Fast and Sensitive Interferon-γ Assay Using Supercritical Angle Fluorescence
Abstract
:1. Introduction
2. Experimental Section
2.1. SAF Immunodiagnostic System
2.2. Preparation of Capture Antibodies and Detection Antibodies
2.3. Assay Procedure
- (1)
- Pipette 5 μL 100 nM detection antibody solution into tube;
- (2)
- Pipette 45 μL rmIFN-γ into tube;
- (3)
- Insert the tube into the reader instrument and start measurement.
3. Results and Discussion
4. Conclusions
Assay | Linear range | Time requirement |
---|---|---|
eBioscience, Inc. | 15–2,000 pg/mL | 4½ h |
Thermo Fischer Scientific, Inc. | 37–3,000 pg/mL | 4 h |
Abcamm, Inc. | 31–1,000 pg/mL | 3¾ h |
BioLegend, Inc. | 30–2,000 pg/mL | 4 h |
Cisbio, Inc. | 7.8–2,000 pg/mL | 2 h |
SAF assay | 30–32,000 pg/mL | 12 min |
Acknowledgments
References
- Choi, J.W.; Kwang, W.O.; Thomas, J.H.; Heineman, W.R.; Halsall, H.B.; Nevin, J.H.; Helmicki, A.J.; Henderson, H.T.; Ahn, C.H. An integrated microfluidic biochemical detection system for protein analysis with magnetic bead-based sampling capabilities. Lab Chip 2002, 2, 27–30. [Google Scholar] [CrossRef]
- Lacharme, F.; Vandevyver, C.; Gijs, M.A. Full on-chip nanoliter immunoassay by geometrical magnetic trapping of nanoparticle chains. Anal. Chem. 2008, 80, 2905–2910. [Google Scholar] [CrossRef]
- Nam, J.M.; Thaxton, C.S.; Mirkin, C.A. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 2003, 301, 1884–1886. [Google Scholar] [CrossRef]
- Bruls, D.M.; Evers, T.H.; Kahlman, J.A.; van Lankvelt, P.J.; Ovsyanko, M.; Pelssers, E.G.; Schleipen, J.J.; de Theije, F.K.; Verschuren, C.A.; van der Wijk, T.; van Zon, J.B.; Dittmer, W.U.; Immink, A.H.; Nieuwenhuis, J.H.; Prins, M.W. Rapid integrated biosensor for multiplexed immunoassays based on actuated magnetic nanoparticles. Lab Chip 2009, 9, 3504–3510. [Google Scholar]
- Gaster, R.S.; Hall, D.A.; Nielsen, C.H.; Osterfeld, S.J.; Yu, H.; Mach, K.E.; Wilson, R.J.; Murmann, B.; Liao, J.C.; Gambhir, S.S.; Wang, S.X. Matrix-insensitive protein assays push the limits of biosensors in medicine. Nat. Med. 2009, 15, 1327–1332. [Google Scholar]
- Kurita, R.; Yokota, Y.; Sato, Y.; Mizutani, F.; Niwa, O. On-chip enzyme immunoassay of a cardiac marker using a microfluidic device combined with a portable surface plasmon resonance system. Anal. Chem. 2006, 78, 5525–5531. [Google Scholar] [CrossRef]
- Mauriz, E.; Calle, A.; Manclús, J.; Montoya, A.; Lechuga, L. Multi-analyte SPR immunoassays for environmental biosensing of pesticides. Anal. Bioanal. Chem. 2007, 387, 1449–1458. [Google Scholar] [CrossRef]
- Ni, J.; Lipert, R.J.; Dawson, G.B.; Porter, M.D. Immunoassay readout method using extrinsic Raman labels adsorbed on immunogold colloids. Anal. Chem. 1999, 71, 4903–4908. [Google Scholar] [CrossRef]
- Zheng, G.; Patolsky, F.; Cui, Y.; Wang, W.U.; Lieber, C.M. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotech. 2005, 23, 1294–1301. [Google Scholar] [CrossRef]
- Deiss, F.; LaFratta, C.N.; Symer, M.; Blicharz, T.M.; Sojic, N.; Walt, D.R. Multiplexed sandwich immunoassays using electrochemiluminescence imaging resolved at the single bead level. J. Am. Chem. Soc. 2009, 131, 6088–6089. [Google Scholar]
- Li, M.; Sun, Y.; Chen, L.; Li, L.; Zou, G.; Zhang, X.; Jin, W. Ultrasensitive eletrogenerated chemiluminescence immunoassay by magnetic nanobead amplification. Electroanalysis 2010, 22, 333–337. [Google Scholar] [CrossRef]
- Kerman, K.; Endo, T.; Tsukamoto, M.; Chikae, M.; Takamura, Y.; Tamiya, E. Quantum dot-based immunosensor for the detection of prostate-specific antigen using fluorescence microscopy. Talanta 2007, 71, 1494–1499. [Google Scholar] [CrossRef]
- Fan, R.; Vermesh, O.; Srivastava, A.; Yen, B.K.; Qin, L.; Ahmad, H.; Kwong, G.A.; Liu, C.C.; Gould, J.; Hood, L.; Heath, J.R. Integrated barcode chips for rapid, multiplexed analysis of proteins in microliter quantities of blood. Nat. Biotech. 2008, 26, 1373–1378. [Google Scholar] [CrossRef]
- Ruckstuhl, T.; Winterflood, C.M.; Seeger, S. Supercritical angle fluorescence immunoassay platform. Anal. Chem. 2011, 83, 2345–2350. [Google Scholar] [CrossRef] [Green Version]
- Winterflood, C.M.; Ruckstuhl, T.; Verdes, D.; Seeger, S. Nanometer axial resolution by three-dimensional supercritical angle fluorescence microscopy. Phys. Rev. Lett. 2010, 105, 108103:1–108103:4. [Google Scholar]
- Ruckstuhl, T.; Verdes, D.; Winterflood, C.M.; Seeger, S. Simultaneous near-field and far-field fluorescence microscopy of single molecules. Opt. Express 2011, 19, 6836–6844. [Google Scholar]
- Ruckstuhl, T.; Rankl, M.; Seeger, S. Highly sensitive biosensing using a supercritical angle fluorescence (SAF) instrument. Biosens. Bioelectron. 2003, 18, 1193–1199. [Google Scholar] [CrossRef]
- Krieg, A.; Laib, S.; Ruckstuhl, T.; Seeger, S. Fast detection of single nucleotide polymorphisms (SNPs) by primer elongation with monitoring of supercritical-angle fluorescence. ChemBioChem 2004, 5, 1680–1685. [Google Scholar] [CrossRef]
- Välimäki, H.S.; Pulli, T.; Tappura, K. Applying total internal reflection excitation and super critical angle fluorescence detection to a morphine assay. J. Fluoresc. 2010, 20, 1003–1008. [Google Scholar] [CrossRef]
- Jönsson, C.; Aronsson, M.; Rundström, G.; Pettersson, C.; Mendel-Hartvig, I.; Bakker, J.; Martinsson, E.; Liedberg, B.; MacCraith, B.; Ohman, O.; Melin, J. Silane-dextran chemistry on lateral flow polymer chips for immunoassays. Lab Chip 2008, 8, 1191–1197. [Google Scholar] [CrossRef]
- Ruckstuhl, T.; Enderlein, J.; Jung, S.; Seeger, S. Forbidden light detection from single molecules. Anal. Chem. 2000, 72, 2117–2123. [Google Scholar] [CrossRef]
- Kurzbuch, D.; Bakker, J.; Melin, J.; Jönsson, C.; Ruckstuhl, T.; MacCraith, B. A biochip reader using super critical angle fluorescence. Sens. Actuator. B Chem. 2009, 137, 1–6. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Winterflood, C.M.; Ruckstuhl, T.; Seeger, S. Fast and Sensitive Interferon-γ Assay Using Supercritical Angle Fluorescence. Biosensors 2013, 3, 108-115. https://doi.org/10.3390/bios3010108
Winterflood CM, Ruckstuhl T, Seeger S. Fast and Sensitive Interferon-γ Assay Using Supercritical Angle Fluorescence. Biosensors. 2013; 3(1):108-115. https://doi.org/10.3390/bios3010108
Chicago/Turabian StyleWinterflood, Christian M., Thomas Ruckstuhl, and Stefan Seeger. 2013. "Fast and Sensitive Interferon-γ Assay Using Supercritical Angle Fluorescence" Biosensors 3, no. 1: 108-115. https://doi.org/10.3390/bios3010108
APA StyleWinterflood, C. M., Ruckstuhl, T., & Seeger, S. (2013). Fast and Sensitive Interferon-γ Assay Using Supercritical Angle Fluorescence. Biosensors, 3(1), 108-115. https://doi.org/10.3390/bios3010108