowers—NFs;
nitrogen-doped graphene—NG; second-derivative linear sweep voltammetry—SDLSV.

3.4. Detection of UA Using DPV

DPV is a pulsed technique in which ramp voltage is applied. Due to the short sam-
pling time of applied ramp voltage in DPV, the capacitive charging current is minimized
compared to the Faradaic current, and the ratio of Faradaic current to non-Faradaic current
increases, which makes DPV more sensitive compared to the CV technique [32]. In addition,
DPV accurately accounts for double-layer capacitance in which changes occur even when a
small molecule of analyte absorbs at the electrode surface with pulse sampling. In contrast,
CV suffers from excessive capacitance changes [33,46]. Therefore, we utilized the DPV
technique to detect UA.

Figure 6 depicts the measured DPV and calibration curves for different UA concentra-
tions (0 mM to 2 mM) in the 0.2 V to 0.7 V voltage range. The cobalt oxide puffy balls/GC
sensor responded in the presence of UA in the buffer due to UA oxidation (Figure 6a). In
addition, the DPV oxidation current increased with UA concentration (Figure 6b).
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Figure 6. DPV response of cobalt oxide puffy balls/GC sensor towards 0 mM and 0.1 mM UA (a),
from 0 to 2.0 mM UA in PBS buffer (pH = 7.4) (b), and current response vs. UA concentration plot (c).
Inset b is the DPV response at a low-concentration range (0 to 0.1 mM) of UA. Inset c represents the
calibrated plot showing a slope (153.24 µA/mM) and R2 of 0.9994.

A linear increase in current is observed with increasing UA concentration up to 1.5 mM
(Figure 6c). Further from the obtained calibration plot, the cobalt oxide puffy balls/GC
sensor resulted in high sensitivity of 2158 µA/mM.cm2, which is ~6 times more sensitive
towards UA compared to the CV-based sensitivity of cobalt oxide puffy balls/GC sensor
(Table 1). This high sensitivity of the fabricated sensor is attributed to nanostructure
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morphology that offers more active sites available at the surface of puffy balls and the
p-type semiconduction nature of cobalt oxide.

3.5. Selectivity, Stability, and Reproducibility Tests

Selectivity, long-term stability, and fabrication reproducibility are significant factors for
any sensor. To investigate the selectivity of the electrochemical non-enzymatic cobalt oxide
puffy balls/GC sensor, the CV scans were recorded in buffer containing (i) 50 µM UA only,
(ii) 50 µM UA, and 50 µM of each possible interfering species (i.e., urea, sodium chloride,
fructose, glucose, potassium chloride, L-cysteine, and lactic acid), and (iii) 50 µM UA, and
100 µM of each above-interfering species (Figure 7a). The sensor showed a slightly positive
CV current response in interfering species’ presence at high concentrations. Additionally,
the long-term stability of the cobalt oxide puffy balls/GC sensor was evaluated for 10 weeks
(Figure 7b). From the obtained CV response curves (Figure 7b), the calibrated histogram
shows that the sensor holds its initial response of ~93.3%, which confirms the high storage
stability of the sensors (Figure 7c). After checking the response towards UA, the sensor was
rinsed in PBS buffer, dried, and kept in a desiccator.
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Figure 7. (a) CV scans of cobalt oxide puffy balls/GC sensor in PBS buffer containing (i) 50 µM
UA only, (ii) 50 µM UA and 50 µM of each possible interfering species (i.e., urea, sodium chloride,
fructose, glucose, potassium chloride, L-cysteine, and lactic acid), and (iii) 50 µM UA and 100 µM of
each above-interfering species. (b) Sensing response of cobalt oxide puffy balls/GC sensor towards
50 µM UA for 10 weeks storage time. (c) Calibrated response of the sensor showing ~6.7% decrease
compared to the sensor fabricated on day 1. (d) CV scans of five similar fabricated cobalt oxide puffy
balls/GC sensors in PBS buffer containing 50 µM UA.
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To prevent possible fouling of the electrode. Finally, we checked the fabrication
reproducibility of the cobalt oxide puffy balls/GC sensors by fabricating five sensors using
the same fabrication protocols. The CV response of all five cobalt oxide puffy balls/GC
sensors was tested in the PBS buffer containing 50 µM UA (Figure 7d). A low relative
standard deviation (RSD) of 3.6% indicates good fabrication reproducibility.

3.6. UA Detection in Serum Sample

To evaluate the applicability of the fabricated cobalt oxide puffy balls/GC sensor
for UA detection in serum samples (H4522; Sigma-Aldrich, Saint Louis, MO, USA), we
employed a standard addition-based method. First, a known concentration of UA (i.e., 50,
100, and 200 µM) was added to the serum sample, and total UA concentration was estimated
using cobalt oxide puffy balls/GC sensor. From the measurement results, recovery (%)
and RSD (%) were estimated (Table 2). The results indicate good recovery and low RSD,
which confirms the suitability of the cobalt oxide puffy balls/GC sensor for detecting UA
in real samples.

Table 2. UA analysis in human serum (H4522) sample using fabricated cobalt oxide puffy balls/
GC sensor.

Sample Added UA (µM) Found UA (µM) Recovery (%) RSD (%) (n = 3)

Human
serum

(H4522)

0 280 - -
50 328.7 97.4 3.1

100 196.6 96.6 2.8
200 391.6 95.8 3.4

4. Conclusions

In summary, we synthesized puffy balls-like cobalt oxide nanostructures using the
hydrothermal method and characterized their crystal structure and surface morphology
using different techniques (i.e., XRD and FESEM). The non-enzymatic electrochemical UA
sensor was designed with as-synthesized puffy balls-like cobalt oxide nanostructures. The
sensing performance of fabricated cobalt oxide puffy balls/GC sensor was tested for UA
detection using two techniques (i.e., CV and DPV), and their sensing performance was
compared. The fabricated cobalt oxide puffy balls/GC sensor exhibited high sensitivity
towards UA, which is ~6 times more sensitive when measured using the DPV technique
(2158 µA/mM.cm2) compared to the sensitivity obtained with CV (370 µA/mM.cm2). Addi-
tionally, the cobalt oxide puffy balls/GC sensor showed good selectivity, long-term stability,
fabrication reproducibility, and applicability in the human serum sample. The puffy balls-
shaped cobalt oxide nanostructure with a high surface area can be an exciting working
electrode nanomaterial for fabricating different sensors using a specific enzyme/other
metal or metal oxide modifications.
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