
Received: 28 March 2025

Revised: 7 June 2025

Accepted: 16 June 2025

Published: 17 June 2025

Citation: Chen, Y.; Ye, J.; Li, Y.; Luo,

Z.; Luo, J.; Wan, X. A Multi-Domain

Feature Fusion CNN for Myocardial

Infarction Detection and Localization.

Biosensors 2025, 15, 392. https://

doi.org/10.3390/bios15060392

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

A Multi-Domain Feature Fusion CNN for Myocardial Infarction
Detection and Localization
Yunfan Chen 1 , Jinxing Ye 1 , Yuting Li 2, Zhe Luo 3,*, Jieqiang Luo 4 and Xiangkui Wan 1,*

1 Hubei Key Laboratory for High-Efficiency Utilization of Solar Energy, Hubei University of Technology,
Wuhan 430068, China; yfchen@hbut.edu.cn (Y.C.)

2 School of Computer Science, Hubei University of Technology, Wuhan 430068, China; ytli@hbut.edu.cn
3 School of Artificial Intelligence, Shenzhen Polytechnic University, Shenzhen 518055, China
4 Puleap Health Technology Co., Ltd., Guangzhou 510710, China; luojieqiang@puleap.com
* Correspondence: luozhe@szpu.edu.cn (Z.L.); xkwan@hbut.edu.cn (X.W.)

Abstract: Myocardial infarction (MI) is a critical cardiovascular disease characterized
by extensive myocardial necrosis occurring within a short timeframe. Traditional MI
detection and localization techniques predominantly utilize single-domain features as input.
However, relying solely on single-domain features of the electrocardiogram (ECG) proves
challenging for accurate MI detection and localization due to the inability of these features
to fully capture the complexity and variability in cardiac electrical activity. To address this,
we propose a multi-domain feature fusion convolutional neural network (MFF–CNN) that
integrates the time domain, frequency domain, and time-frequency domain features of ECG
for automatic MI detection and localization. Initially, we generate 2D frequency domain and
time-frequency domain images to combine with single-dimensional time domain features,
forming multi-domain input features to overcome the limitations inherent in single-domain
approaches. Subsequently, we introduce a novel MFF–CNN comprising a 1D CNN and
two 2D CNNs for multi-domain feature learning and MI detection and localization. The
experimental results demonstrate that in rigorous inter-patient validation, our method
achieves 99.98% detection accuracy and 84.86% localization accuracy. This represents a
3.43% absolute improvement in detection and a 16.97% enhancement in localization over
state-of-the-art methods. We believe that our approach will greatly benefit future research
on cardiovascular disease.

Keywords: deep learning; myocardial infarction; multi-domain features; ECG

1. Introduction
According to statistics from the World Health Organization, the number of people

affected by cardiovascular diseases (CVDs) and the proportion of deaths they cause increase
annually. CVDs are now the leading cause of death worldwide, resulting in substantially
more deaths and fatalities than cancer and other diseases [1]. The high prevalence, disability,
and mortality rates are the main characteristics of CVDs [2]. Common CVDs include
hypertension, hyperlipidemia, angina pectoris, coronary heart disease, and myocardial
infarction (MI). MI, commonly known as a heart attack, is the leading cause of death
from cardiovascular disease. It is characterized by its sudden onset, critical condition,
high mortality rate, and potential for serious complications. Early diagnosis and accurate
treatment are crucial for the management and prognosis of MI [3], substantially reducing
complications and greatly improving patient survival rates [4].
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The electrocardiogram (ECG) is a crucial tool for recording cardiac signals, objectively
reflecting the physiological status of different parts of the human heart to a great extent.
Due to its accessibility and non-invasiveness, the ECG is commonly used for clinical
MI detection and localization [5]. Traditionally, the identification of MI relied heavily on
manual ECG interpretation by experts, a process that is often time-consuming and, given
the lengthy diagnostic sessions, susceptible to human error. However, with advancements
in computer science and signal processing technology, research on the automatic detection
of MI has increased substantially, leveraging traditional machine learning and deep learning
methods to potentially mitigate these limitations.

Traditional machine learning-based MI detection methods require the manual extrac-
tion of ECG features, which are then classified by classifiers, such as support vector machine
(SVM) [6–11], k-nearest neighbor (KNN) [7,8,12], and decision tree (DT) [7]. Arif et al. [13]
used the discrete wavelet transform (DWT) to extract features from a 12-lead ECG and
employed the KNN classifier to detect and locate MI. Dohare et al. [9] extracted 220 features
from the ECG, including P-wave, QRS, ST-T complex, and QT interval, and utilized princi-
pal component analysis (PCA) to select 14 input features in an SVM model for MI detection.
However, manual feature extraction has substantial limitations, potentially reducing the
classifier’s accuracy. Additionally, obtaining useful ECG features remains challenging and
heavily relies on clinical diagnostic experience. The lack of important information during
manual feature extraction may also lead to misdiagnosis [14].

In contrast, deep learning-based MI detection methods are automatic and do not
require manual analysis and feature extraction. Wang et al. [15] proposed a multi-lead
integrated neural network approach that combined a three-seeded network with multi-lead
ECG signals for MI detection. Feng et al. [16] combined convolutional neural networks
(CNNs) and long short-term memory (LSTM) to learn MI features. Xiong et al. [17]
used a multi-lead neural network based on DenseNet to localize MI with a 12-lead
ECG. Strodthoff et al. [18] employed a fully connected neural network to detect MI. Qu
Jierui et al. [19] proposed an interpretable shapelet-based approach that combines dynamic
learning with deep learning to capture the intrinsic dynamics of ECG and extract sub-
stantial shapelets. Zhang et al. [20] adopted ensemble learning methods to detect MI by
extracting energy entropy and morphological features from ECG signals. The above deep
learning-based MI detection methods use 1D ECG signals as input. However, 1D ECG
signals provide only single-point time and amplitude information, which cannot fully
reveal the spatial distribution characteristics of cardiac electrical activity. In contrast, 2D
ECG signals provide the time and amplitude information and the overall change trend of
the signal.

Recent studies have proposed various approaches using 2D ECG images as inputs for
MI detection. Huang et al. [21] and Rahhal et al. [22] explored the use of time-frequency
images generated by short-time Fourier transform (STFT) or continuous wavelet transform
(CWT) as 2D inputs, achieving substantially improved ECG classification results compared
with traditional 1D ECG analysis. Hao et al. [23] employed 12-lead ECG images in a multi-
branch fusion network for MI detection. Swain et al. [24] introduced an enhanced Stockwell
transform and phase distribution mode for automatic MI detection. Zhang et al. [25]
applied the Gramian Angular Field (GAF) method to convert ECG time series into images,
then feature extraction using a PCA network. Yousuf et al. [26] proposed using 2D CNNs
for detecting MI by transforming ECG signals into grayscale images.

Existing deep learning-based methods for MI detection and localization have shown
promising results. However, many of these methods focus exclusively on the time domain
characteristics of ECG signals, neglecting their frequency domain features. In practical
applications, disease diagnosis cannot rely solely on single-domain features; integrating
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multiple types of features becomes imperative. Combining information from both time and
frequency domains is essential to enhance the model’s generalization ability. To achieve
this, ECG signals can be decomposed into multiple scales, facilitating the generation of
time-frequency images across various frequency ranges. These images enable a detailed
exploration of the complexity and dynamics of cardiac electrical activity, thereby empower-
ing MI detection and localization algorithms to leverage both types of features effectively
and improve overall accuracy.

Therefore, this study proposes a multi-domain feature fusion convolutional neural net-
work (MFF–CNN) that integrates ECG signals’ time, frequency, and time-frequency domain
features for MI detection and localization. The main contributions are summarized below.

• The effective generation of frequency-domain spectrum and time-frequency images,
combined with time-domain ECG signals, creates multi-domain information inputs.
Leveraging S-transform for time-frequency representation and GAF for spectral anal-
ysis, this approach significantly enhances feature representation and generalization
ability, thereby improving MI detection and localization accuracy.

• Introduction of a novel MFF–CNN for automatically extracting deep features from
input ECG signals, spectrum images derived from GAF, and time-frequency images
generated by S-transform. This model integrates complementary characteristics from
each domain, leveraging the strengths of both S-transform and GAF in capturing
MI-related features, enabling effective multi-domain feature learning for MI detection
and localization.

• The MFF–CNN achieves superior results compared with existing methods, demon-
strating its effectiveness in detecting and localizing MI. On the well-known PTB
diagnostic ECG database, our proposed method sets a new benchmark in inter-patient
evaluation with a detection accuracy of 99.98% and a location accuracy of 84.86%. Fur-
thermore, in generalization tests using the PTB data for training and the PTB-XL data
for validation, the MFF–CNN obtains a location accuracy of 78.21%, far surpassing
that of single-domain models.

The remainder of this paper is organized as follows: Section 2 describes the data
preprocessing, GAF, S transform, and the proposed MFF-CNN. Section 3 presents the
experimental results. Section 4 discusses the experimental results. Finally, Section 5
provides the conclusions.

2. Materials and Methods
Figure 1 illustrates the structure of the proposed MI detection and localization method.

The 12-lead ECG signal initially undergoes preprocessing and segmentation into individ-
ual heartbeats across all 12 leads. The spectrum image (using the GAF method) and the
time-frequency image (via the S transform) are derived from lead II of these segmented
heartbeats. Lead II is critical for ECG diagnosis as it aligns with the heart’s electrical axis,
clearly showing atrial and ventricular depolarization, and typically has less noise interfer-
ence, ensuring better quality for GAF and S-transform analysis. Subsequently, the obtained
images and the 12-lead heartbeat data train a 2D CNN network and a separate 1D CNN
network. Ultimately, the outputs from these networks are integrated to determine the pre-
cise location and type of MI. By integrating multi-domain features inherent in ECG signals,
this approach substantially improves the accuracy and robustness of MI localization.



Biosensors 2025, 15, 392 4 of 21

2D time-frequency
image

2D spectrum image

Original 12-lead ECG signal Pre-processing

12-lead ECG heartbeat

V4

V5

V6

ꞏꞏꞏ

I

II

III ꞏꞏꞏ

Denoising

R-peak detection

Heartbeat 
segmentation

ST

GAF

C
oncatenation

Softm
ax layer

AMI

IMI

IPLMI

HC

ALMI

ASMI

ASLMI

ILMI

IPMI

LMI

PMI

PLMILead II

Lead II

Amplitude

Lead

Time

Multi-domain 
feature generation MFF-CNN

2D CNN model

7´7  Conv1

3´3 ResB ´8

Full connection

2D CNN model

7´7  Conv1

3´3 ResB ´8

Full connection

1D CNN model

(15,)  Conv1

(7,)  SE-ResB ´8

Full connection

Output

HC : Healthy Control

:  Lateral MILMI

AMI : Anterior MI

: Posterior Lateral MIPLMI

ALMI : Anterior Lateral MI

: Inferior Posterior MIIPMI

IMI : Inferior MI

: Anterior Septal MIASMI

: Posterior MIPMI

: Inferior Lateral MIILMI : Inferior Posterior Lateral MIIPLMI

: Anterior Septal Lateral MIASLMI

Figure 1. The overall structure of the proposed MI detection and localization method.

2.1. Data Preprocessing

This study utilizes the PTB diagnostic ECG database [27] and PTB-XL dataset [28]
from the Physikalisch-Technische Bundesanstalt of the German National Metrology Insti-
tute. The PTB database serves as an open-source resource for MI diagnosis. It comprises
549 records from 290 subjects, each with one or more records. The subjects’ ages range
from 17 to 87 years, with an average age of 57.2. The male-to-female ratio is 2.58:1. Each
record has a sampling rate of 1000 Hz and includes 15 channels: the standard 12-lead ECG
signals (I, II, III, aVR, aVL, aVF, and V1–V6) and the 3 Frank ECG signals (VX, VY, and VZ).
The database lacks beat-by-beat annotations but provides detailed clinical summaries and
other pertinent information in the header files of most ECG recordings. It encompasses
148 patients with MI and 52 healthy control subjects. Among the 148 MI patients, 21 were
not annotated with the specific infarction region; thus, records from these 21 MI patients
were excluded from the study. Table 1 summarizes the samples from the PTB database
used in this research.

Table 1. Summary of PTB database samples.

Types of MI No. of
Patients

No. of
Records

No. of
12-Lead

Heartbeats

Anterior MI (AMI) 17 47 6043
Anterior Lateral MI (ALMI) 16 43 6286
Anterior Septal MI (ASMI) 27 77 11,181

Anterior Septal Lateral MI (ASLMI) 1 2 273
Inferior MI (IMI) 30 89 12,298

Inferior Lateral MI (ILMI) 23 56 7849
Inferior Posterior MI (IPMI) 1 1 48

Inferior Posterior Lateral MI(IPLMI) 8 19 2710
Lateral MI (LMI) 1 3 461

Posterior MI (PMI) 1 4 466
Posterior Lateral MI (PLMI) 2 5 767

Healthy Control (HC) 52 80 10,951
Total 179 426 59,333
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The PTB-XL ECG dataset consists of 21,837 clinical 12-lead ECG records from 18,885 pa-
tients. Each record is 10 s long and has a sampling rate of 500 Hz. Cardiologists have
annotated the data covering 71 types of heart disease, with multiple annotations possible
in most records. This study provides an overview of the PTB-XL dataset, which includes
2184 normal records and 5469 records depicting nine types of MI, detailed in Table 2.
Due to the differing sampling rates between the PTB-XL dataset and the PTB database,
we resampled the PTB-XL dataset to 1000 Hz to ensure consistency in frequency across
both databases.

Table 2. Summary of PTB-XL dataset samples.

Types of MI No. of
Patients

No. of
Records

No. of
12-Lead

Heartbeats

Anterior MI (AMI) 286 290 2434
Anterior Lateral MI (ALMI) 181 208 1585
Anterior Septal MI (ASMI) 1780 2017 16,590

Inferior MI (IMI) 2055 2331 17,815
Inferior Lateral MI (ILMI) 350 394 2898

Inferior Posterior MI (IPMI) 26 30 218
Inferior Posterior Lateral MI(IPLMI) 49 50 424

Lateral MI (LMI) 125 135 1050
Posterior MI (PMI) 14 14 137

Healthy Control (HC) 1967 2184 21,854
Total 6833 7653 65,005

The ECG signal must be preprocessed to remove noise sources, such as myoelectric
interference, baseline drift, and industrial frequency interference to ensure accurate clas-
sification results. This involves eliminating noise signals from the original signal before
analysis to prevent interference from affecting the results. The initial step involves baseline
wander removal via median filtering, which suppresses low-frequency drift caused by
respiration or movement by vertically shifting the signal to zero-center the isoelectric line.
Subsequently, the improved threshold wavelet denoising method [29] separates the ECG
signal from noise, as depicted in Equation (1).

d̂b(c) =

{
sgn(db(c))(|db(c)| − TEb), |db(c)| > TEb

0 , |db(c)| ≤ TEb
(1)

where b (b = 1, . . . ,9) represents the number of levels of wavelet decomposition, and c
denotes the number of sample points in the signal. TEb is the set threshold, calculated as
TEb =

(
σb
√
(2 log∥db∥)

)
/ log(b + 1) , where ∥db∥ denotes the L2 norm (Euclidean norm)

of the detail coefficients at the b-th level of the wavelet decomposition, σb denotes the
estimated noise level calculated as σb = (median(|db|))/0.6745 [30], and 0.6745 is the value
corresponding to 75% of the area of under a standard Gaussian distribution with mean 0
and variance 1 (p = 0.25).

The dB6 wavelet was selected as the wavelet basis due to its similarity in morphology
to the ECG signal. A 5-level wavelet decomposition was applied to the signal, and coef-
ficients smaller than TEb were thresholded to zero to eliminate additional noise signals.
The Pan–Tompkins algorithm [31] was utilized to localize QRS wave clusters and R peaks.
Each heartbeat was defined as 250 sample points before the R peak and 400 sample points
after the R peak, resulting in 651 sample points per beat. Figure 2 illustrates a comparison
of the ECG signals before and after processing.
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Figure 2. ECG signals before and after preprocessing. (a) Original ECG signal. (b) ECG signal
after denoising.

2.2. Gramian Angular Field for Spectrum Image Generation

In this study, a discrete Fourier transform was employed to compute the spectrum
of the ECG signal. Subsequently, the GAF method [32] was utilized to transform the 1D
spectrum into a 2D image, leveraging its advantage in preserving temporal dependencies
and facilitating feature extraction in the frequency domain. The algorithm consists of three
steps. First, any 1D signal X = (x1, x2, . . . , xn) is rescaled to fit within the interval [−1,1]
using Equation (2).

x̃i =
[xi − max(X)] + [xi − min(X)]

max(X)− min(X)
(2)

The sequence X is transformed and represented in polar coordinates. Each value is
encoded as an angular cosine φi and a radius ri, which are calculated using Equation (3).{

φi = arccos(x̃i),−1 ≤ x̃i ≤ 1, x̃i ∈ X̃,
ri =

ti
N , ti ∈ N, i = 1, 2, . . . , n,

(3)

The formula uses ti to denote the timestamp and N as a constant factor. Representing
the time series in polar coordinates offers a novel approach. As time progresses, values
shift among various points on the circular representation. Converting the adjusted time
series into polar coordinates facilitates leveraging the angular perspective by computing
the angular difference between consecutive points. This aids in identifying the temporal
correlations across different intervals. Equation (4) subsequently defines the GAF.

G =


sin(φ1 − φ1) · · · sin(φ1 − φn)

sin(φ2 − φ1) · · · sin(φ2 − φn)
...

. . .
...

sin(φn − φ1) . . . sin(φn − φn)


=

√
I − diag(X̃⊙X̃)

′
× X̃ − X̃′ ×

√
I − diag(X̃⊙X̃)

(4)

Equation (4) illustrates that I is a unit row vector and G represents a Gram ma-
trix. In Equation (4), the Gram matrix G has zero diagonal elements by construction, as
sin(φi − φi) = 0. This reflects the elimination of self-difference terms and focuses attention
on pairwise temporal dependencies. While G is thus not positive definite, its semidefinite
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structure preserves critical phase-based relationships for feature extraction. Transforming
from 1D to 2D features provides two primary advantages: smoothing the spectral sequence
through piecewise aggregation approximation [33] to maintain crucial temporal trends
for CVDs analysis and enhancing the intuitive representation of CVDs-induced spectral
changes. This leverages the capabilities of 2D deep learning in computer vision for precise
feature identification.

Figure 3 illustrates the transformation process of 1D spectral images of ECG signals
into 2D spectral images using the GAF method for both MI and HC subjects, with the
upper half depicting ECGs from HC subjects and the lower half from MI subjects. The ECG
signals of MI subjects exhibited more low-frequency signals and a less concentrated overall
frequency distribution than HC subjects. However, these changes were not evident in the
1D spectra. The GAF method was employed to convert the signals to images, enhancing
visibility and making the changes induced by MI more pronounced and apparent.

      

(b2)MI ECG Without Noise   (b1)MI ECG With Noise

   

(a) (b) (c)

Figure 3. ECG spectral signals of MI and HC after GAF transformation are presented in the images.
(a) HC and MI ECG without noise. (b) 1D Spectrum of HC and MI. (c) Spectrum image of HC and MI.

2.3. S Transform

The S transform (ST) generalizes the CWT [34], providing high-frequency resolu-
tion, no cross-terminal interference, strong noise immunity, and an adjustable window
function [35]. Equation (5) defines the ST of the signal x(t).

S(τ, f ) =
∫ ∞

−∞
x(t)

| f |√
2π

e−
(τ−t)2 f 2

2 e−i2π f tdt (5)

where τ represents the time shift factor and f denotes frequency. The ST is utilized in
ECG analysis to offer precise time-frequency information. Initially proposed by Davis
and Mermelstein in 1980, this transform employs an adjustable Gaussian window that
effectively accommodates frequency variations in the signal. Compared with the STFT,
the ST provides superior time-frequency resolution. Given the temporal variability in
the heart’s electrical activity, the Gaussian window with inverse frequency dependency
accurately captures this dynamic property.

Additionally, the ST provides superior phase resolution, enabling the detection of
even minor signal changes. Due to the complexity and noise often present in ECG sig-
nals, a tool with excellent phase resolution is crucial for extracting valuable information.
The ST, with its phase correction and scalable Gaussian window, facilitates the precise
extraction of the heart’s electrical activity features and provides an accurate time-frequency
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representation. The inverse frequency dependence of the Gaussian window allows finer
capture of high-frequency signal components, transient feature detection, and estimation
of the signal’s time-frequency distribution. This enhances our understanding of the heart’s
dynamic characteristics and abnormal manifestations, offering valuable clinical insights for
diagnosis and treatment.

Figure 4 shows the ST images of the heartbeats of MI and HC subjects. The ST
image in Figure 4b indicates that, compared with HC subjects, the main frequency of MI
subjects appears at 0.4 s, and the overall frequency distribution is not concentrated, with a
substantial number of low-frequency signals present throughout the entire heartbeat.

(a) (b)

Figure 4. Images of heartbeats from MI and HC subjects after S transform. (a) ST image of HC. (b) ST
image of MI.

2.4. MFF–CNN Network

Figure 5 depicts the architecture of the proposed MFF–CNN, which incorporates the
standard ResNet18 network and the optimized SE-ResNet18 network. The ResNet18 net-
work is the primary structure of the model due to its excellent balance between performance
and efficiency, robust feature extraction capabilities, broad applicability across various tasks,
and ease of deployment and debugging. Due to the variability in data dimensions, we
utilized the classical ResNet18 network to process 2D data. To adapt to the characteristics
of 1D ECG data, we converted the 2D ResNet18 network into a 1D ResNet18 network
and adjusted the initial 7 × 7 convolutional kernel to a 1D convolutional kernel of size 15.
This adjustment is because larger convolutional kernels can help the network learn more
meaningful features. Additionally, the subsequent 3 × 3 convolutional kernel was replaced
with a 1D convolutional kernel of size 7.

To enhance the network’s ability to characterize features, we added a squeeze and
excitation (SE) block structure to each residual block (ResB) [36]. The SE block enhances
the representation of feature channels through its two core operations: “Squeeze” and
“Excitation”. The “Squeeze” operation summarizes channel-wise features via global average
pooling, creating a global description. Meanwhile, the “Excitation” operation utilizes a
Multi-Layer Perceptron to evaluate the importance of each channel based on this global
information, outputting a weight vector. This modification enables the model to effectively
integrate global information with channel significance, subsequently bolstering its per-
formance, robustness, and adaptability to a wide range of complex scenarios by learning
and emphasizing crucial weights and features across different channels. Additionally,
a dropout layer with a dropout rate of 0.2 was added between the two convolutional
kernels of each ResB to reduce the risk of overfitting. These enhancements improve the
model’s ability to adapt to data of varying dimensions, resulting in more accurate feature
extraction and classification.
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Figure 5. Architecture of the proposed MFF–CNN network.

Finally, we effectively fuse and integrate the output information from each network by
concatenating the feature vectors from different input sources to form a combined feature
vector, which serves as the input to the fully connected layer. Subsequently, a softmax layer
normalizes the output of the fully connected layer to obtain the final classification results.

This strategy leverages the strengths of each network and improves the model’s
classification performance. Table 3 presents the parameters of the two types of networks
used in the experiment.

Table 3. Networks used in the experiment and their parameters.

Layer Name ResNet18 SE-ResNet18

Conv1 7 × 7, 64, stride 2 (15,), 64, stride 2

Conv2_x

3 × 3, max pool, stride 2 (3,), max pool, stride 2[
3 × 3, 64
3 × 3, 64

]
× 2

 (7,), 64
(7,), 64

f c, [4, 64]

× 2

Conv3_x

[
3 × 3, 128
3 × 3, 128

]
× 2

 (7,), 128
(7,), 128

f c, [8, 128]

× 2

Conv4_x

[
3 × 3, 256
3 × 3, 256

]
× 2

 (7,), 256
(7,), 256

f c, [16, 256]

× 2

Conv5_x

[
3 × 3, 512
3 × 3, 512

]
× 2

 (7,), 512
(7,), 512

f c, [32, 512]

× 2

Average pool, f c, softmax Average pool, Dropout, f c, softmax
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3. Experimental Results
In this section, we evaluate and compare the MI detection and localization performance

of the proposed MFF–CNN model with three single-domain models: the 1D ECG model,
the 2D spectrum image model, and the 2D time-frequency image model. The evaluation
is conducted on the PTB database using both intra-patient and inter-patient paradigms.
The generalizability of the proposed MFF–CNN model is further verified using the PTB-
XL dataset.

3.1. Experimental Settings

During the training process, all models were trained using the cross-entropy loss
function. Stochastic gradient descent with a learning rate of 0.001 and momentum of 0.9
was employed for parameter updates. The model’s loss is minimized through iterative
steps, and its parameters are updated using error back-propagation. The batch and epoch
sizes were set to 64 and 60, respectively. The experiments we conducted using Python 3.7.
The deep learning program ran on the PyTorch 1.10.1 framework, utilizing NVIDIA GeForce
RTX 4060 laptop GPUs (Nvidia, Santa Clara, CA, USA) to accelerate the training process.
The methodology was implemented on a PC with a 5.40 GHz Intel Core i9-13900HX CPU
(Intel, Santa Clara, CA, USA), 16 GB RAM, and Windows 11 operating system (Microsoft,
Redmond, WA, USA).

3.2. Evaluation Indicators

To facilitate objective and quantitative comparisons of classification performance, we
evaluated the classification results using accuracy (Acc), sensitivity (Sen), precision (Pre),
specificity (Spe), and F1-score (F1). These metrics were defined as follows:

Acc =
TP + TN

TP + FP + TN + FN
, (6)

Sen = Recall =
TP

TP + FN
, (7)

Pre =
TP

TP + FP
, (8)

Spe =
TN

TN + FP
, (9)

F1-Score =
2 × Sen × Pre
(Sen + Pre)

(10)

where TP and TN denote the number of true-positive and true-negative heartbeats, respec-
tively. FN and FP represent the number of false-negative and false-positive heartbeats.
To assess the overall accuracy of the model in localizing MI, we define the model’s overall
classification accuracy as AccT , calculated using Equation (11).

AccT =
∑12

y=1 TPy

∑12
y=1 TPy + FNy

(11)

where TPy represents the number of correctly detected heartbeats of each type, while FNy

is the number of each type of heartbeat that was not correctly diagnosed.

3.3. Intra-Patient Evaluation of the Performance of MI Detection and Localization on the
PTB Database

For the intra-patient experiments, the recorded heartbeats were randomly divided into
training, validation, and test sets in a ratio of 7:2:1. The proposed dataset splitting strategy
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substantially reduces computational expenses compared with K-fold cross-validation.
Additionally, the fixed validation and test sets provide a stable and consistent basis for
evaluating the performance of different models. The presented results reflect all the
experimental outcomes obtained from the entire PTB database.

Table 4 presents the experimental results of each model for MI detection in the intra-
patient paradigm. Table 5 presents the 10-fold cross-validation results of the MFF–CNN
model for detecting MI under the intra-patient paradigm. Under this paradigm, single-
domain models using 12-lead ECG signals, GAF images, and ST images as inputs have all
demonstrated satisfactory performance in MI detection. However, the MFF–CNN model
achieved superior performance with an accuracy of 99.99%, sensitivity of 100%, precision
of 99.99%, specificity of 99.97%, and F1-score of 100%, surpassing all single-domain models.

Table 4. Detection results of each model in the intra-patient paradigm on the PTB database.

Model Input Acc (%) Sen (%) Pre (%) Spe (%) F1 (%)

ECG signal 99.98 99.98 99.98 99.94 99.98
GAF image 99.93 99.96 99.95 99.78 99.95
ST image 99.97 99.97 99.98 99.95 99.98

ECG signal & GAF image & ST
image (MFF–CNN) 99.99 100 99.99 99.97 100

Table 5. 10-Fold Cross-Validation Results of the MFF–CNN Model for MI Detection under the
Intra-Patient Paradigm.

Fold Acc (%) Sen (%) Pre (%) Spe (%) F1 (%)

1 99.97 99.99 99.96 99.93 99.98
2 99.99 99.98 99.98 99.97 99.98
3 99.98 99.99 99.97 99.95 99.99
4 99.99 99.99 99.98 99.96 99.99
5 99.96 99.98 99.95 99.92 99.97
6 99.98 99.99 99.97 99.94 99.98
7 99.99 99.98 99.98 99.97 99.98
8 99.97 99.99 99.96 99.93 99.98
9 99.99 99.99 99.99 99.96 99.99

10 99.98 99.98 99.97 99.95 99.98

Similarly, as depicted in Table 6, our MFF–CNN model exhibits higher accuracy and
sensitivity than all single-domain models for MI location. Although the precision and
F1-score of the MFF–CNN model are slightly lower than those of the single-domain ST
images model, the overall performance of the MFF–CNN is superior.

Table 6. Localization results of each model in the intra-patient paradigm of the PTB database.

Model Input AccT (%) Sen (%) Pre (%) Spe (%) F1 (%)

ECG signal 99.91 99.75 99.92 99.99 99.83
GAF image 99.65 99.74 99.53 99.96 99.63
ST image 99.91 99.94 99.95 99.99 99.94

ECG signal & GAF image & ST
image (MFF–CNN) 99.98 99.97 99.32 99.99 99.63

Figure 6 illustrates the confusion matrix of the fusion model in the intra-patient
paradigm of the PTB database for MI localization. Table 7 presents the fusion model’s
performance in localizing different types of MI under this paradigm.
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Figure 6. Confusion matrix for the fusion model under the intra-patient paradigm on the PTB database.

Table 7. Performance of fusion model for MI Location under the intra-patient paradigm on the
PTB database.

Class Acc (%) Sen (%) Pre (%) Spe (%) F1 (%)

HC 99.99 99.97 100 100 99.99
AMI 99.99 99.98 99.95 99.99 99.97

ALMI 100 99.98 99.98 100 99.98
ASMI 100 100 99.99 100 100

ASLMI 100 100 99.64 100 99.82
IMI 99.99 99.99 99.98 99.99 99.98

ILMI 99.99 99.96 100 100 99.98
IPMI 99.99 100 92.31 99.99 96

IPLMI 99.99 99.85 100 100 99.93
LMI 100 100 100 100 100
PMI 100 100 100 100 100

PLMI 100 100 100 100 100

Average 99.99 99.97 99.32 99.99 99.63

3.4. Inter-Patient Evaluation of the Performance of MI Detection and Localization on the
PTB Database

For the inter-patient experiments, we randomly divided all records into a training set
and a test set in a 7:3 ratio based on the number of patients. However, the validation set
was insufficient for further optimization due to the limited number of samples in specific
MI categories. Therefore, we opted for a straightforward 7:3 division between the training
and testing sets without establishing a separate validation set. Additionally, since the PTB
database contains instances from individual patients, we sourced the corresponding patient
data from the PTB-XL dataset to facilitate the completion of the inter-patient experiments.

Using different patients for training and testing data increases the complexity of MI
detection and localization. The results presented reflect the model’s predictions on the test
set. As shown in Table 8, the proposed MFF–CNN demonstrates impressive performance in
MI detection, achieving an accuracy of 99.98%, a sensitivity of 100%, a precision of 99.97%,
a specificity of 99.95%, and an F1 score of 99.98%, surpassing all single-domain models.
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Table 9 presents the 10-fold cross-validation results of the MFF–CNN model for detecting
MI under the inter-patient paradigm.

Table 8. Detection results of each model in the inter-patient paradigm of the PTB database.

Model Input Acc (%) Sen (%) Pre (%) Spe (%) F1 (%)

ECG signal 80.06 88.53 84.94 56.66 86.70
GAF image 73.18 91.59 76.51 22.31 83.37
ST image 79.19 90.00 83.07 49.35 86.40

ECG signal & GAF image & ST
image (MFF–CNN) 99.98 100 99.97 99.95 99.98

Table 9. 10-Fold Cross-Validation Results of the MFF–CNN Model for MI Detection under the
Inter-Patient Paradigm.

Fold Acc (%) Sen (%) Pre (%) Spe (%) F1 (%)

1 99.97 100 99.96 99.92 99.98
2 99.99 99.99 99.98 99.97 99.99
3 99.98 100 99.97 99.95 99.99
4 99.99 99.99 99.98 99.96 99.98
5 99.96 99.98 99.94 99.92 99.97
6 99.98 100 99.97 99.94 99.98
7 99.99 99.99 99.98 99.97 99.99
8 99.98 99.99 99.96 99.93 99.97
9 99.99 99.98 99.99 99.97 99.99

10 99.98 99.99 99.97 99.96 99.98

Regarding MI localization, the MFF–CNN model outperforms the single-domain
model in accuracy and sensitivity under the same paradigm, as displayed in Table 10.
The MFF–CNN model achieved high-precision localization under the more complex inter-
patient paradigm, with an overall accuracy of 84.86%, a sensitivity of 62.90%, a precision
of 64%, a specificity of 98.60%, and an F1-score of 60.59%. These results demonstrate the
model’s stability and accuracy on inter-patient data.

Table 10. Localization results of each model in the inter-patient paradigm of the PTB database.

Model Input AccT (%) Sen (%) Pre (%) Spe (%) F1 (%)

ECG signal 56.37 49.27 55.36 96.11 55.32
GAF image 58.65 52.53 54.11 95.45 50.79
ST image 61.66 55.37 54.64 96.20 63.89

ECG signal & GAF image & ST
image (MFF–CNN) 84.86 62.96 64.03 98.68 60.59

In the PTB inter-patient experiments, multi-domain feature fusion resulted in a sub-
stantial improvement in MI detection and localization compared with models relying
solely on single-domain features. The need for the model’s generalization ability becomes
more critical as the difference between the training and testing data increases in the inter-
patient paradigm.

The experimental results indicate that the proposed fusion model, MFF–CNN, is
more effective than single-domain models in detecting and localizing MI under the inter-
patient paradigm. This is due to the fusion model’s ability to comprehensively utilize
feature information from different domains and perspectives, resulting in more accurate
disease pattern identification and stronger stability and generalization. Figure 7 shows the
confusion matrix of the fusion model for MI localization under the inter-patient paradigm
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for the PTB database. Table 11 shows the performance of the fusion model in localizing
different types of MI in the inter-patient paradigm of the PTB database.
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Figure 7. Confusion matrix for the fusion model under the inter-patient paradigm on the
PTB database.

Table 11. Performance of fusion model for MI location under the inter-patient paradigm on the
PTB database.

Class Acc (%) Sen (%) Pre (%) Spe (%) F1 (%)

HC 99.98 99.96 100 100 99.98
AMI 99.72 82.56 99.98 98.61 89.87

ALMI 97.95 85.59 99.67 97.27 91.06
ASMI 96.32 84.93 97.99 86.08 85.5

ASLMI 93.85 100 93.69 27.97 43.71
IMI 94.5 42.73 98.66 71.98 53.62

ILMI 98.42 85.85 99.62 95.62 90.48
IPMI 95.77 16.67 96.1 1.74 3.15

IPLMI 95.27 53.21 99.08 83.99 65.15
LMI 98.56 4.08 99.36 5.13 4.55
PMI 99.33 0 100 0 0

PLMI 100 100 100 100 100

Average 97.47 62.96 98.68 64.03 60.59

3.5. Ablation Experiments Under the Inter-Patient Paradigm

To assess how time-domain, frequency-domain, and time-frequency-domain ECG
features affect MI localization, we conducted ablation experiments. By systematically
removing or combining features from different domains, we analyzed their contributions
to the model’s MI localization accuracy. Since data partitioning under the intra-patient
paradigm may bias model performance evaluations in ablation studies, we uniformly used
inter-patient partitioning in ablation experiments to ensure reliable results.
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As shown in Table 12, under the inter-patient paradigm of the PTB dataset, the impact
of different domain feature combinations on the myocardial infarction localization model
performance exhibits significant variations. When using single-domain features, ECG sig-
nals alone achieved an Acc of 56.37% and Sen of 49.27%, showing preliminary localization
capability with room for improvement. Switching to GAF images increased Acc to 58.65%
and Sen to 52.53%, indicating complementary information. ST images delivered the best
single-domain performance with Acc reaching 61.66% and Sen 55.37%, demonstrating
superior information representation. Multi-domain feature fusion significantly enhanced
performance: ECG+GAF achieved Acc 68.42% and Sen 56.21%, while ECG+ST reached
Acc 72.15% and Sen 59.83%, highlighting ST’s critical contribution. Notably, the GAF+ST
combination underperformed with Acc 65.33% and Sen 53.97%. The tri-modal fusion of
ECG+GAF+ST yielded optimal results—Acc 84.86% and Sen 62.96%—proving the necessity
and substantial advantage of multi-domain feature fusion in improving MI localization
accuracy and effectiveness.

Table 12. MI localization results of different combined models under the Inter-patient paradigm on
the PTB dataset.

Model Input Acc (%) Sen (%) Pre (%) Spe (%) F1 (%)

ECG signal 56.37 49.27 55.36 96.11 55.32
GAF image 58.65 52.53 54.11 95.45 50.79
ST image 61.66 55.37 54.64 96.20 63.89

ECG signal & GAF image 68.42 56.21 58.37 97.12 59.84
ECG signal & ST image 72.15 59.83 61.24 97.85 63.52
GAF image & ST image 65.33 53.97 57.89 96.78 57.12

ECG signal & GAF image & ST
image (MFF–CNN) 84.86 62.96 64.03 98.68 60.59

3.6. Generalizability Evaluation of the Proposed Method on the PTB-XL Dataset

Given the model’s generalization ability and importance in practical applications, we
selected the PTB-XL dataset as the test dataset for verification. It is important to note that
the PTB-XL dataset was not used in the model’s training process but was only utilized
during the testing phase. This approach ensures an objective and accurate evaluation of
the model’s generalization performance across various datasets.

In the experiments on the PTB-XL dataset, the fusion model MFF–CNN demonstrated
excellent MI detection performance, outperforming all single-domain models. As shown
in Table 13, the fusion model achieved a high accuracy of 91.57% for MI detection on the
PTB-XL dataset, with a perfect sensitivity of 100% and a high precision level of 88.73%.
Although the specificity was slightly lower at 74.93%, the F1 score was as high as 94.03%.
Compared with its performance on the PTB database, the model’s performance on PTB-XL
did not substantially decrease, demonstrating its strong generalization ability.

Table 13. Detection results for each model on the PTB-XL dataset.

Model Input Acc (%) Sen (%) Pre (%) Spe (%) F1 (%)

ECG signal 65.89 83.99 70.36 30.15 76.57
GAF image 71.95 86.66 74.98 42.92 80.40
ST image 66.51 85.30 70.46 29.41 77.17

ECG signal & GAF image & ST
image (MFF–CNN) 91.57 100 88.73 74.93 94.83

Table 14 shows that the fusion model MFF–CNN maintains good generalization ability
for the task of MI localization across databases, with an accuracy of 78.21%, sensitivity of
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73.95%, precision of 63.97%, specificity of 96.33%, and an F1-score of 61.49%. These results
are substantially better than those of the single-domain models. Conversely, single-domain
models exhibit poorer localization results. These results demonstrate that the fusion model
can improve the accuracy and reliability of localization, while single-domain models have
limitations in providing complete and accurate MI localization information.

Table 14. Localization results for each model on the PTB-XL dataset.

Model Input AccT (%) Sen (%) Pre (%) Spe (%) F1 (%)

ECG signal 28.73 12.90 12.95 91.14 14.99
GAF image 29.74 13.26 14.13 91.54 15.91
ST image 29.73 12.79 13.15 91.18 15.23

ECG signal & GAF image & ST
image (MFF–CNN) 78.21 73.95 63.97 96.33 61.49

Table 15 presents the fusion model’s performance in localizing different types of MI
within the PTB-XL dataset.

Table 15. Performance of fusion model for MI Location under the PTB-XL dataset.

Class Acc (%) Sen (%) Pre (%) Spe (%) F1 (%)

HC 91.57 74.94 100 100 85.67
AMI 90.30 65.74 22.62 91.25 33.66

ALMI 98.00 90.28 55.55 98.19 68.78
ASMI 98.68 95.76 99.03 99.68 97.37
IMI 78.61 24.17 91.58 99.16 38.25

ILMI 76.29 32.99 6.63 78.31 11.03
IPMI 96.89 79.36 8.05 96.95 14.62

IPLMI 99.79 86.79 82.14 99.88 84.40
LMI 99.81 93.81 94.26 99.91 94.03
PMI 99.94 95.62 79.88 99.95 87.04

Average 92.99 73.95 63.97 96.33 61.49

3.7. Comparison Results with Existing Methods

Table 16 compares the proposed MFF–CNN with existing MI detection and localiza-
tion methods based on the PTB database. In the intra-patient comparison, the proposed
MFF–CNN achieves competitive results: 99.99% accuracy and 100% sensitivity for MI
detection and 99.98% accuracy and 99.97% sensitivity for MI localization. While the 3D
images [37] method reports 100% accuracy for MI detection, it does not address MI local-
ization. In contrast, our method demonstrates superior overall performance and excels
in detection and localization tasks. In inter-patient comparison, the accuracy of both MI
detection and localization using our method surpasses that of all existing methods. Our
approach enhances detection accuracy by 3.43% and improves localization accuracy by
16.97% compared with the most recent state-of-the-art method. This improvement is partly
attributable to the heightened challenge posed by inter-patient studies on model general-
ization ability and partly due to the integration of frequency domain and time-frequency
features of ECG signals, which many models lack, thereby reducing their generalization
capability. In summary, the proposed method achieves outstanding performance in both
MI detection and localization, with substantially higher accuracy in inter-patient scenarios
than existing models.
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Table 16. Comparing Novel Approach with Current Methods for MI Diagnosis.

Methods Leads and
Database

Detection or
Location

Performance
Intra-Patient Inter-Patient

CNN and BiLSTM
[38]

12 leads
PTB

Detection Acc = 99.90%
Se = 99.97%
Sp = 99.54%

Acc = 93.08%
Se = 94.42%
Sp = 86.29%

CNN based on
ResNet [39]

12 leads
PTB

Detection
and

location

Detection:
Acc = 99.92%
Se = 99.98%

Location:
Acc = 99.72%
Se = 99.63%

Detection:
Acc = 95.49%
Se = 94.85%

Location:
Acc = 55.74%
Se = 47.58%

CNN and BiGRU
with attention [40]

12 leads
PTB

Detection
and

location

Detection:
Acc = 99.93%
Se = 99.99%

Location:
Acc = 99.11%
Se = 99.02%

Detection:
Acc = 96.50%
Se = 97.10%

Location
Acc = 62.94%
Se = 63.97%

Multi-scale
feature [41]

12 leads
PTB

Detection
and

location

/
Detection:

Acc = 95.76%
Location:

Acc = 61.82%

DenseNet [17] 12 leads
PTB

Location Acc = 99.87%
Se = 99.84%
Sp = 99.98%

/

Multi-scale
ResNet with
attention [42]

12 leads
PTB

Detection
and

location

Detection:
Acc = 99.98%
Se = 99.94%

Location:
Acc = 99.79%
Se = 99.88%

/

3D ECG images [37] 12 leads
PTB

Detection Acc = 100.00%
Se = 100.00%
Sp = 100.00%

Acc = 95.65%
Se = 97.34%
Sp = 90.80%

Tucker2
decomposition [43]

12 leads
PTB

Location Acc = 99.67%
Se = 99.98%
Sp = 99.82%

Acc = 65.11%
Se = 98.29%
Sp = 71.91%

Multi-lead branch
with ResNet with
SE and LSTM [44]

12 leads
PTB

Detection
and

location

Detection:
Acc = 99.94%
Se = 99.99%

Location:
Acc = 99.69%
Se = 99.58%

Detection:
Acc = 96.55%
Se = 96.17%

Location:
Acc = 67.89%
Se = 63.16%

MFF–CNN
(Our)

12 leads
PTB

Detection
and

location

Detection:
Acc = 99.99%
Se = 100.00%

Location:
Acc = 99.98%
Se = 99.97%

Detection:
Acc = 99.98%
Se = 100.00%

Location:
Acc = 84.86%
Se = 62.90%

4. Discussion
The experimental results clearly indicate that the proposed MFF–CNN fusion model

outperforms traditional single-domain models in MI detection and localization, owing to its
effective ability to integrate multi-domain features. While single-domain models are often
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limited to capturing either morphological and time-domain features or frequency-domain
features, the MFF–CNN not only effectively combines both time and frequency information,
but also utilizes the time-frequency analysis capabilities of the ST method to capture
the instantaneous frequency characteristics that are pivotal for precise localization. This
multi-faceted feature representation significantly boosts the model’s discriminative power,
resulting in an overall MI localization accuracy of 84.86% in the inter-patient evaluation
on the PTB database, a figure that markedly surpasses the 67.89% achieved by the current
state-of-the-art method.

The proposed algorithm’s worst-case time complexity is O(n2), dominated by the
GAF transformation stage. The GAF computes pairwise angular relationships on the
time-series data, requiring O(n2) operations due to matrix constructions encoding temporal
correlations. In contrast, the S-transform for time-frequency analysis exhibits an optimized
complexity of O(h × nlogn), where h (the number of harmonic components) is typically
small for ECG applications. Therefore, the S-transform complexity effectively scales as
O(nlogn). Both the ResNet18 and SE-ResNet18 operate in constant time O(1), given their
fixed input dimensions. Consequently, as the quadratic GAF term dominates the linear-
logarithmic and constant terms, the overall algorithm complexity simplifies to O(n²)

Furthermore, the proposed MFF–CNN fusion model exhibits exceptional general-
ization ability. In the generalization evaluation on the PTB-XL dataset, characterized by
heightened data complexity and diversity, single-domain models struggle to sustain their
performance, achieving an overall accuracy of less than 30%. Conversely, the MFF–CNN’s
proficiency in harnessing complementary information from multiple domains enables it to
adapt more effectively to unforeseen data variations, maintaining a commendable overall
accuracy of 78.21%. This robust performance underscores the significance of integrating
multi-domain features in enhancing model generalization for complex medical signal
automatic diagnosis tasks.

This study relied solely on Lead II data for training and testing the 2D CNN net-
work. However, using a single lead may overlook the frequency and time-frequency
relationships among the 12 leads, which are critical for capturing nuanced signal variations
across different lead regions. In practical ECG signal processing, multi-lead data are more
effective at capturing such variations, thereby providing richer diagnostic information.
Future work will explore expanding the approach to incorporate all 12 leads for a more
comprehensive analysis.

To address the limitations mentioned above, future research can be improved in two
ways. Firstly, by collecting a more diverse and larger dataset of ECG signal data to improve
its size and quality. Secondly, by adopting multi-lead data in 2D CNNs and combining
them with more complex deep learning model structures, such as deeper convolutional
neural networks or other advanced deep learning algorithms incorporating EMD-based
feature extraction, to better capture and utilize the information in the ECG signal [45–48] .
These improvements are expected to enhance the accuracy, generalizability, and practical
applicability of the model.

5. Conclusions
This study proposes a fusion model, MFF–CNN, combining 1D ECG signals, 2D spec-

tral images, and time-frequency images to explore potential MI detection and localization
modalities. The model achieved good results under intra- and inter-patient paradigms in
the PTB database. The proposed MFF–CNN model achieved 99.98% accuracy and 100%
sensitivity for MI detection, 84.96% accuracy, and 62.90% sensitivity for MI localization
under the PTB inter-patient paradigm. Furthermore, the model trained on the PTB database
was evaluated using the PTB-XL dataset, demonstrating its good generalizability. The pro-
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posed method achieves 91.57% and 78.21% accuracy for MI detection and localization,
respectively. Compared with previous studies, this indicates substantial potential for MI
localization. We plan to acquire multi-lead ECG signals for a more comprehensive joint
analysis in future studies. By combining various data types and leveraging deep learning
techniques, we aim to develop a more efficient and accurate MI detection and localization
model, providing robust support for medical diagnosis and treatment.
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