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Abstract: Over the past decade, primary cilia have emerged as the premier means by 

which cells sense and transduce mechanical stimuli. Primary cilia are sensory organelles 

that have been shown to be vitally involved in the mechanosensation of urine in the renal 

nephron, bile in the hepatic biliary system, digestive fluid in the pancreatic duct, dentin in 

dental pulp, lacunocanalicular fluid in bone and cartilage, and blood in vasculature. The 

prevalence of primary cilia among mammalian cell types is matched by the tremendously 

varied disease states caused by both structural and functional defects in cilia. In the process 

of delineating the mechanisms behind these disease states, calcium fluorimetry has been 

widely utilized as a means of quantifying ciliary function to both fluid flow and 

pharmacological agents. In this review, we will discuss the approaches used in associating 

calcium levels to cilia function. 
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1. Introduction 

Once enigmatic organelles, cilia have become a growing field of biomedical research. Cilia are 

often described based upon the structural arrangement of the microtubules of which they are 

composed, with the two types of classifications being “9+0” and “9+2”. In addition to the structure of 

cilia, the ability for independent movement or motility is another characteristic by which cilia are 
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classified, with those capable of this function being termed “motile” and those incapable termed  

“non-motile.” Non-motile cilia with a 9+0 microtubule arrangement are often referred to as primary 

cilia (Figure 1).  

Figure 1. Structure of cilia. (a) Cilia are cellular organelles composed of microtubules, and 

they project from the apical surface of numerous cell types. (b) A cilium is composed of a 

membrane domain, a soluble compartment or cilioplasm, an axoneme and a basal body. 

The membrane domain contains multiple sensory and channel proteins, several of which 

play a role in calcium-mediated fluid-flow mechanosensation. (c) The orientation of the 

microtubules in the axoneme is categorized as “9+0” or “9+2” and is anchored to the basal 

body. Taken and adapted from [1]. 

 

First described in 1898, primary cilia are found in a diverse group of cell types [2]. Over the past 

twenty years, cilia have emerged as ubiquitous organelles with a profound physiological impact. 

Indeed the growing list of disease states caused by ciliary defects has merited the use of the 

comprehensive term, “ciliopathies” (Table 1).  

Paralleling our understanding of the importance of cilia, delineating the specific functions of cilia 

has begun to gain momentum. Through a variety of functional assays, the primary cilium has been 

identified as a mechanical and chemical antenna that serves to translate extracellular stimulations to 

intracellular signals [3]. The mechanosensory function of cilia has been shown in renal epithelia, 

vascular endothelia, nodal cells, hepatocytes, pancreatic epithelial cells, osteocytes, chondrocytes, and 

odontoblasts [4–11]. 

During the sensing process, calcium plays an important role as a second messenger. This central 

paradigm has been developed by the findings of many independent groups showing that when 

challenged by cilia, specific mechano- or chemo-stimulations, an influx of intracellular calcium is 

often observed. This intracellular calcium-level fluctuation can be abolished in cells with dysfunctional 

primary cilia, and ultimately giving rise to ciliopathies. It is also noteworthy that primary cilia are 
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loaded with a variety of calcium ion permeable channels, many of which, if mutated, could lead to 

abnormal intracellular calcium concentrations and subsequent cellular catastrophes. In this review, we 

discuss the three experimental approaches to observing and quantifying ciliary fluid-flow sensation: 

cell culture, single-cell, and ex vivo tissue perfusion assays. 

Table 1. Ciliary classification, function and disease relevance in mammals. Taken and 

modified with permission from [1]. 

Axoneme Motility Function Disease Relevance Reference 

“9+0” Motile Generation of nodal flow Situs inversus; Situs ambiguous;  
Situs isomerism 

[12–14] 

 Non-motile Sensation of nodal flow Situs inversus; Situs ambiguous;  
Situs isomerism 

[4,15] 

  Mechanosensor Polycystic Kidney, Liver, and  
Pancreas Diseases 

[5,16,17] 

  Shear stress sensor Hypertension; Atherosclerosis; 
Aneurysm formation 

[6,7,18,19] 

  Osmolarity sensor Respiratory diseases; Infertility [20,21] 
  Gravitational sensor Osteoporosis; Chondroporosis [22–24] 
  Olfaction sensor Anosmia; Hyposmia [25,26] 
  Light sensor Retinitis pigmentosa; Blindness [27–29] 
  Chemosensor Nephrocystin; Diabetes; Obesity [30–32] 
  Neurotransmitter sensor Impaired brain plasticity [33] 
  Developmental regulator Developmental defects; Cancer [34–36] 
  Pressure sensor Bone maintenance, development [22,37,38] 

“9+2” Motile Chemosensor Chronic obstructive pulmonary 
disease (COPD) 

[39] 

  Airway remodeling Bronchiectasis;  
Hyperreactive airways  

[40] 

  Fluid Clearance Chronic obstructive pulmonary 
disease (COPD) 

[41–43] 

 Non-motile Oocyte Transport Infertility [44,45] 
  Sperm Motility Infertility [46–48] 
  Fluid Transport Hydrocephalus; Cell Migration [49–51] 

2. Cell Culture Assay 

Due to their widespread use, in vitro cell culture studies have provided impressive insight into the 

ciliary mechanosensation of fluid flow. The approach to conducting fluid flow cell culture assays is for 

the most part conserved: upon growing the cell types on a cytologically conducive surface, the cultured 

cell layers can be treated with a parallel fluid flow. The resulting shear-stress forces induce a rise in 

intracellular Ca2+ that can either be observed through transgenic calcium markers or fluorescent 

calcium dyes (Figure 2). In the case of fluorescent calcium dyes, the cell cultures must be incubated 

with the dye prior to induction of flow.  
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Figure 2. Calcium response to fluid flow in cell cultures. (a) The induction of fluid flow 

causes a rise in calcium in cells (pseudocolored). (b) In transgenic cell lines with  

knocked-out Pkd1 or Tg737, both of which are ciliary proteins, calcium response is lost. 

The cells were incubated with fluorescent calcium dyes. Blue represents a low level; red 

denotes a higher level of calcium. Taken and adapted from [7]. 

 

In line with this overall approach, Nauli et al. details an experimental setup for growing cell 

monolayers, delivering fluid-shear stress, and observing the subsequent responses [52]. In the procedure, 

the authors describe several steps that are essential to the cell culture assay. The first such step is the 

presence of primary cilia to be induced and verified in the cell culture monolayer. As the primary cilia 

are only present in differentiated cells, one approach to inducing ciliation in, for example, kidney 

epithelial cells, is to grow cells overnight in normal serum and then in reduced serum (0.5%) for  

48 h [52]. In addition to kidney epithelial and endothelial cells, other cell types can be utilized including 

embryonic cells, hepatocytes, pancreatic epithelial cells, osteocytes, chondrocytes, and odontoblasts [4–11].  

In cell lines lacking transgenic calcium indicators, some of which have been established specifically 

for the ciliary domain, incubation with a fluorescent dye allows for visualization and quantification of 

ciliary function [53]. While the standard dyes utilized are Fura-2AM or Fluo-2, other conventional 

calcium indicators that are described above can be used. Following incubation with the calcium 

indicator, the cell culture must be transferred to a flow-delivering apparatus that is positioned with a 

computer and fluorescent microscope. Through the use of imaging software, such as MetaMorph, 

image capture can be used to analyze changes in fluorescence before, during and after perfusion of the 

cell culture monolayer. The calcium response profile produced as a result of flow is distinctive. Within 

renal epithelial and endothelial cell types, shear stress has been shown to cause a transient calcium 

influx after 5 seconds [6,7,16,54]. However, the peaks of calcium in response to shear stress could 

extend to 10–20 s, as has been seen by independent laboratories [55–57]. 
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3. Single Cell Assays 

It has long been speculated that the primary cilium itself functions as an independent calcium 

signaling compartment that might initiate a serial of downstream events. To test this hypothesis,  

it becomes critical to monitor calcium signaling in a single cell and cilium to achieve optimal resolution. 

However, such a signal cell assay is very difficult to conduct, owing to the submicron diameter and 

flexible nature of cilia. Therefore, it is only until recently that several independent research groups 

reported their observations about calcium signaling within an individual cilium.  

In contrast to cell culture assays, which use fluorescent calcium dyes, the majority of single-cell 

studies have utilized genetics to construct genetically encoded calcium indicators (GECI) that are 

specific to the primary cilium of the cell. By linking such indictors to a guide sequence that targets the 

primary cilium, researchers are able to dissect the calcium signals within an individual cilium from that 

of cytoplasm. Su et al. conducted a well-designed comparison experiment wherein several different 

GECI are fused with different cilia targeting sequences [58]. Parameters such as targeting efficiency, 

calcium signal dynamic range and cellular toxicity are carefully measured (Table 2). 

Table 2. Comparison of genetically engineered calcium indicators. Data from Su et al. [58]. 

Fluorescent 
Indicator 

Targeting 
Efficiency 

Cytosolic Signal Dynamic Range 
(Maximum Percent Change in 
Fluorescence or FRET [SEM]) 

Ciliary Signal Dynamic Range 
(Maximum Percent Change in 
Fluorescence or FRET [SEM]) 

GFP 0% - - 
5HT6-GFP 90% - - 

5HT6-GCaMP5G 0% 65.1% [7.9%]  
5HT6-YC3.60 80% 58.2% [11.9%] 74.6% [8.8%] 

5HT6-G-GECO1.0 75% 135.1% [42.4%] 360.0% [62.1%] 
IA-GECO1.0 65% 175.6% [42.3%] 443.1 [39.5%] 

This screening allows researchers to select a combination of GECI and cilia targeting sequences that 

can produce the highest signal definition and minimal cilia growth interferences. Ionomycin, ATP and 

fluid flow were applied to cells transfected with optimal GECI construct, and the subsequent responses 

were monitored and recorded by a confocal microscope system. In regard to fluid flow, a serial of  

z-stacking frames with a thickness of about 2 microns were continuously acquired along the base of a 

cilium. Once the cilium was bent, the whole image of a cilium could be captured. Also, the raw calcium 

signal readouts were normalized by an endogenous non-GECI fluorescent signal, such as mCherry,  

so that signal changes due to focal plain alternation could be eliminated. They reported cilia-specific 

calcium responses following fluid flow, echoing many previous reports that considered fluid flow as a 

cilia-specific stimulation.  

Similar to this investigation, Markus Delling et al. also studied cilia-specific calcium signaling 

using GECI and a confocal microscope [53]. Differently, they challenged the cilia with a laser pulse 

that could rupture the ciliary membrane and induce calcium influx localized to cilia specifically. It is 

very interesting to note that the calcium fluctuation following the rupture didn’t seem to be transduced 

to cytoplasm. Such highly localized calcium signaling was also related to the hedgehog pathway. This 

finding is different than some other reports that proposed a calcium-induced calcium release response 
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that relayed ciliary calcium signaling to that of cytoplasm. In addition, Markus Delling et al. 

investigated the identity of calcium channels in an accompanying report [59]. Their finds show that the 

PKD1L1-PKD2L1 heteromeric channel establishes the cilium as a unique calcium compartment that 

modulates established hedgehog pathways. An important point is that this study did not investigate 

cilia response to fluid flow, which is thought to be the most physiologically significant stimulation to 

primary cilia. 

Xingjian Jin et al. utilized GECI in their study but, different from the aforementioned studies, they 

made use of a novel cell culture system [60]. Cells that carry GECI construct were cultured on a glass 

coverslip-based flexible substrate. When cells reached 100% confluence and were serum starved 

overnight, the substrate was peeled off the coverslip and placed diagonally on a string of microwire. 

This microwire coated with the substrate was then transferred to a regular fluorescent microscope 

equipped with cell culture chamber and special prism. By focusing on the edge of microwire, they 

were able to obtain a side view of cells growing on the substrate (Figure 3).  

Figure 3. Ciliary calcium response to fluid flow in a single cell. (a) The calcium responses 

within the ciliary and cytoplasmic compartments of cells (pseudocolored) can be observed 

utilizing fluorescent calcium dyes or cell lines containing transgenic calcium indicators.  

(b) The induction of fluid flow causes bending of the primary cilium and a subsequent influx 

of calcium, first through the cilioplasm and then into the cell body. Color bar indicates 

calcium level, where black–purple and yellow–red colors represent low and high calcium 

levels, respectively. Bar = 4 μm. Taken and adapted from [60]. 

 

One major advantage of this method compared to the previous studies is that the whole cilium 

always remained in focus, with no cytoplasmic background, which made it much easier and more 
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accurate to differentiate calcium responses of cilium and those of cytoplasm. Using these systems, the 

authors showed cilia calcium responses to stimulations including fluid flow, fenoldopam and 

ionomycin. By applying different inhibitions, two calcium channels, Polycystin-2 (PC2) and L-type 

calcium channel (Cav 1.2), were found to be responsible for ciliary calcium responses. Intriguingly, 

calcium signaling initiated by these two channels seemed to have different fates, the former transduced 

to cytoplasm and the latter confined within cilium. Such differences, along with the findings made by 

Markus Delling et al., suggest that the calcium transduction from cilium to cytoplasm could be 

controlled by an unknown machinery that can switch on and off the calcium transfer between cilium 

and cytoplasm in response to different initial stimulations [53].  

Although a major breakthrough in single cilium calcium assay has been made the past year, there 

are still technical issues remaining to be solved. Firstly, all the GECIs utilized in the above studies 

were not ratiometric or semi-ratiometric. They are more comparable to Fluo-4 than Fura-2. Therefore, 

inaccuracies caused by random and uneven distribution of GECIs are inevitable. Secondly, the optimal 

expression levels of GECIs were not quantified in these studies, which might make it hard to reproduce 

such assays under other conditions. Thirdly, as for cell types that have very short primary cilia, such as 

osteoblasts and endothelial cells, it is still extremely difficult to visualize calcium signaling in their 

cilia. Considering how important ciliary calcium signaling is to these cell types, it becomes very urgent 

to develop a GECI construct that appears brighter at the baseline level combining with an imaging 

system that enables higher resolution. It is worth mentioning that the most direct way to study cilia as 

mechanosensory organelles is arguably by direct bending with a micropipette, an original technique 

introduced by Praetorius and Spring [61]. Despite the technical obstacles that remain to be solved, new 

methods that have enabled researchers to explore the significant and novel role of primary cilia as 

independent calcium signaling compartments are still exciting. Nevertheless, the discussed progress 

should serve as the significant first step to revealing more important roles of primary cilia in calcium 

signaling and related human diseases.  

4. Ex Vivo Assays 

Analyzing tissue responses ex vivo is a powerful tool in overcoming the limitations of the cell 

culture approach to describing ciliary mechanosensation. Cell culture studies have provided numerous 

advancements in delineating the signaling pathways and mechanisms of ciliary fluid flow sensation. 

However, the nature of in vitro cell culture prevents a direct application of novel findings to 

physiologic models. Ex vivo studies provide an important bridge between applying cell culture findings 

in a more controlled, consistent, and efficient system than is possible with in vivo studies. The result is 

an approach that can be best utilized for confirming cell culture findings in a more physiological 

setting as well as for conducting high-throughput screens for pharmacological agents (Figure 4). 

Observing ciliary mechanosensation ex vivo follows three experimental phases: tissue collection, 

preparation of tissue and flow system, and flow induction. While a variety of biological buffers have 

been utilized in perfusion systems, the selected buffer must be of constant pH, electrolyte, and O2/CO2 

concentrations in order to ensure tissue viability. The fluid-flow assays have been developed for 

skeletal, renal, and cardiovascular tissues [62,63].  
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Figure 4. Calcium response to fluid flow in ex vivo arteries. (a) Within ex vivo arteries, 

fluid flow causes an influx of calcium. (b) In tissues with knocked-down Pkd2, a ciliary 

calcium channel, or that are treated with apyrase, the response profile is changed. Tissues 

were incubated with a fluorescent calcium dye prior to perfusion. Change in cytosolic 

calcium was pseudocolored; white/green represents a low level of cytosolic calcium, and 

yellow/red denotes a higher level. Taken and adapted from [6]. 

 

Ishihara et al. describe a method for observing shear stress-induced calcium within bone tissue. 

Utilizing embryonic chick tissue, they prepared bone fragments by first stripping away the periosteal 

layer and then trimming samples into 2 × 2 mm pieces, with a thickness between 60 to 80 m. As with 

cell culture assays involving cells that lack a transgenic calcium marker, the tissue samples were 

incubated with fluorescent calcium dyes, such as fluo-8 and fura-2, in order to visualize intracellular 

calcium responses. The flow system utilized by Ishihara et al. uses capillary diffusion to apply fluid 

flow over the tissue sample [64]. The tissue is first placed on a glass slide that is held in place using 

adhesive grease, and the fluid flow is induced by adding a drop of solution to one side of the slide and 

suctioning the fluid from the opposite side using a piece of filter paper. As with all fluid flow calcium 

fluorimetry methods, a baseline is acquired prior to induction of flow. The osteocytes investigated by 

the group were identified within the tissue utilizing a three-dimensional analysis of the tissue layers [65]. 

Although Ishihara et al. do not specifically investigate primary cilia, presence and function of cilia 

have been identified in osteocytes [22,37]. 

The role of cilia in the pathogenesis of renal disease, namely polycystic kidney disease, emphasizes 

the need for applying cell culture findings to physiological systems in order to realize the potential for 

drug development. Liu et al. utilized ex vivo tubules from cortical collecting ducts in rabbits to 

characterize the function of cilia and, in the process, further consolidated paradigms of cilia as fluid 

flow sensors in the renal system [55]. Freehand isolation of the tubules was conducted, followed by 

microperfusion. The perfusion system involved cannulation of the isolated tubule, positioning of the 
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tubule on the Cell-Tak painted coverslip within a specimen chamber filled with incubation media and, 

finally, perfusion of media via syringe pump [66]. As with previously mentioned methods, fluorescent 

calcium dyes were utilized to observe the intracellular responses. In contrast to incubating the tissue 

prior to flow system setup, as in Ishihara et al., the calcium dye was added to the incubating media, 

followed by an incubation period prior to flow induction. In addition to perfusion of intact tubules,  

Liu et al. perfused tubules that had been cut longitudinally, thereby exposing the lumen, as well as 

intact tubules with occluded lumens. Their findings showed that cell types within the opened tissue  

had a different calcium response to intact tubules or occluded lumens, explained by the lack of 

circumferential stretch and subsequent signaling response when the lumen is opened and exposed [55]. 

The effect of circumferential stretch is an example of a nuance within the physiological system that is 

neglected in cell culture experiments. Worth mentioning is that fluid perfusion in renal tubules can also 

regulate acid–base balance in the kidney [67]. In addition, the primary cilia in macula densa cells 

within the cortical thick ascending limb can detect tubular fluid-flow rate, which can alter the 

glomerular filtration rate via the tubuloglomerular feedback pathway [68]. 

Studies on elicited calcium responses have been conducted not only in tubular renal tissues but also 

in vascular tissues. Abou-Alawi et al. conducted studies on ex vivo mouse aortae, simulating the 

effects of blood flow [6]. Similar to the studies conducted by Liu et al., the dissected tissue was 

cannulated in a bath of media and then perfused with media. In contrast to other studies, the tissue was 

incubated in a solution containing the fluorescent calcium dye before cannulation and perfusion. 

Although the calcium response profiles in the ex vivo tissues were not identical to cell culture studies, 

reflecting the complexity of physiologic factors that limit cell culture studies, the knockdown of the 

ciliary calcium channel Pkd2 did inhibit the response profile as it did in cell culture studies (Figure 4). 

The ability to reinforce novel cell culture findings using the ex vivo system, coupled with defined 

responses through calcium fluorimetry, is an integral step in the process of contributing to physiological 

models and developing clinical treatments for disease states. 

As in the renal tubule, fluid flow can cause vessel distension, and this may not reflect a function of 

the primary cilia. Furthermore, the calcium profile is substantially different between the control vessel 

and the vessel treated with apyrase which is an enzyme that hydrolyzes any nucleoside triphosphates or 

diphosphates (such as ATP and ADP). It is very possible that the vessel distention induces secretion of 

ATP or ADP. In particular, it has been shown that ATP can increase calcium in the cilioplasm [58]. 

Thus, the vessel distention and the presence of ATP could undermine the strategy to study cilia function. 

To avoid these issues with vessel distention and ATP, AbouAlaiwi et al. have developed a 

technique to insert a vessel into a glass capillary tube (Figure 5). The basis of the approach is that the 

vessel inside the capillary tube would have no or very limited room for distention or expanding due to 

the perfusate pressure [6]. The calcium profiles between freely placed and capillary-enclosed vessels 

are indeed very different. Because the calcium profile of the capillary-enclosed artery represents a 

much closer resemblance to the profile of a cell culture, we believe the capillary-enclosed approach 

should be used to study mechanosensory cilia function. 

Another exciting ex vivo assay to study cilia function is the embryonic nodal system [4,69,70]. 

Primitive streak and pit are formed during embryogenesis, where the upper layer of embryonic cells 

invaginates. The Hensen’s node located at the end of the primitive streak is most likely the earliest role 

of primary cilia that is currently known. This ex vivo model has allowed us to study different functions 
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of primary cilia in sensing fluid shear stress and detecting chemical gradient. Responding to the nodal 

flow or chemical gradient, only the left-side margin of the node would show an increase in intracellular 

calcium, an early contributing factor to determining left–right body asymmetry. Thus, regardless of the 

mechano- and/or chemo-sensory roles of primary cilia, cytosolic calcium is an important indicator to 

validate cilia function within the Hensen’s node. 

Figure 5. Calcium response to fluid flow in capillary-enclosed arteries ex vivo. (a) Within 

the capillary-enclosed arteries ex vivo, fluid flow causes an influx of calcium. (b) In tissues 

with knocked-down Pkd2 or in tissues treated with apyrase, the response profile is 

changed. Tissues were incubated with a fluorescent calcium dye prior to perfusion. Change 

in cytosolic calcium was pseudocolored; white/green represents a low level, and yellow/red 

denotes a higher level of cytosolic calcium. Taken and adapted from [6]. 

 

Despite the fact that calcium has been shown to play an essential role as a second messenger to 

transmit the extracellular signal into an intracellular biochemical reaction, it is also important to 

mention that some studies have indicated that calcium might not be involved in cellular mechanosensory 

transduction [22,71,72]. There is no doubt that the discrepancy in this area requires more research, 

through a better, more sensitive and innovative technology. However, the idea of primary cilia as 

sensory organelles seems to be generally accepted. Perhaps an in vivo system would help to provide a 

better understanding of the mechanosensory function of primary cilia in the near future. 
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